Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.44
      1 /*	$NetBSD: pthread_mutex.c,v 1.44 2008/02/10 18:50:54 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.44 2008/02/10 18:50:54 ad Exp $");
     41 
     42 #include <sys/types.h>
     43 #include <sys/lwpctl.h>
     44 
     45 #include <errno.h>
     46 #include <limits.h>
     47 #include <stdlib.h>
     48 #include <string.h>
     49 #include <stdio.h>
     50 
     51 #include "pthread.h"
     52 #include "pthread_int.h"
     53 
     54 /*
     55  * Note that it's important to use the address of ptm_waiters as
     56  * the list head in order for the hint arguments to _lwp_park /
     57  * _lwp_unpark_all to match.
     58  */
     59 #define	pt_nextwaiter			pt_sleep.ptqe_next
     60 #define	ptm_waiters			ptm_blocked.ptqh_first
     61 #define	ptm_errorcheck			ptm_lock
     62 
     63 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     64 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     65 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     66 #define	MUTEX_THREAD			((uintptr_t)-16L)
     67 
     68 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     69 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     70 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     71 #define	MUTEX_GET_RECURSE(ptm)		((intptr_t)(ptm)->ptm_private)
     72 #define	MUTEX_SET_RECURSE(ptm, delta)	\
     73     ((ptm)->ptm_private = (void *)((intptr_t)(ptm)->ptm_private + delta))
     74 
     75 #if __GNUC_PREREQ__(3, 0)
     76 #define	NOINLINE		__attribute ((noinline))
     77 #else
     78 #define	NOINLINE		/* nothing */
     79 #endif
     80 
     81 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     82 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     83 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     84 static void	pthread__mutex_pause(void);
     85 
     86 int		_pthread_mutex_held_np(pthread_mutex_t *);
     87 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     88 
     89 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     90 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     91 
     92 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     93 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     94 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     95 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     96 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     97 
     98 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     99 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    100 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    101 
    102 __strong_alias(__libc_thr_once,pthread_once)
    103 
    104 int
    105 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    106 {
    107 	intptr_t type;
    108 
    109 	if (attr == NULL)
    110 		type = PTHREAD_MUTEX_NORMAL;
    111 	else
    112 		type = (intptr_t)attr->ptma_private;
    113 
    114 	switch (type) {
    115 	case PTHREAD_MUTEX_ERRORCHECK:
    116 		ptm->ptm_errorcheck = 1;
    117 		ptm->ptm_owner = NULL;
    118 		break;
    119 	case PTHREAD_MUTEX_RECURSIVE:
    120 		ptm->ptm_errorcheck = 0;
    121 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    122 		break;
    123 	default:
    124 		ptm->ptm_errorcheck = 0;
    125 		ptm->ptm_owner = NULL;
    126 		break;
    127 	}
    128 
    129 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    130 	ptm->ptm_waiters = NULL;
    131 	ptm->ptm_private = NULL;
    132 
    133 	return 0;
    134 }
    135 
    136 
    137 int
    138 pthread_mutex_destroy(pthread_mutex_t *ptm)
    139 {
    140 
    141 	pthread__error(EINVAL, "Invalid mutex",
    142 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    143 	pthread__error(EBUSY, "Destroying locked mutex",
    144 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    145 
    146 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    147 	return 0;
    148 }
    149 
    150 int
    151 pthread_mutex_lock(pthread_mutex_t *ptm)
    152 {
    153 	pthread_t self;
    154 	void *val;
    155 
    156 	self = pthread__self();
    157 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    158 	if (__predict_true(val == NULL)) {
    159 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    160 		membar_enter();
    161 #endif
    162 		return 0;
    163 	}
    164 	return pthread__mutex_lock_slow(ptm);
    165 }
    166 
    167 /* We want function call overhead. */
    168 NOINLINE static void
    169 pthread__mutex_pause(void)
    170 {
    171 
    172 	pthread__smt_pause();
    173 }
    174 
    175 /*
    176  * Spin while the holder is running.  'lwpctl' gives us the true
    177  * status of the thread.  pt_blocking is set by libpthread in order
    178  * to cut out system call and kernel spinlock overhead on remote CPUs
    179  * (could represent many thousands of clock cycles).  pt_blocking also
    180  * makes this thread yield if the target is calling sched_yield().
    181  */
    182 NOINLINE static void *
    183 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    184 {
    185 	pthread_t thread;
    186 	unsigned int count, i;
    187 
    188 	for (count = 2;; owner = ptm->ptm_owner) {
    189 		thread = (pthread_t)MUTEX_OWNER(owner);
    190 		if (thread == NULL)
    191 			break;
    192 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    193 		    thread->pt_blocking)
    194 			break;
    195 		if (count < 128)
    196 			count += count;
    197 		for (i = count; i != 0; i--)
    198 			pthread__mutex_pause();
    199 	}
    200 
    201 	return owner;
    202 }
    203 
    204 NOINLINE static int
    205 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    206 {
    207 	void *waiters, *new, *owner, *next;
    208 	pthread_t self;
    209 
    210 	pthread__error(EINVAL, "Invalid mutex",
    211 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    212 
    213 	owner = ptm->ptm_owner;
    214 	self = pthread__self();
    215 
    216 	/* Recursive or errorcheck? */
    217 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    218 		if (MUTEX_RECURSIVE(owner)) {
    219 			if (MUTEX_GET_RECURSE(ptm) == INT_MAX)
    220 				return EAGAIN;
    221 			MUTEX_SET_RECURSE(ptm, +1);
    222 			return 0;
    223 		}
    224 		if (ptm->ptm_errorcheck)
    225 			return EDEADLK;
    226 	}
    227 
    228 	for (;; owner = ptm->ptm_owner) {
    229 		/* Spin while the owner is running. */
    230 		owner = pthread__mutex_spin(ptm, owner);
    231 
    232 		/* If it has become free, try to acquire it again. */
    233 		if (MUTEX_OWNER(owner) == 0) {
    234 			for (; MUTEX_OWNER(owner) == 0; owner = next) {
    235 				new = (void *)
    236 				    ((uintptr_t)self | (uintptr_t)owner);
    237 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    238 				    new);
    239 				if (next == owner) {
    240 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    241 					membar_enter();
    242 #endif
    243 					return 0;
    244 				}
    245 			}
    246 			/*
    247 			 * We have lost the race to acquire the mutex.
    248 			 * The new owner could be running on another
    249 			 * CPU, in which case we should spin and avoid
    250 			 * the overhead of blocking.
    251 			 */
    252 			if (!MUTEX_HAS_WAITERS(owner))
    253 				continue;
    254 		}
    255 
    256 		/*
    257 		 * Nope, still held.  Add thread to the list of waiters.
    258 		 * Issue a memory barrier to ensure sleeponq/nextwaiter
    259 		 * are visible before we enter the waiters list.
    260 		 */
    261 		self->pt_sleeponq = 1;
    262 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    263 			self->pt_nextwaiter = waiters;
    264 			membar_producer();
    265 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    266 			if (next == waiters)
    267 			    	break;
    268 		}
    269 
    270 		/*
    271 		 * Set the waiters bit and block.
    272 		 *
    273 		 * Note that the mutex can become unlocked before we set
    274 		 * the waiters bit.  If that happens it's not safe to sleep
    275 		 * as we may never be awoken: we must remove the current
    276 		 * thread from the waiters list and try again.
    277 		 *
    278 		 * Because we are doing this atomically, we can't remove
    279 		 * one waiter: we must remove all waiters and awken them,
    280 		 * then sleep in _lwp_park() until we have been awoken.
    281 		 *
    282 		 * Issue a memory barrier to ensure that we are reading
    283 		 * the value of ptm_owner/pt_sleeponq after we have entered
    284 		 * the waiters list (the CAS itself must be atomic).
    285 		 */
    286 		membar_consumer();
    287 		for (owner = ptm->ptm_owner;; owner = next) {
    288 			if (MUTEX_HAS_WAITERS(owner))
    289 				break;
    290 			if (MUTEX_OWNER(owner) == 0) {
    291 				pthread__mutex_wakeup(self, ptm);
    292 				break;
    293 			}
    294 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    295 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    296 			if (next == owner) {
    297 				/*
    298 				 * pthread_mutex_unlock() can do a
    299 				 * non-interlocked CAS.  We cannot
    300 				 * know if our attempt to set the
    301 				 * waiters bit has succeeded while
    302 				 * the holding thread is running.
    303 				 * There are many assumptions; see
    304 				 * sys/kern/kern_mutex.c for details.
    305 				 * In short, we must spin if we see
    306 				 * that the holder is running again.
    307 				 */
    308 				membar_sync();
    309 				next = pthread__mutex_spin(ptm, owner);
    310 			}
    311 		}
    312 
    313 		/*
    314 		 * We may have been awoken by the current thread above,
    315 		 * or will be awoken by the current holder of the mutex.
    316 		 * The key requirement is that we must not proceed until
    317 		 * told that we are no longer waiting (via pt_sleeponq
    318 		 * being set to zero).  Otherwise it is unsafe to re-enter
    319 		 * the thread onto the waiters list.
    320 		 */
    321 		while (self->pt_sleeponq) {
    322 			self->pt_blocking++;
    323 			(void)_lwp_park(NULL, 0, &ptm->ptm_waiters, NULL);
    324 			self->pt_blocking--;
    325 			membar_sync();
    326 		}
    327 	}
    328 }
    329 
    330 int
    331 pthread_mutex_trylock(pthread_mutex_t *ptm)
    332 {
    333 	pthread_t self;
    334 	void *val;
    335 
    336 	self = pthread__self();
    337 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    338 	if (__predict_true(val == NULL)) {
    339 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    340 		membar_enter();
    341 #endif
    342 		return 0;
    343 	}
    344 
    345 	if (MUTEX_OWNER(val) == (uintptr_t)self && MUTEX_RECURSIVE(val)) {
    346 		if (MUTEX_GET_RECURSE(ptm) == INT_MAX)
    347 			return EAGAIN;
    348 		MUTEX_SET_RECURSE(ptm, +1);
    349 		return 0;
    350 	}
    351 
    352 	return EBUSY;
    353 }
    354 
    355 int
    356 pthread_mutex_unlock(pthread_mutex_t *ptm)
    357 {
    358 	pthread_t self;
    359 	void *value;
    360 
    361 	/*
    362 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    363 	 * above and sys/kern/kern_mutex.c for details.
    364 	 */
    365 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    366 	membar_exit();
    367 #endif
    368 	self = pthread__self();
    369 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    370 	if (__predict_true(value == self))
    371 		return 0;
    372 	return pthread__mutex_unlock_slow(ptm);
    373 }
    374 
    375 NOINLINE static int
    376 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    377 {
    378 	pthread_t self, owner, new;
    379 	int weown, error, deferred;
    380 
    381 	pthread__error(EINVAL, "Invalid mutex",
    382 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    383 
    384 	self = pthread__self();
    385 	owner = ptm->ptm_owner;
    386 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    387 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    388 	error = 0;
    389 
    390 	if (ptm->ptm_errorcheck) {
    391 		if (!weown) {
    392 			error = EPERM;
    393 			new = owner;
    394 		} else {
    395 			new = NULL;
    396 		}
    397 	} else if (MUTEX_RECURSIVE(owner)) {
    398 		if (!weown) {
    399 			error = EPERM;
    400 			new = owner;
    401 		} else if (MUTEX_GET_RECURSE(ptm) != 0) {
    402 			MUTEX_SET_RECURSE(ptm, -1);
    403 			new = owner;
    404 		} else {
    405 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    406 		}
    407 	} else {
    408 		pthread__error(EPERM,
    409 		    "Unlocking unlocked mutex", (owner != NULL));
    410 		pthread__error(EPERM,
    411 		    "Unlocking mutex owned by another thread", weown);
    412 		new = NULL;
    413 	}
    414 
    415 	/*
    416 	 * Release the mutex.  If there appear to be waiters, then
    417 	 * wake them up.
    418 	 */
    419 	if (new != owner) {
    420 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    421 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    422 			pthread__mutex_wakeup(self, ptm);
    423 			return 0;
    424 		}
    425 	}
    426 
    427 	/*
    428 	 * There were no waiters, but we may have deferred waking
    429 	 * other threads until mutex unlock - we must wake them now.
    430 	 */
    431 	if (!deferred)
    432 		return error;
    433 
    434 	if (self->pt_nwaiters == 1) {
    435 		/*
    436 		 * If the calling thread is about to block, defer
    437 		 * unparking the target until _lwp_park() is called.
    438 		 */
    439 		if (self->pt_willpark && self->pt_unpark == 0) {
    440 			self->pt_unpark = self->pt_waiters[0];
    441 			self->pt_unparkhint = &ptm->ptm_waiters;
    442 		} else {
    443 			(void)_lwp_unpark(self->pt_waiters[0],
    444 			    &ptm->ptm_waiters);
    445 		}
    446 	} else {
    447 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    448 		    &ptm->ptm_waiters);
    449 	}
    450 	self->pt_nwaiters = 0;
    451 
    452 	return error;
    453 }
    454 
    455 static void
    456 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    457 {
    458 	pthread_t thread, next;
    459 	ssize_t n, rv;
    460 
    461 	/*
    462 	 * Take ownership of the current set of waiters.  No
    463 	 * need for a memory barrier following this, all loads
    464 	 * are dependent upon 'thread'.
    465 	 */
    466 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    467 
    468 	for (;;) {
    469 		/*
    470 		 * Pull waiters from the queue and add to our list.
    471 		 * Use a memory barrier to ensure that we safely
    472 		 * read the value of pt_nextwaiter before 'thread'
    473 		 * sees pt_sleeponq being cleared.
    474 		 */
    475 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    476 		    n < pthread__unpark_max && thread != NULL;
    477 		    thread = next) {
    478 		    	next = thread->pt_nextwaiter;
    479 		    	if (thread != self) {
    480 				self->pt_waiters[n++] = thread->pt_lid;
    481 				membar_sync();
    482 			}
    483 			thread->pt_sleeponq = 0;
    484 			/* No longer safe to touch 'thread' */
    485 		}
    486 
    487 		switch (n) {
    488 		case 0:
    489 			return;
    490 		case 1:
    491 			/*
    492 			 * If the calling thread is about to block,
    493 			 * defer unparking the target until _lwp_park()
    494 			 * is called.
    495 			 */
    496 			if (self->pt_willpark && self->pt_unpark == 0) {
    497 				self->pt_unpark = self->pt_waiters[0];
    498 				self->pt_unparkhint = &ptm->ptm_waiters;
    499 				return;
    500 			}
    501 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    502 			    &ptm->ptm_waiters);
    503 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    504 			    errno != ESRCH) {
    505 				pthread__errorfunc(__FILE__, __LINE__,
    506 				    __func__, "_lwp_unpark failed");
    507 			}
    508 			return;
    509 		default:
    510 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    511 			    &ptm->ptm_waiters);
    512 			if (rv != 0 && errno != EINTR) {
    513 				pthread__errorfunc(__FILE__, __LINE__,
    514 				    __func__, "_lwp_unpark_all failed");
    515 			}
    516 			break;
    517 		}
    518 	}
    519 }
    520 int
    521 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    522 {
    523 
    524 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    525 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    526 	return 0;
    527 }
    528 
    529 int
    530 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    531 {
    532 
    533 	pthread__error(EINVAL, "Invalid mutex attribute",
    534 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    535 
    536 	return 0;
    537 }
    538 
    539 
    540 int
    541 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    542 {
    543 
    544 	pthread__error(EINVAL, "Invalid mutex attribute",
    545 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    546 
    547 	*typep = (int)(intptr_t)attr->ptma_private;
    548 	return 0;
    549 }
    550 
    551 
    552 int
    553 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    554 {
    555 
    556 	pthread__error(EINVAL, "Invalid mutex attribute",
    557 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    558 
    559 	switch (type) {
    560 	case PTHREAD_MUTEX_NORMAL:
    561 	case PTHREAD_MUTEX_ERRORCHECK:
    562 	case PTHREAD_MUTEX_RECURSIVE:
    563 		attr->ptma_private = (void *)(intptr_t)type;
    564 		return 0;
    565 	default:
    566 		return EINVAL;
    567 	}
    568 }
    569 
    570 
    571 static void
    572 once_cleanup(void *closure)
    573 {
    574 
    575        pthread_mutex_unlock((pthread_mutex_t *)closure);
    576 }
    577 
    578 
    579 int
    580 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    581 {
    582 
    583 	if (once_control->pto_done == 0) {
    584 		pthread_mutex_lock(&once_control->pto_mutex);
    585 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    586 		if (once_control->pto_done == 0) {
    587 			routine();
    588 			once_control->pto_done = 1;
    589 		}
    590 		pthread_cleanup_pop(1);
    591 	}
    592 
    593 	return 0;
    594 }
    595 
    596 int
    597 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
    598 {
    599 
    600 	if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
    601 		return 0;
    602 	atomic_or_ulong((volatile unsigned long *)
    603 	    (uintptr_t)&ptm->ptm_owner,
    604 	    (unsigned long)MUTEX_DEFERRED_BIT);
    605 	return 1;
    606 }
    607 
    608 int
    609 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    610 {
    611 
    612 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    613 }
    614 
    615 pthread_t
    616 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    617 {
    618 
    619 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    620 }
    621