pthread_mutex.c revision 1.40 1 /* $NetBSD: pthread_mutex.c,v 1.40 2008/01/05 01:37:35 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.40 2008/01/05 01:37:35 ad Exp $");
41
42 #include <sys/types.h>
43
44 #include <machine/lock.h>
45
46 #include <errno.h>
47 #include <limits.h>
48 #include <stdlib.h>
49 #include <string.h>
50
51 #include "pthread.h"
52 #include "pthread_int.h"
53
54 #ifndef PTHREAD__HAVE_ATOMIC
55
56 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
57
58 int _pthread_mutex_held_np(pthread_mutex_t *);
59 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
60
61 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
62 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
63
64 __strong_alias(__libc_mutex_init,pthread_mutex_init)
65 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
66 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
67 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
68 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
69
70 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
71 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
72 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
73
74 __strong_alias(__libc_thr_once,pthread_once)
75
76 struct mutex_private {
77 int type;
78 int recursecount;
79 };
80
81 static const struct mutex_private mutex_private_default = {
82 PTHREAD_MUTEX_DEFAULT,
83 0,
84 };
85
86 struct mutexattr_private {
87 int type;
88 };
89
90 static const struct mutexattr_private mutexattr_private_default = {
91 PTHREAD_MUTEX_DEFAULT,
92 };
93
94 int
95 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
96 {
97 struct mutexattr_private *map;
98 struct mutex_private *mp;
99
100 pthread__error(EINVAL, "Invalid mutex attribute",
101 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
102
103 if (attr != NULL && (map = attr->ptma_private) != NULL &&
104 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
105 mp = malloc(sizeof(*mp));
106 if (mp == NULL)
107 return ENOMEM;
108
109 mp->type = map->type;
110 mp->recursecount = 0;
111 } else {
112 /* LINTED cast away const */
113 mp = (struct mutex_private *) &mutex_private_default;
114 }
115
116 mutex->ptm_magic = _PT_MUTEX_MAGIC;
117 mutex->ptm_owner = NULL;
118 pthread_lockinit(&mutex->ptm_lock);
119 pthread_lockinit(&mutex->ptm_interlock);
120 PTQ_INIT(&mutex->ptm_blocked);
121 mutex->ptm_private = mp;
122
123 return 0;
124 }
125
126
127 int
128 pthread_mutex_destroy(pthread_mutex_t *mutex)
129 {
130
131 pthread__error(EINVAL, "Invalid mutex",
132 mutex->ptm_magic == _PT_MUTEX_MAGIC);
133 pthread__error(EBUSY, "Destroying locked mutex",
134 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
135
136 mutex->ptm_magic = _PT_MUTEX_DEAD;
137 if (mutex->ptm_private != NULL &&
138 mutex->ptm_private != (const void *)&mutex_private_default)
139 free(mutex->ptm_private);
140
141 return 0;
142 }
143
144
145 /*
146 * Note regarding memory visibility: Pthreads has rules about memory
147 * visibility and mutexes. Very roughly: Memory a thread can see when
148 * it unlocks a mutex can be seen by another thread that locks the
149 * same mutex.
150 *
151 * A memory barrier after a lock and before an unlock will provide
152 * this behavior. This code relies on pthread__spintrylock() to issue
153 * a barrier after obtaining a lock, and on pthread__spinunlock() to
154 * issue a barrier before releasing a lock.
155 */
156
157 int
158 pthread_mutex_lock(pthread_mutex_t *mutex)
159 {
160 pthread_t self;
161 int error;
162
163 self = pthread__self();
164
165 /*
166 * Note that if we get the lock, we don't have to deal with any
167 * non-default lock type handling.
168 */
169 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
170 error = pthread_mutex_lock_slow(self, mutex);
171 if (error)
172 return error;
173 }
174
175 /*
176 * We have the lock!
177 */
178 mutex->ptm_owner = self;
179
180 return 0;
181 }
182
183
184 static int
185 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
186 {
187 extern int pthread__started;
188 struct mutex_private *mp;
189 sigset_t ss;
190 int count;
191
192 pthread__error(EINVAL, "Invalid mutex",
193 mutex->ptm_magic == _PT_MUTEX_MAGIC);
194
195 for (;;) {
196 /* Spin for a while. */
197 count = pthread__nspins;
198 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
199 pthread__smt_pause();
200 if (count > 0) {
201 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
202 break;
203 continue;
204 }
205
206 /* Okay, didn't look free. Get the interlock... */
207 pthread__spinlock(self, &mutex->ptm_interlock);
208
209 /*
210 * The mutex_unlock routine will get the interlock
211 * before looking at the list of sleepers, so if the
212 * lock is held we can safely put ourselves on the
213 * sleep queue. If it's not held, we can try taking it
214 * again.
215 */
216 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
217 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
218 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
219 pthread__spinunlock(self, &mutex->ptm_interlock);
220 continue;
221 }
222
223 mp = mutex->ptm_private;
224 if (mutex->ptm_owner == self && mp != NULL) {
225 switch (mp->type) {
226 case PTHREAD_MUTEX_ERRORCHECK:
227 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
228 pthread__spinunlock(self, &mutex->ptm_interlock);
229 return EDEADLK;
230
231 case PTHREAD_MUTEX_RECURSIVE:
232 /*
233 * It's safe to do this without
234 * holding the interlock, because
235 * we only modify it if we know we
236 * own the mutex.
237 */
238 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
239 pthread__spinunlock(self, &mutex->ptm_interlock);
240 if (mp->recursecount == INT_MAX)
241 return EAGAIN;
242 mp->recursecount++;
243 return 0;
244 }
245 }
246
247 if (pthread__started == 0) {
248 /* The spec says we must deadlock, so... */
249 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
250 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
251 for (;;) {
252 sigsuspend(&ss);
253 }
254 /*NOTREACHED*/
255 }
256
257 /*
258 * Locking a mutex is not a cancellation
259 * point, so we don't need to do the
260 * test-cancellation dance. We may get woken
261 * up spuriously by pthread_cancel or signals,
262 * but it's okay since we're just going to
263 * retry.
264 */
265 self->pt_sleeponq = 1;
266 self->pt_sleepobj = &mutex->ptm_blocked;
267 pthread__spinunlock(self, &mutex->ptm_interlock);
268 (void)pthread__park(self, &mutex->ptm_interlock,
269 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
270 }
271
272 return 0;
273 }
274
275
276 int
277 pthread_mutex_trylock(pthread_mutex_t *mutex)
278 {
279 struct mutex_private *mp;
280 pthread_t self;
281
282 pthread__error(EINVAL, "Invalid mutex",
283 mutex->ptm_magic == _PT_MUTEX_MAGIC);
284
285 self = pthread__self();
286
287 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
288 /*
289 * These tests can be performed without holding the
290 * interlock because these fields are only modified
291 * if we know we own the mutex.
292 */
293 mp = mutex->ptm_private;
294 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
295 mutex->ptm_owner == self) {
296 if (mp->recursecount == INT_MAX)
297 return EAGAIN;
298 mp->recursecount++;
299 return 0;
300 }
301
302 return EBUSY;
303 }
304
305 mutex->ptm_owner = self;
306
307 return 0;
308 }
309
310
311 int
312 pthread_mutex_unlock(pthread_mutex_t *mutex)
313 {
314 struct mutex_private *mp;
315 pthread_t self;
316 int weown;
317
318 pthread__error(EINVAL, "Invalid mutex",
319 mutex->ptm_magic == _PT_MUTEX_MAGIC);
320
321 /*
322 * These tests can be performed without holding the
323 * interlock because these fields are only modified
324 * if we know we own the mutex.
325 */
326 self = pthread__self();
327 weown = (mutex->ptm_owner == self);
328 mp = mutex->ptm_private;
329
330 if (mp == NULL) {
331 if (__predict_false(!weown)) {
332 pthread__error(EPERM, "Unlocking unlocked mutex",
333 (mutex->ptm_owner != 0));
334 pthread__error(EPERM,
335 "Unlocking mutex owned by another thread", weown);
336 }
337 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
338 if (!weown)
339 return EPERM;
340 if (mp->recursecount != 0) {
341 mp->recursecount--;
342 return 0;
343 }
344 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
345 if (!weown)
346 return EPERM;
347 if (__predict_false(!weown)) {
348 pthread__error(EPERM, "Unlocking unlocked mutex",
349 (mutex->ptm_owner != 0));
350 pthread__error(EPERM,
351 "Unlocking mutex owned by another thread", weown);
352 }
353 }
354
355 mutex->ptm_owner = NULL;
356 pthread__spinunlock(self, &mutex->ptm_lock);
357
358 /*
359 * Do a double-checked locking dance to see if there are any
360 * waiters. If we don't see any waiters, we can exit, because
361 * we've already released the lock. If we do see waiters, they
362 * were probably waiting on us... there's a slight chance that
363 * they are waiting on a different thread's ownership of the
364 * lock that happened between the unlock above and this
365 * examination of the queue; if so, no harm is done, as the
366 * waiter will loop and see that the mutex is still locked.
367 */
368 pthread__spinlock(self, &mutex->ptm_interlock);
369 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
370 return 0;
371 }
372
373 int
374 pthread_mutexattr_init(pthread_mutexattr_t *attr)
375 {
376 struct mutexattr_private *map;
377
378 map = malloc(sizeof(*map));
379 if (map == NULL)
380 return ENOMEM;
381
382 *map = mutexattr_private_default;
383
384 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
385 attr->ptma_private = map;
386
387 return 0;
388 }
389
390
391 int
392 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
393 {
394
395 pthread__error(EINVAL, "Invalid mutex attribute",
396 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
397
398 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
399 if (attr->ptma_private != NULL)
400 free(attr->ptma_private);
401
402 return 0;
403 }
404
405
406 int
407 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
408 {
409 struct mutexattr_private *map;
410
411 pthread__error(EINVAL, "Invalid mutex attribute",
412 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
413
414 map = attr->ptma_private;
415
416 *typep = map->type;
417
418 return 0;
419 }
420
421
422 int
423 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
424 {
425 struct mutexattr_private *map;
426
427 pthread__error(EINVAL, "Invalid mutex attribute",
428 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
429
430 map = attr->ptma_private;
431
432 switch (type) {
433 case PTHREAD_MUTEX_NORMAL:
434 case PTHREAD_MUTEX_ERRORCHECK:
435 case PTHREAD_MUTEX_RECURSIVE:
436 map->type = type;
437 break;
438
439 default:
440 return EINVAL;
441 }
442
443 return 0;
444 }
445
446
447 static void
448 once_cleanup(void *closure)
449 {
450
451 pthread_mutex_unlock((pthread_mutex_t *)closure);
452 }
453
454
455 int
456 pthread_once(pthread_once_t *once_control, void (*routine)(void))
457 {
458
459 if (once_control->pto_done == 0) {
460 pthread_mutex_lock(&once_control->pto_mutex);
461 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
462 if (once_control->pto_done == 0) {
463 routine();
464 once_control->pto_done = 1;
465 }
466 pthread_cleanup_pop(1);
467 }
468
469 return 0;
470 }
471
472 int
473 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
474 {
475
476 return mutex->ptm_owner == thread;
477 }
478
479 int
480 _pthread_mutex_held_np(pthread_mutex_t *mutex)
481 {
482
483 return mutex->ptm_owner == pthread__self();
484 }
485
486 pthread_t
487 _pthread_mutex_owner_np(pthread_mutex_t *mutex)
488 {
489
490 return (pthread_t)mutex->ptm_owner;
491 }
492
493 #endif /* !PTHREAD__HAVE_ATOMIC */
494