pthread_mutex.c revision 1.46 1 /* $NetBSD: pthread_mutex.c,v 1.46 2008/02/23 15:15:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.46 2008/02/23 15:15:57 ad Exp $");
41
42 #include <sys/types.h>
43 #include <sys/lwpctl.h>
44
45 #include <errno.h>
46 #include <limits.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <stdio.h>
50
51 #include "pthread.h"
52 #include "pthread_int.h"
53
54 #define pt_nextwaiter pt_sleep.ptqe_next
55
56 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
57 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
58 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
59 #define MUTEX_THREAD ((uintptr_t)-16L)
60
61 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
62 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
63 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
64
65 #if __GNUC_PREREQ__(3, 0)
66 #define NOINLINE __attribute ((noinline))
67 #else
68 #define NOINLINE /* nothing */
69 #endif
70
71 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
72 static int pthread__mutex_lock_slow(pthread_mutex_t *);
73 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
74 static void pthread__mutex_pause(void);
75
76 int _pthread_mutex_held_np(pthread_mutex_t *);
77 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
78
79 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
80 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
81
82 __strong_alias(__libc_mutex_init,pthread_mutex_init)
83 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
84 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
85 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
86 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
87
88 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
89 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
90 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
91
92 __strong_alias(__libc_thr_once,pthread_once)
93
94 int
95 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
96 {
97 intptr_t type;
98
99 if (attr == NULL)
100 type = PTHREAD_MUTEX_NORMAL;
101 else
102 type = (intptr_t)attr->ptma_private;
103
104 switch (type) {
105 case PTHREAD_MUTEX_ERRORCHECK:
106 ptm->ptm_errorcheck = 1;
107 ptm->ptm_owner = NULL;
108 break;
109 case PTHREAD_MUTEX_RECURSIVE:
110 ptm->ptm_errorcheck = 0;
111 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
112 break;
113 default:
114 ptm->ptm_errorcheck = 0;
115 ptm->ptm_owner = NULL;
116 break;
117 }
118
119 ptm->ptm_magic = _PT_MUTEX_MAGIC;
120 ptm->ptm_waiters = NULL;
121 ptm->ptm_recursed = 0;
122
123 return 0;
124 }
125
126
127 int
128 pthread_mutex_destroy(pthread_mutex_t *ptm)
129 {
130
131 pthread__error(EINVAL, "Invalid mutex",
132 ptm->ptm_magic == _PT_MUTEX_MAGIC);
133 pthread__error(EBUSY, "Destroying locked mutex",
134 MUTEX_OWNER(ptm->ptm_owner) == 0);
135
136 ptm->ptm_magic = _PT_MUTEX_DEAD;
137 return 0;
138 }
139
140 int
141 pthread_mutex_lock(pthread_mutex_t *ptm)
142 {
143 pthread_t self;
144 void *val;
145
146 self = pthread__self();
147 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
148 if (__predict_true(val == NULL)) {
149 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
150 membar_enter();
151 #endif
152 return 0;
153 }
154 return pthread__mutex_lock_slow(ptm);
155 }
156
157 /* We want function call overhead. */
158 NOINLINE static void
159 pthread__mutex_pause(void)
160 {
161
162 pthread__smt_pause();
163 }
164
165 /*
166 * Spin while the holder is running. 'lwpctl' gives us the true
167 * status of the thread. pt_blocking is set by libpthread in order
168 * to cut out system call and kernel spinlock overhead on remote CPUs
169 * (could represent many thousands of clock cycles). pt_blocking also
170 * makes this thread yield if the target is calling sched_yield().
171 */
172 NOINLINE static void *
173 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
174 {
175 pthread_t thread;
176 unsigned int count, i;
177
178 for (count = 2;; owner = ptm->ptm_owner) {
179 thread = (pthread_t)MUTEX_OWNER(owner);
180 if (thread == NULL)
181 break;
182 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
183 thread->pt_blocking)
184 break;
185 if (count < 128)
186 count += count;
187 for (i = count; i != 0; i--)
188 pthread__mutex_pause();
189 }
190
191 return owner;
192 }
193
194 NOINLINE static int
195 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
196 {
197 void *waiters, *new, *owner, *next;
198 pthread_t self;
199
200 pthread__error(EINVAL, "Invalid mutex",
201 ptm->ptm_magic == _PT_MUTEX_MAGIC);
202
203 owner = ptm->ptm_owner;
204 self = pthread__self();
205
206 /* Recursive or errorcheck? */
207 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
208 if (MUTEX_RECURSIVE(owner)) {
209 if (ptm->ptm_recursed == INT_MAX)
210 return EAGAIN;
211 ptm->ptm_recursed++;
212 return 0;
213 }
214 if (ptm->ptm_errorcheck)
215 return EDEADLK;
216 }
217
218 for (;; owner = ptm->ptm_owner) {
219 /* Spin while the owner is running. */
220 owner = pthread__mutex_spin(ptm, owner);
221
222 /* If it has become free, try to acquire it again. */
223 if (MUTEX_OWNER(owner) == 0) {
224 for (; MUTEX_OWNER(owner) == 0; owner = next) {
225 new = (void *)
226 ((uintptr_t)self | (uintptr_t)owner);
227 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
228 new);
229 if (next == owner) {
230 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
231 membar_enter();
232 #endif
233 return 0;
234 }
235 }
236 /*
237 * We have lost the race to acquire the mutex.
238 * The new owner could be running on another
239 * CPU, in which case we should spin and avoid
240 * the overhead of blocking.
241 */
242 if (!MUTEX_HAS_WAITERS(owner))
243 continue;
244 }
245
246 /*
247 * Nope, still held. Add thread to the list of waiters.
248 * Issue a memory barrier to ensure sleeponq/nextwaiter
249 * are visible before we enter the waiters list.
250 */
251 self->pt_sleeponq = 1;
252 for (waiters = ptm->ptm_waiters;; waiters = next) {
253 self->pt_nextwaiter = waiters;
254 membar_producer();
255 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
256 if (next == waiters)
257 break;
258 }
259
260 /*
261 * Set the waiters bit and block.
262 *
263 * Note that the mutex can become unlocked before we set
264 * the waiters bit. If that happens it's not safe to sleep
265 * as we may never be awoken: we must remove the current
266 * thread from the waiters list and try again.
267 *
268 * Because we are doing this atomically, we can't remove
269 * one waiter: we must remove all waiters and awken them,
270 * then sleep in _lwp_park() until we have been awoken.
271 *
272 * Issue a memory barrier to ensure that we are reading
273 * the value of ptm_owner/pt_sleeponq after we have entered
274 * the waiters list (the CAS itself must be atomic).
275 */
276 membar_consumer();
277 for (owner = ptm->ptm_owner;; owner = next) {
278 if (MUTEX_HAS_WAITERS(owner))
279 break;
280 if (MUTEX_OWNER(owner) == 0) {
281 pthread__mutex_wakeup(self, ptm);
282 break;
283 }
284 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
285 next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
286 if (next == owner) {
287 /*
288 * pthread_mutex_unlock() can do a
289 * non-interlocked CAS. We cannot
290 * know if our attempt to set the
291 * waiters bit has succeeded while
292 * the holding thread is running.
293 * There are many assumptions; see
294 * sys/kern/kern_mutex.c for details.
295 * In short, we must spin if we see
296 * that the holder is running again.
297 */
298 membar_sync();
299 next = pthread__mutex_spin(ptm, owner);
300 }
301 }
302
303 /*
304 * We may have been awoken by the current thread above,
305 * or will be awoken by the current holder of the mutex.
306 * The key requirement is that we must not proceed until
307 * told that we are no longer waiting (via pt_sleeponq
308 * being set to zero). Otherwise it is unsafe to re-enter
309 * the thread onto the waiters list.
310 */
311 while (self->pt_sleeponq) {
312 self->pt_blocking++;
313 (void)_lwp_park(NULL, 0,
314 __UNVOLATILE(&ptm->ptm_waiters), NULL);
315 self->pt_blocking--;
316 membar_sync();
317 }
318 }
319 }
320
321 int
322 pthread_mutex_trylock(pthread_mutex_t *ptm)
323 {
324 pthread_t self;
325 void *val, *new, *next;
326
327 self = pthread__self();
328 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
329 if (__predict_true(val == NULL)) {
330 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
331 membar_enter();
332 #endif
333 return 0;
334 }
335
336 if (MUTEX_RECURSIVE(val)) {
337 if (MUTEX_OWNER(val) == 0) {
338 new = (void *)((uintptr_t)self | (uintptr_t)val);
339 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
340 if (__predict_true(next == val)) {
341 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 membar_enter();
343 #endif
344 return 0;
345 }
346 }
347 if (MUTEX_OWNER(val) == (uintptr_t)self) {
348 if (ptm->ptm_recursed == INT_MAX)
349 return EAGAIN;
350 ptm->ptm_recursed++;
351 return 0;
352 }
353 }
354
355 return EBUSY;
356 }
357
358 int
359 pthread_mutex_unlock(pthread_mutex_t *ptm)
360 {
361 pthread_t self;
362 void *value;
363
364 /*
365 * Note this may be a non-interlocked CAS. See lock_slow()
366 * above and sys/kern/kern_mutex.c for details.
367 */
368 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
369 membar_exit();
370 #endif
371 self = pthread__self();
372 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
373 if (__predict_true(value == self))
374 return 0;
375 return pthread__mutex_unlock_slow(ptm);
376 }
377
378 NOINLINE static int
379 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
380 {
381 pthread_t self, owner, new;
382 int weown, error, deferred;
383
384 pthread__error(EINVAL, "Invalid mutex",
385 ptm->ptm_magic == _PT_MUTEX_MAGIC);
386
387 self = pthread__self();
388 owner = ptm->ptm_owner;
389 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
390 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
391 error = 0;
392
393 if (ptm->ptm_errorcheck) {
394 if (!weown) {
395 error = EPERM;
396 new = owner;
397 } else {
398 new = NULL;
399 }
400 } else if (MUTEX_RECURSIVE(owner)) {
401 if (!weown) {
402 error = EPERM;
403 new = owner;
404 } else if (ptm->ptm_recursed) {
405 ptm->ptm_recursed--;
406 new = owner;
407 } else {
408 new = (pthread_t)MUTEX_RECURSIVE_BIT;
409 }
410 } else {
411 pthread__error(EPERM,
412 "Unlocking unlocked mutex", (owner != NULL));
413 pthread__error(EPERM,
414 "Unlocking mutex owned by another thread", weown);
415 new = NULL;
416 }
417
418 /*
419 * Release the mutex. If there appear to be waiters, then
420 * wake them up.
421 */
422 if (new != owner) {
423 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
424 if (MUTEX_HAS_WAITERS(owner) != 0) {
425 pthread__mutex_wakeup(self, ptm);
426 return 0;
427 }
428 }
429
430 /*
431 * There were no waiters, but we may have deferred waking
432 * other threads until mutex unlock - we must wake them now.
433 */
434 if (!deferred)
435 return error;
436
437 if (self->pt_nwaiters == 1) {
438 /*
439 * If the calling thread is about to block, defer
440 * unparking the target until _lwp_park() is called.
441 */
442 if (self->pt_willpark && self->pt_unpark == 0) {
443 self->pt_unpark = self->pt_waiters[0];
444 self->pt_unparkhint =
445 __UNVOLATILE(&ptm->ptm_waiters);
446 } else {
447 (void)_lwp_unpark(self->pt_waiters[0],
448 __UNVOLATILE(&ptm->ptm_waiters));
449 }
450 } else {
451 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
452 __UNVOLATILE(&ptm->ptm_waiters));
453 }
454 self->pt_nwaiters = 0;
455
456 return error;
457 }
458
459 static void
460 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
461 {
462 pthread_t thread, next;
463 ssize_t n, rv;
464
465 /*
466 * Take ownership of the current set of waiters. No
467 * need for a memory barrier following this, all loads
468 * are dependent upon 'thread'.
469 */
470 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
471
472 for (;;) {
473 /*
474 * Pull waiters from the queue and add to our list.
475 * Use a memory barrier to ensure that we safely
476 * read the value of pt_nextwaiter before 'thread'
477 * sees pt_sleeponq being cleared.
478 */
479 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
480 n < pthread__unpark_max && thread != NULL;
481 thread = next) {
482 next = thread->pt_nextwaiter;
483 if (thread != self) {
484 self->pt_waiters[n++] = thread->pt_lid;
485 membar_sync();
486 }
487 thread->pt_sleeponq = 0;
488 /* No longer safe to touch 'thread' */
489 }
490
491 switch (n) {
492 case 0:
493 return;
494 case 1:
495 /*
496 * If the calling thread is about to block,
497 * defer unparking the target until _lwp_park()
498 * is called.
499 */
500 if (self->pt_willpark && self->pt_unpark == 0) {
501 self->pt_unpark = self->pt_waiters[0];
502 self->pt_unparkhint =
503 __UNVOLATILE(&ptm->ptm_waiters);
504 return;
505 }
506 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
507 __UNVOLATILE(&ptm->ptm_waiters));
508 if (rv != 0 && errno != EALREADY && errno != EINTR &&
509 errno != ESRCH) {
510 pthread__errorfunc(__FILE__, __LINE__,
511 __func__, "_lwp_unpark failed");
512 }
513 return;
514 default:
515 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
516 __UNVOLATILE(&ptm->ptm_waiters));
517 if (rv != 0 && errno != EINTR) {
518 pthread__errorfunc(__FILE__, __LINE__,
519 __func__, "_lwp_unpark_all failed");
520 }
521 break;
522 }
523 }
524 }
525 int
526 pthread_mutexattr_init(pthread_mutexattr_t *attr)
527 {
528
529 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
530 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
531 return 0;
532 }
533
534 int
535 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
536 {
537
538 pthread__error(EINVAL, "Invalid mutex attribute",
539 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
540
541 return 0;
542 }
543
544
545 int
546 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
547 {
548
549 pthread__error(EINVAL, "Invalid mutex attribute",
550 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
551
552 *typep = (int)(intptr_t)attr->ptma_private;
553 return 0;
554 }
555
556
557 int
558 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
559 {
560
561 pthread__error(EINVAL, "Invalid mutex attribute",
562 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
563
564 switch (type) {
565 case PTHREAD_MUTEX_NORMAL:
566 case PTHREAD_MUTEX_ERRORCHECK:
567 case PTHREAD_MUTEX_RECURSIVE:
568 attr->ptma_private = (void *)(intptr_t)type;
569 return 0;
570 default:
571 return EINVAL;
572 }
573 }
574
575
576 static void
577 once_cleanup(void *closure)
578 {
579
580 pthread_mutex_unlock((pthread_mutex_t *)closure);
581 }
582
583
584 int
585 pthread_once(pthread_once_t *once_control, void (*routine)(void))
586 {
587
588 if (once_control->pto_done == 0) {
589 pthread_mutex_lock(&once_control->pto_mutex);
590 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
591 if (once_control->pto_done == 0) {
592 routine();
593 once_control->pto_done = 1;
594 }
595 pthread_cleanup_pop(1);
596 }
597
598 return 0;
599 }
600
601 int
602 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
603 {
604
605 if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
606 return 0;
607 atomic_or_ulong((volatile unsigned long *)
608 (uintptr_t)&ptm->ptm_owner,
609 (unsigned long)MUTEX_DEFERRED_BIT);
610 return 1;
611 }
612
613 int
614 _pthread_mutex_held_np(pthread_mutex_t *ptm)
615 {
616
617 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
618 }
619
620 pthread_t
621 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
622 {
623
624 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
625 }
626