pthread_mutex.c revision 1.43 1 /* $NetBSD: pthread_mutex.c,v 1.43 2008/01/25 02:12:10 rafal Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.43 2008/01/25 02:12:10 rafal Exp $");
41
42 #include <sys/types.h>
43
44 #include <machine/lock.h>
45
46 #include <errno.h>
47 #include <limits.h>
48 #include <stdlib.h>
49 #include <string.h>
50
51 #include "pthread.h"
52 #include "pthread_int.h"
53
54 #ifndef PTHREAD__HAVE_ATOMIC
55
56 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
57 static void once_cleanup(void *);
58
59 int _pthread_mutex_held_np(pthread_mutex_t *);
60 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
61
62 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
63 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
64
65 __strong_alias(__libc_mutex_init,pthread_mutex_init)
66 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
67 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
68 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
69 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
70
71 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
72 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
73 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
74
75 __strong_alias(__libc_thr_once,pthread_once)
76
77 struct mutex_private {
78 int type;
79 int recursecount;
80 };
81
82 static const struct mutex_private mutex_private_default = {
83 PTHREAD_MUTEX_DEFAULT,
84 0,
85 };
86
87 struct mutexattr_private {
88 int type;
89 };
90
91 static const struct mutexattr_private mutexattr_private_default = {
92 PTHREAD_MUTEX_DEFAULT,
93 };
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__spintrylock() to issue
154 * a barrier after obtaining a lock, and on pthread__spinunlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 pthread_t self;
162 int error;
163
164 self = pthread__self();
165
166 /*
167 * Note that if we get the lock, we don't have to deal with any
168 * non-default lock type handling.
169 */
170 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
171 error = pthread_mutex_lock_slow(self, mutex);
172 if (error)
173 return error;
174 }
175
176 /*
177 * We have the lock!
178 */
179 mutex->ptm_owner = self;
180
181 return 0;
182 }
183
184
185 static int
186 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
187 {
188 struct mutex_private *mp;
189 int count;
190
191 pthread__error(EINVAL, "Invalid mutex",
192 mutex->ptm_magic == _PT_MUTEX_MAGIC);
193
194 for (;;) {
195 /* Spin for a while. */
196 count = pthread__nspins;
197 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
198 pthread__smt_pause();
199 if (count > 0) {
200 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
201 break;
202 continue;
203 }
204
205 /* Okay, didn't look free. Get the interlock... */
206 pthread__spinlock(self, &mutex->ptm_interlock);
207
208 /*
209 * The mutex_unlock routine will get the interlock
210 * before looking at the list of sleepers, so if the
211 * lock is held we can safely put ourselves on the
212 * sleep queue. If it's not held, we can try taking it
213 * again.
214 */
215 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
216 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
217 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
218 pthread__spinunlock(self, &mutex->ptm_interlock);
219 continue;
220 }
221
222 mp = mutex->ptm_private;
223 if (mutex->ptm_owner == self && mp != NULL) {
224 switch (mp->type) {
225 case PTHREAD_MUTEX_ERRORCHECK:
226 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
227 pthread__spinunlock(self, &mutex->ptm_interlock);
228 return EDEADLK;
229
230 case PTHREAD_MUTEX_RECURSIVE:
231 /*
232 * It's safe to do this without
233 * holding the interlock, because
234 * we only modify it if we know we
235 * own the mutex.
236 */
237 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
238 pthread__spinunlock(self, &mutex->ptm_interlock);
239 if (mp->recursecount == INT_MAX)
240 return EAGAIN;
241 mp->recursecount++;
242 return 0;
243 }
244 }
245
246 /*
247 * Locking a mutex is not a cancellation
248 * point, so we don't need to do the
249 * test-cancellation dance. We may get woken
250 * up spuriously by pthread_cancel or signals,
251 * but it's okay since we're just going to
252 * retry.
253 */
254 self->pt_sleeponq = 1;
255 self->pt_sleepobj = &mutex->ptm_blocked;
256 pthread__spinunlock(self, &mutex->ptm_interlock);
257 (void)pthread__park(self, &mutex->ptm_interlock,
258 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
259 }
260
261 return 0;
262 }
263
264
265 int
266 pthread_mutex_trylock(pthread_mutex_t *mutex)
267 {
268 struct mutex_private *mp;
269 pthread_t self;
270
271 pthread__error(EINVAL, "Invalid mutex",
272 mutex->ptm_magic == _PT_MUTEX_MAGIC);
273
274 self = pthread__self();
275
276 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
277 /*
278 * These tests can be performed without holding the
279 * interlock because these fields are only modified
280 * if we know we own the mutex.
281 */
282 mp = mutex->ptm_private;
283 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
284 mutex->ptm_owner == self) {
285 if (mp->recursecount == INT_MAX)
286 return EAGAIN;
287 mp->recursecount++;
288 return 0;
289 }
290
291 return EBUSY;
292 }
293
294 mutex->ptm_owner = self;
295
296 return 0;
297 }
298
299
300 int
301 pthread_mutex_unlock(pthread_mutex_t *mutex)
302 {
303 struct mutex_private *mp;
304 pthread_t self;
305 int weown;
306
307 pthread__error(EINVAL, "Invalid mutex",
308 mutex->ptm_magic == _PT_MUTEX_MAGIC);
309
310 /*
311 * These tests can be performed without holding the
312 * interlock because these fields are only modified
313 * if we know we own the mutex.
314 */
315 self = pthread__self();
316 weown = (mutex->ptm_owner == self);
317 mp = mutex->ptm_private;
318
319 if (mp == NULL) {
320 if (__predict_false(!weown)) {
321 pthread__error(EPERM, "Unlocking unlocked mutex",
322 (mutex->ptm_owner != 0));
323 pthread__error(EPERM,
324 "Unlocking mutex owned by another thread", weown);
325 }
326 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
327 if (!weown)
328 return EPERM;
329 if (mp->recursecount != 0) {
330 mp->recursecount--;
331 return 0;
332 }
333 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
334 if (!weown)
335 return EPERM;
336 if (__predict_false(!weown)) {
337 pthread__error(EPERM, "Unlocking unlocked mutex",
338 (mutex->ptm_owner != 0));
339 pthread__error(EPERM,
340 "Unlocking mutex owned by another thread", weown);
341 }
342 }
343
344 mutex->ptm_owner = NULL;
345 pthread__spinunlock(self, &mutex->ptm_lock);
346
347 /*
348 * Do a double-checked locking dance to see if there are any
349 * waiters. If we don't see any waiters, we can exit, because
350 * we've already released the lock. If we do see waiters, they
351 * were probably waiting on us... there's a slight chance that
352 * they are waiting on a different thread's ownership of the
353 * lock that happened between the unlock above and this
354 * examination of the queue; if so, no harm is done, as the
355 * waiter will loop and see that the mutex is still locked.
356 */
357 pthread__spinlock(self, &mutex->ptm_interlock);
358 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
359 return 0;
360 }
361
362 int
363 pthread_mutexattr_init(pthread_mutexattr_t *attr)
364 {
365 struct mutexattr_private *map;
366
367 map = malloc(sizeof(*map));
368 if (map == NULL)
369 return ENOMEM;
370
371 *map = mutexattr_private_default;
372
373 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
374 attr->ptma_private = map;
375
376 return 0;
377 }
378
379
380 int
381 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
382 {
383
384 pthread__error(EINVAL, "Invalid mutex attribute",
385 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
386
387 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
388 if (attr->ptma_private != NULL)
389 free(attr->ptma_private);
390
391 return 0;
392 }
393
394
395 int
396 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
397 {
398 struct mutexattr_private *map;
399
400 pthread__error(EINVAL, "Invalid mutex attribute",
401 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
402
403 map = attr->ptma_private;
404
405 *typep = map->type;
406
407 return 0;
408 }
409
410
411 int
412 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
413 {
414 struct mutexattr_private *map;
415
416 pthread__error(EINVAL, "Invalid mutex attribute",
417 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
418
419 map = attr->ptma_private;
420
421 switch (type) {
422 case PTHREAD_MUTEX_NORMAL:
423 case PTHREAD_MUTEX_ERRORCHECK:
424 case PTHREAD_MUTEX_RECURSIVE:
425 map->type = type;
426 break;
427
428 default:
429 return EINVAL;
430 }
431
432 return 0;
433 }
434
435
436 static void
437 once_cleanup(void *closure)
438 {
439
440 pthread_mutex_unlock((pthread_mutex_t *)closure);
441 }
442
443
444 int
445 pthread_once(pthread_once_t *once_control, void (*routine)(void))
446 {
447
448 if (once_control->pto_done == 0) {
449 pthread_mutex_lock(&once_control->pto_mutex);
450 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
451 if (once_control->pto_done == 0) {
452 routine();
453 once_control->pto_done = 1;
454 }
455 pthread_cleanup_pop(1);
456 }
457
458 return 0;
459 }
460
461 int
462 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
463 {
464
465 return mutex->ptm_owner == thread;
466 }
467
468 int
469 _pthread_mutex_held_np(pthread_mutex_t *mutex)
470 {
471
472 return mutex->ptm_owner == pthread__self();
473 }
474
475 pthread_t
476 _pthread_mutex_owner_np(pthread_mutex_t *mutex)
477 {
478
479 return (pthread_t)mutex->ptm_owner;
480 }
481
482 #endif /* !PTHREAD__HAVE_ATOMIC */
483