Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.45
      1 /*	$NetBSD: pthread_mutex.c,v 1.45 2008/02/14 21:40:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.45 2008/02/14 21:40:51 ad Exp $");
     41 
     42 #include <sys/types.h>
     43 #include <sys/lwpctl.h>
     44 
     45 #include <errno.h>
     46 #include <limits.h>
     47 #include <stdlib.h>
     48 #include <string.h>
     49 #include <stdio.h>
     50 
     51 #include "pthread.h"
     52 #include "pthread_int.h"
     53 
     54 #define	pt_nextwaiter			pt_sleep.ptqe_next
     55 
     56 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     57 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     58 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     59 #define	MUTEX_THREAD			((uintptr_t)-16L)
     60 
     61 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     62 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     63 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     64 
     65 #if __GNUC_PREREQ__(3, 0)
     66 #define	NOINLINE		__attribute ((noinline))
     67 #else
     68 #define	NOINLINE		/* nothing */
     69 #endif
     70 
     71 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     72 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     73 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     74 static void	pthread__mutex_pause(void);
     75 
     76 int		_pthread_mutex_held_np(pthread_mutex_t *);
     77 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     78 
     79 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     80 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     81 
     82 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     83 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     84 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     85 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     86 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     87 
     88 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     89 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     90 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     91 
     92 __strong_alias(__libc_thr_once,pthread_once)
     93 
     94 int
     95 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
     96 {
     97 	intptr_t type;
     98 
     99 	if (attr == NULL)
    100 		type = PTHREAD_MUTEX_NORMAL;
    101 	else
    102 		type = (intptr_t)attr->ptma_private;
    103 
    104 	switch (type) {
    105 	case PTHREAD_MUTEX_ERRORCHECK:
    106 		ptm->ptm_errorcheck = 1;
    107 		ptm->ptm_owner = NULL;
    108 		break;
    109 	case PTHREAD_MUTEX_RECURSIVE:
    110 		ptm->ptm_errorcheck = 0;
    111 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    112 		break;
    113 	default:
    114 		ptm->ptm_errorcheck = 0;
    115 		ptm->ptm_owner = NULL;
    116 		break;
    117 	}
    118 
    119 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    120 	ptm->ptm_waiters = NULL;
    121 	ptm->ptm_recursed = 0;
    122 
    123 	return 0;
    124 }
    125 
    126 
    127 int
    128 pthread_mutex_destroy(pthread_mutex_t *ptm)
    129 {
    130 
    131 	pthread__error(EINVAL, "Invalid mutex",
    132 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    133 	pthread__error(EBUSY, "Destroying locked mutex",
    134 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    135 
    136 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    137 	return 0;
    138 }
    139 
    140 int
    141 pthread_mutex_lock(pthread_mutex_t *ptm)
    142 {
    143 	pthread_t self;
    144 	void *val;
    145 
    146 	self = pthread__self();
    147 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    148 	if (__predict_true(val == NULL)) {
    149 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    150 		membar_enter();
    151 #endif
    152 		return 0;
    153 	}
    154 	return pthread__mutex_lock_slow(ptm);
    155 }
    156 
    157 /* We want function call overhead. */
    158 NOINLINE static void
    159 pthread__mutex_pause(void)
    160 {
    161 
    162 	pthread__smt_pause();
    163 }
    164 
    165 /*
    166  * Spin while the holder is running.  'lwpctl' gives us the true
    167  * status of the thread.  pt_blocking is set by libpthread in order
    168  * to cut out system call and kernel spinlock overhead on remote CPUs
    169  * (could represent many thousands of clock cycles).  pt_blocking also
    170  * makes this thread yield if the target is calling sched_yield().
    171  */
    172 NOINLINE static void *
    173 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    174 {
    175 	pthread_t thread;
    176 	unsigned int count, i;
    177 
    178 	for (count = 2;; owner = ptm->ptm_owner) {
    179 		thread = (pthread_t)MUTEX_OWNER(owner);
    180 		if (thread == NULL)
    181 			break;
    182 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    183 		    thread->pt_blocking)
    184 			break;
    185 		if (count < 128)
    186 			count += count;
    187 		for (i = count; i != 0; i--)
    188 			pthread__mutex_pause();
    189 	}
    190 
    191 	return owner;
    192 }
    193 
    194 NOINLINE static int
    195 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    196 {
    197 	void *waiters, *new, *owner, *next;
    198 	pthread_t self;
    199 
    200 	pthread__error(EINVAL, "Invalid mutex",
    201 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    202 
    203 	owner = ptm->ptm_owner;
    204 	self = pthread__self();
    205 
    206 	/* Recursive or errorcheck? */
    207 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    208 		if (MUTEX_RECURSIVE(owner)) {
    209 			if (ptm->ptm_recursed == INT_MAX)
    210 				return EAGAIN;
    211 			ptm->ptm_recursed++;
    212 			return 0;
    213 		}
    214 		if (ptm->ptm_errorcheck)
    215 			return EDEADLK;
    216 	}
    217 
    218 	for (;; owner = ptm->ptm_owner) {
    219 		/* Spin while the owner is running. */
    220 		owner = pthread__mutex_spin(ptm, owner);
    221 
    222 		/* If it has become free, try to acquire it again. */
    223 		if (MUTEX_OWNER(owner) == 0) {
    224 			for (; MUTEX_OWNER(owner) == 0; owner = next) {
    225 				new = (void *)
    226 				    ((uintptr_t)self | (uintptr_t)owner);
    227 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    228 				    new);
    229 				if (next == owner) {
    230 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    231 					membar_enter();
    232 #endif
    233 					return 0;
    234 				}
    235 			}
    236 			/*
    237 			 * We have lost the race to acquire the mutex.
    238 			 * The new owner could be running on another
    239 			 * CPU, in which case we should spin and avoid
    240 			 * the overhead of blocking.
    241 			 */
    242 			if (!MUTEX_HAS_WAITERS(owner))
    243 				continue;
    244 		}
    245 
    246 		/*
    247 		 * Nope, still held.  Add thread to the list of waiters.
    248 		 * Issue a memory barrier to ensure sleeponq/nextwaiter
    249 		 * are visible before we enter the waiters list.
    250 		 */
    251 		self->pt_sleeponq = 1;
    252 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    253 			self->pt_nextwaiter = waiters;
    254 			membar_producer();
    255 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    256 			if (next == waiters)
    257 			    	break;
    258 		}
    259 
    260 		/*
    261 		 * Set the waiters bit and block.
    262 		 *
    263 		 * Note that the mutex can become unlocked before we set
    264 		 * the waiters bit.  If that happens it's not safe to sleep
    265 		 * as we may never be awoken: we must remove the current
    266 		 * thread from the waiters list and try again.
    267 		 *
    268 		 * Because we are doing this atomically, we can't remove
    269 		 * one waiter: we must remove all waiters and awken them,
    270 		 * then sleep in _lwp_park() until we have been awoken.
    271 		 *
    272 		 * Issue a memory barrier to ensure that we are reading
    273 		 * the value of ptm_owner/pt_sleeponq after we have entered
    274 		 * the waiters list (the CAS itself must be atomic).
    275 		 */
    276 		membar_consumer();
    277 		for (owner = ptm->ptm_owner;; owner = next) {
    278 			if (MUTEX_HAS_WAITERS(owner))
    279 				break;
    280 			if (MUTEX_OWNER(owner) == 0) {
    281 				pthread__mutex_wakeup(self, ptm);
    282 				break;
    283 			}
    284 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    285 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    286 			if (next == owner) {
    287 				/*
    288 				 * pthread_mutex_unlock() can do a
    289 				 * non-interlocked CAS.  We cannot
    290 				 * know if our attempt to set the
    291 				 * waiters bit has succeeded while
    292 				 * the holding thread is running.
    293 				 * There are many assumptions; see
    294 				 * sys/kern/kern_mutex.c for details.
    295 				 * In short, we must spin if we see
    296 				 * that the holder is running again.
    297 				 */
    298 				membar_sync();
    299 				next = pthread__mutex_spin(ptm, owner);
    300 			}
    301 		}
    302 
    303 		/*
    304 		 * We may have been awoken by the current thread above,
    305 		 * or will be awoken by the current holder of the mutex.
    306 		 * The key requirement is that we must not proceed until
    307 		 * told that we are no longer waiting (via pt_sleeponq
    308 		 * being set to zero).  Otherwise it is unsafe to re-enter
    309 		 * the thread onto the waiters list.
    310 		 */
    311 		while (self->pt_sleeponq) {
    312 			self->pt_blocking++;
    313 			(void)_lwp_park(NULL, 0,
    314 			    __UNVOLATILE(&ptm->ptm_waiters), NULL);
    315 			self->pt_blocking--;
    316 			membar_sync();
    317 		}
    318 	}
    319 }
    320 
    321 int
    322 pthread_mutex_trylock(pthread_mutex_t *ptm)
    323 {
    324 	pthread_t self;
    325 	void *val;
    326 
    327 	self = pthread__self();
    328 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    329 	if (__predict_true(val == NULL)) {
    330 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    331 		membar_enter();
    332 #endif
    333 		return 0;
    334 	}
    335 
    336 	if (MUTEX_OWNER(val) == (uintptr_t)self && MUTEX_RECURSIVE(val)) {
    337 		if (ptm->ptm_recursed == INT_MAX)
    338 			return EAGAIN;
    339 		ptm->ptm_recursed++;
    340 		return 0;
    341 	}
    342 
    343 	return EBUSY;
    344 }
    345 
    346 int
    347 pthread_mutex_unlock(pthread_mutex_t *ptm)
    348 {
    349 	pthread_t self;
    350 	void *value;
    351 
    352 	/*
    353 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    354 	 * above and sys/kern/kern_mutex.c for details.
    355 	 */
    356 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    357 	membar_exit();
    358 #endif
    359 	self = pthread__self();
    360 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    361 	if (__predict_true(value == self))
    362 		return 0;
    363 	return pthread__mutex_unlock_slow(ptm);
    364 }
    365 
    366 NOINLINE static int
    367 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    368 {
    369 	pthread_t self, owner, new;
    370 	int weown, error, deferred;
    371 
    372 	pthread__error(EINVAL, "Invalid mutex",
    373 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    374 
    375 	self = pthread__self();
    376 	owner = ptm->ptm_owner;
    377 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    378 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    379 	error = 0;
    380 
    381 	if (ptm->ptm_errorcheck) {
    382 		if (!weown) {
    383 			error = EPERM;
    384 			new = owner;
    385 		} else {
    386 			new = NULL;
    387 		}
    388 	} else if (MUTEX_RECURSIVE(owner)) {
    389 		if (!weown) {
    390 			error = EPERM;
    391 			new = owner;
    392 		} else if (ptm->ptm_recursed) {
    393 			ptm->ptm_recursed--;
    394 			new = owner;
    395 		} else {
    396 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    397 		}
    398 	} else {
    399 		pthread__error(EPERM,
    400 		    "Unlocking unlocked mutex", (owner != NULL));
    401 		pthread__error(EPERM,
    402 		    "Unlocking mutex owned by another thread", weown);
    403 		new = NULL;
    404 	}
    405 
    406 	/*
    407 	 * Release the mutex.  If there appear to be waiters, then
    408 	 * wake them up.
    409 	 */
    410 	if (new != owner) {
    411 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    412 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    413 			pthread__mutex_wakeup(self, ptm);
    414 			return 0;
    415 		}
    416 	}
    417 
    418 	/*
    419 	 * There were no waiters, but we may have deferred waking
    420 	 * other threads until mutex unlock - we must wake them now.
    421 	 */
    422 	if (!deferred)
    423 		return error;
    424 
    425 	if (self->pt_nwaiters == 1) {
    426 		/*
    427 		 * If the calling thread is about to block, defer
    428 		 * unparking the target until _lwp_park() is called.
    429 		 */
    430 		if (self->pt_willpark && self->pt_unpark == 0) {
    431 			self->pt_unpark = self->pt_waiters[0];
    432 			self->pt_unparkhint =
    433 			    __UNVOLATILE(&ptm->ptm_waiters);
    434 		} else {
    435 			(void)_lwp_unpark(self->pt_waiters[0],
    436 			    __UNVOLATILE(&ptm->ptm_waiters));
    437 		}
    438 	} else {
    439 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    440 		    __UNVOLATILE(&ptm->ptm_waiters));
    441 	}
    442 	self->pt_nwaiters = 0;
    443 
    444 	return error;
    445 }
    446 
    447 static void
    448 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    449 {
    450 	pthread_t thread, next;
    451 	ssize_t n, rv;
    452 
    453 	/*
    454 	 * Take ownership of the current set of waiters.  No
    455 	 * need for a memory barrier following this, all loads
    456 	 * are dependent upon 'thread'.
    457 	 */
    458 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    459 
    460 	for (;;) {
    461 		/*
    462 		 * Pull waiters from the queue and add to our list.
    463 		 * Use a memory barrier to ensure that we safely
    464 		 * read the value of pt_nextwaiter before 'thread'
    465 		 * sees pt_sleeponq being cleared.
    466 		 */
    467 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    468 		    n < pthread__unpark_max && thread != NULL;
    469 		    thread = next) {
    470 		    	next = thread->pt_nextwaiter;
    471 		    	if (thread != self) {
    472 				self->pt_waiters[n++] = thread->pt_lid;
    473 				membar_sync();
    474 			}
    475 			thread->pt_sleeponq = 0;
    476 			/* No longer safe to touch 'thread' */
    477 		}
    478 
    479 		switch (n) {
    480 		case 0:
    481 			return;
    482 		case 1:
    483 			/*
    484 			 * If the calling thread is about to block,
    485 			 * defer unparking the target until _lwp_park()
    486 			 * is called.
    487 			 */
    488 			if (self->pt_willpark && self->pt_unpark == 0) {
    489 				self->pt_unpark = self->pt_waiters[0];
    490 				self->pt_unparkhint =
    491 				    __UNVOLATILE(&ptm->ptm_waiters);
    492 				return;
    493 			}
    494 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    495 			    __UNVOLATILE(&ptm->ptm_waiters));
    496 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    497 			    errno != ESRCH) {
    498 				pthread__errorfunc(__FILE__, __LINE__,
    499 				    __func__, "_lwp_unpark failed");
    500 			}
    501 			return;
    502 		default:
    503 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    504 			    __UNVOLATILE(&ptm->ptm_waiters));
    505 			if (rv != 0 && errno != EINTR) {
    506 				pthread__errorfunc(__FILE__, __LINE__,
    507 				    __func__, "_lwp_unpark_all failed");
    508 			}
    509 			break;
    510 		}
    511 	}
    512 }
    513 int
    514 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    515 {
    516 
    517 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    518 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    519 	return 0;
    520 }
    521 
    522 int
    523 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    524 {
    525 
    526 	pthread__error(EINVAL, "Invalid mutex attribute",
    527 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    528 
    529 	return 0;
    530 }
    531 
    532 
    533 int
    534 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    535 {
    536 
    537 	pthread__error(EINVAL, "Invalid mutex attribute",
    538 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    539 
    540 	*typep = (int)(intptr_t)attr->ptma_private;
    541 	return 0;
    542 }
    543 
    544 
    545 int
    546 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    547 {
    548 
    549 	pthread__error(EINVAL, "Invalid mutex attribute",
    550 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    551 
    552 	switch (type) {
    553 	case PTHREAD_MUTEX_NORMAL:
    554 	case PTHREAD_MUTEX_ERRORCHECK:
    555 	case PTHREAD_MUTEX_RECURSIVE:
    556 		attr->ptma_private = (void *)(intptr_t)type;
    557 		return 0;
    558 	default:
    559 		return EINVAL;
    560 	}
    561 }
    562 
    563 
    564 static void
    565 once_cleanup(void *closure)
    566 {
    567 
    568        pthread_mutex_unlock((pthread_mutex_t *)closure);
    569 }
    570 
    571 
    572 int
    573 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    574 {
    575 
    576 	if (once_control->pto_done == 0) {
    577 		pthread_mutex_lock(&once_control->pto_mutex);
    578 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    579 		if (once_control->pto_done == 0) {
    580 			routine();
    581 			once_control->pto_done = 1;
    582 		}
    583 		pthread_cleanup_pop(1);
    584 	}
    585 
    586 	return 0;
    587 }
    588 
    589 int
    590 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
    591 {
    592 
    593 	if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
    594 		return 0;
    595 	atomic_or_ulong((volatile unsigned long *)
    596 	    (uintptr_t)&ptm->ptm_owner,
    597 	    (unsigned long)MUTEX_DEFERRED_BIT);
    598 	return 1;
    599 }
    600 
    601 int
    602 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    603 {
    604 
    605 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    606 }
    607 
    608 pthread_t
    609 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    610 {
    611 
    612 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    613 }
    614