Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.47.2.1
      1 /*	$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __RCSID("$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $");
     34 
     35 #include <sys/types.h>
     36 #include <sys/lwpctl.h>
     37 
     38 #include <errno.h>
     39 #include <limits.h>
     40 #include <stdlib.h>
     41 #include <string.h>
     42 #include <stdio.h>
     43 
     44 #include "pthread.h"
     45 #include "pthread_int.h"
     46 
     47 #define	pt_nextwaiter			pt_sleep.ptqe_next
     48 
     49 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     50 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     51 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     52 #define	MUTEX_THREAD			((uintptr_t)-16L)
     53 
     54 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     55 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     56 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     57 
     58 #if __GNUC_PREREQ__(3, 0)
     59 #define	NOINLINE		__attribute ((noinline))
     60 #else
     61 #define	NOINLINE		/* nothing */
     62 #endif
     63 
     64 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     65 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     66 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     67 static void	pthread__mutex_pause(void);
     68 
     69 int		_pthread_mutex_held_np(pthread_mutex_t *);
     70 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     71 
     72 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     73 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     74 
     75 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     76 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     77 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     78 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     79 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     80 
     81 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     82 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     83 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     84 
     85 __strong_alias(__libc_thr_once,pthread_once)
     86 
     87 int
     88 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
     89 {
     90 	intptr_t type;
     91 
     92 	if (attr == NULL)
     93 		type = PTHREAD_MUTEX_NORMAL;
     94 	else
     95 		type = (intptr_t)attr->ptma_private;
     96 
     97 	switch (type) {
     98 	case PTHREAD_MUTEX_ERRORCHECK:
     99 		ptm->ptm_errorcheck = 1;
    100 		ptm->ptm_owner = NULL;
    101 		break;
    102 	case PTHREAD_MUTEX_RECURSIVE:
    103 		ptm->ptm_errorcheck = 0;
    104 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    105 		break;
    106 	default:
    107 		ptm->ptm_errorcheck = 0;
    108 		ptm->ptm_owner = NULL;
    109 		break;
    110 	}
    111 
    112 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    113 	ptm->ptm_waiters = NULL;
    114 	ptm->ptm_recursed = 0;
    115 
    116 	return 0;
    117 }
    118 
    119 
    120 int
    121 pthread_mutex_destroy(pthread_mutex_t *ptm)
    122 {
    123 
    124 	pthread__error(EINVAL, "Invalid mutex",
    125 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    126 	pthread__error(EBUSY, "Destroying locked mutex",
    127 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    128 
    129 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    130 	return 0;
    131 }
    132 
    133 int
    134 pthread_mutex_lock(pthread_mutex_t *ptm)
    135 {
    136 	pthread_t self;
    137 	void *val;
    138 
    139 	self = pthread__self();
    140 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    141 	if (__predict_true(val == NULL)) {
    142 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    143 		membar_enter();
    144 #endif
    145 		return 0;
    146 	}
    147 	return pthread__mutex_lock_slow(ptm);
    148 }
    149 
    150 /* We want function call overhead. */
    151 NOINLINE static void
    152 pthread__mutex_pause(void)
    153 {
    154 
    155 	pthread__smt_pause();
    156 }
    157 
    158 /*
    159  * Spin while the holder is running.  'lwpctl' gives us the true
    160  * status of the thread.  pt_blocking is set by libpthread in order
    161  * to cut out system call and kernel spinlock overhead on remote CPUs
    162  * (could represent many thousands of clock cycles).  pt_blocking also
    163  * makes this thread yield if the target is calling sched_yield().
    164  */
    165 NOINLINE static void *
    166 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    167 {
    168 	pthread_t thread;
    169 	unsigned int count, i;
    170 
    171 	for (count = 2;; owner = ptm->ptm_owner) {
    172 		thread = (pthread_t)MUTEX_OWNER(owner);
    173 		if (thread == NULL)
    174 			break;
    175 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    176 		    thread->pt_blocking)
    177 			break;
    178 		if (count < 128)
    179 			count += count;
    180 		for (i = count; i != 0; i--)
    181 			pthread__mutex_pause();
    182 	}
    183 
    184 	return owner;
    185 }
    186 
    187 NOINLINE static int
    188 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    189 {
    190 	void *waiters, *new, *owner, *next;
    191 	pthread_t self;
    192 
    193 	pthread__error(EINVAL, "Invalid mutex",
    194 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    195 
    196 	owner = ptm->ptm_owner;
    197 	self = pthread__self();
    198 
    199 	/* Recursive or errorcheck? */
    200 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    201 		if (MUTEX_RECURSIVE(owner)) {
    202 			if (ptm->ptm_recursed == INT_MAX)
    203 				return EAGAIN;
    204 			ptm->ptm_recursed++;
    205 			return 0;
    206 		}
    207 		if (ptm->ptm_errorcheck)
    208 			return EDEADLK;
    209 	}
    210 
    211 	for (;; owner = ptm->ptm_owner) {
    212 		/* Spin while the owner is running. */
    213 		owner = pthread__mutex_spin(ptm, owner);
    214 
    215 		/* If it has become free, try to acquire it again. */
    216 		if (MUTEX_OWNER(owner) == 0) {
    217 			do {
    218 				new = (void *)
    219 				    ((uintptr_t)self | (uintptr_t)owner);
    220 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    221 				    new);
    222 				if (next == owner) {
    223 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    224 					membar_enter();
    225 #endif
    226 					return 0;
    227 				}
    228 				owner = next;
    229 			} while (MUTEX_OWNER(owner) == 0);
    230 			/*
    231 			 * We have lost the race to acquire the mutex.
    232 			 * The new owner could be running on another
    233 			 * CPU, in which case we should spin and avoid
    234 			 * the overhead of blocking.
    235 			 */
    236 			continue;
    237 		}
    238 
    239 		/*
    240 		 * Nope, still held.  Add thread to the list of waiters.
    241 		 * Issue a memory barrier to ensure sleeponq/nextwaiter
    242 		 * are visible before we enter the waiters list.
    243 		 */
    244 		self->pt_sleeponq = 1;
    245 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    246 			self->pt_nextwaiter = waiters;
    247 			membar_producer();
    248 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    249 			if (next == waiters)
    250 			    	break;
    251 		}
    252 
    253 		/*
    254 		 * Set the waiters bit and block.
    255 		 *
    256 		 * Note that the mutex can become unlocked before we set
    257 		 * the waiters bit.  If that happens it's not safe to sleep
    258 		 * as we may never be awoken: we must remove the current
    259 		 * thread from the waiters list and try again.
    260 		 *
    261 		 * Because we are doing this atomically, we can't remove
    262 		 * one waiter: we must remove all waiters and awken them,
    263 		 * then sleep in _lwp_park() until we have been awoken.
    264 		 *
    265 		 * Issue a memory barrier to ensure that we are reading
    266 		 * the value of ptm_owner/pt_sleeponq after we have entered
    267 		 * the waiters list (the CAS itself must be atomic).
    268 		 */
    269 		membar_consumer();
    270 		for (owner = ptm->ptm_owner;; owner = next) {
    271 			if (MUTEX_HAS_WAITERS(owner))
    272 				break;
    273 			if (MUTEX_OWNER(owner) == 0) {
    274 				pthread__mutex_wakeup(self, ptm);
    275 				break;
    276 			}
    277 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    278 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    279 			if (next == owner) {
    280 				/*
    281 				 * pthread_mutex_unlock() can do a
    282 				 * non-interlocked CAS.  We cannot
    283 				 * know if our attempt to set the
    284 				 * waiters bit has succeeded while
    285 				 * the holding thread is running.
    286 				 * There are many assumptions; see
    287 				 * sys/kern/kern_mutex.c for details.
    288 				 * In short, we must spin if we see
    289 				 * that the holder is running again.
    290 				 */
    291 				membar_sync();
    292 				next = pthread__mutex_spin(ptm, owner);
    293 			}
    294 		}
    295 
    296 		/*
    297 		 * We may have been awoken by the current thread above,
    298 		 * or will be awoken by the current holder of the mutex.
    299 		 * The key requirement is that we must not proceed until
    300 		 * told that we are no longer waiting (via pt_sleeponq
    301 		 * being set to zero).  Otherwise it is unsafe to re-enter
    302 		 * the thread onto the waiters list.
    303 		 */
    304 		while (self->pt_sleeponq) {
    305 			self->pt_blocking++;
    306 			(void)_lwp_park(NULL, 0,
    307 			    __UNVOLATILE(&ptm->ptm_waiters), NULL);
    308 			self->pt_blocking--;
    309 			membar_sync();
    310 		}
    311 	}
    312 }
    313 
    314 int
    315 pthread_mutex_trylock(pthread_mutex_t *ptm)
    316 {
    317 	pthread_t self;
    318 	void *val, *new, *next;
    319 
    320 	self = pthread__self();
    321 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    322 	if (__predict_true(val == NULL)) {
    323 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    324 		membar_enter();
    325 #endif
    326 		return 0;
    327 	}
    328 
    329 	if (MUTEX_RECURSIVE(val)) {
    330 		if (MUTEX_OWNER(val) == 0) {
    331 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    332 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    333 			if (__predict_true(next == val)) {
    334 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    335 				membar_enter();
    336 #endif
    337 				return 0;
    338 			}
    339 		}
    340 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    341 			if (ptm->ptm_recursed == INT_MAX)
    342 				return EAGAIN;
    343 			ptm->ptm_recursed++;
    344 			return 0;
    345 		}
    346 	}
    347 
    348 	return EBUSY;
    349 }
    350 
    351 int
    352 pthread_mutex_unlock(pthread_mutex_t *ptm)
    353 {
    354 	pthread_t self;
    355 	void *value;
    356 
    357 	/*
    358 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    359 	 * above and sys/kern/kern_mutex.c for details.
    360 	 */
    361 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    362 	membar_exit();
    363 #endif
    364 	self = pthread__self();
    365 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    366 	if (__predict_true(value == self))
    367 		return 0;
    368 	return pthread__mutex_unlock_slow(ptm);
    369 }
    370 
    371 NOINLINE static int
    372 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    373 {
    374 	pthread_t self, owner, new;
    375 	int weown, error, deferred;
    376 
    377 	pthread__error(EINVAL, "Invalid mutex",
    378 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    379 
    380 	self = pthread__self();
    381 	owner = ptm->ptm_owner;
    382 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    383 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    384 	error = 0;
    385 
    386 	if (ptm->ptm_errorcheck) {
    387 		if (!weown) {
    388 			error = EPERM;
    389 			new = owner;
    390 		} else {
    391 			new = NULL;
    392 		}
    393 	} else if (MUTEX_RECURSIVE(owner)) {
    394 		if (!weown) {
    395 			error = EPERM;
    396 			new = owner;
    397 		} else if (ptm->ptm_recursed) {
    398 			ptm->ptm_recursed--;
    399 			new = owner;
    400 		} else {
    401 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    402 		}
    403 	} else {
    404 		pthread__error(EPERM,
    405 		    "Unlocking unlocked mutex", (owner != NULL));
    406 		pthread__error(EPERM,
    407 		    "Unlocking mutex owned by another thread", weown);
    408 		new = NULL;
    409 	}
    410 
    411 	/*
    412 	 * Release the mutex.  If there appear to be waiters, then
    413 	 * wake them up.
    414 	 */
    415 	if (new != owner) {
    416 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    417 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    418 			pthread__mutex_wakeup(self, ptm);
    419 			return 0;
    420 		}
    421 	}
    422 
    423 	/*
    424 	 * There were no waiters, but we may have deferred waking
    425 	 * other threads until mutex unlock - we must wake them now.
    426 	 */
    427 	if (!deferred)
    428 		return error;
    429 
    430 	if (self->pt_nwaiters == 1) {
    431 		/*
    432 		 * If the calling thread is about to block, defer
    433 		 * unparking the target until _lwp_park() is called.
    434 		 */
    435 		if (self->pt_willpark && self->pt_unpark == 0) {
    436 			self->pt_unpark = self->pt_waiters[0];
    437 			self->pt_unparkhint =
    438 			    __UNVOLATILE(&ptm->ptm_waiters);
    439 		} else {
    440 			(void)_lwp_unpark(self->pt_waiters[0],
    441 			    __UNVOLATILE(&ptm->ptm_waiters));
    442 		}
    443 	} else {
    444 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    445 		    __UNVOLATILE(&ptm->ptm_waiters));
    446 	}
    447 	self->pt_nwaiters = 0;
    448 
    449 	return error;
    450 }
    451 
    452 static void
    453 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    454 {
    455 	pthread_t thread, next;
    456 	ssize_t n, rv;
    457 
    458 	/*
    459 	 * Take ownership of the current set of waiters.  No
    460 	 * need for a memory barrier following this, all loads
    461 	 * are dependent upon 'thread'.
    462 	 */
    463 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    464 
    465 	for (;;) {
    466 		/*
    467 		 * Pull waiters from the queue and add to our list.
    468 		 * Use a memory barrier to ensure that we safely
    469 		 * read the value of pt_nextwaiter before 'thread'
    470 		 * sees pt_sleeponq being cleared.
    471 		 */
    472 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    473 		    n < pthread__unpark_max && thread != NULL;
    474 		    thread = next) {
    475 		    	next = thread->pt_nextwaiter;
    476 		    	if (thread != self) {
    477 				self->pt_waiters[n++] = thread->pt_lid;
    478 				membar_sync();
    479 			}
    480 			thread->pt_sleeponq = 0;
    481 			/* No longer safe to touch 'thread' */
    482 		}
    483 
    484 		switch (n) {
    485 		case 0:
    486 			return;
    487 		case 1:
    488 			/*
    489 			 * If the calling thread is about to block,
    490 			 * defer unparking the target until _lwp_park()
    491 			 * is called.
    492 			 */
    493 			if (self->pt_willpark && self->pt_unpark == 0) {
    494 				self->pt_unpark = self->pt_waiters[0];
    495 				self->pt_unparkhint =
    496 				    __UNVOLATILE(&ptm->ptm_waiters);
    497 				return;
    498 			}
    499 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    500 			    __UNVOLATILE(&ptm->ptm_waiters));
    501 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    502 			    errno != ESRCH) {
    503 				pthread__errorfunc(__FILE__, __LINE__,
    504 				    __func__, "_lwp_unpark failed");
    505 			}
    506 			return;
    507 		default:
    508 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    509 			    __UNVOLATILE(&ptm->ptm_waiters));
    510 			if (rv != 0 && errno != EINTR) {
    511 				pthread__errorfunc(__FILE__, __LINE__,
    512 				    __func__, "_lwp_unpark_all failed");
    513 			}
    514 			break;
    515 		}
    516 	}
    517 }
    518 int
    519 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    520 {
    521 
    522 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    523 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    524 	return 0;
    525 }
    526 
    527 int
    528 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    529 {
    530 
    531 	pthread__error(EINVAL, "Invalid mutex attribute",
    532 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    533 
    534 	return 0;
    535 }
    536 
    537 
    538 int
    539 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    540 {
    541 
    542 	pthread__error(EINVAL, "Invalid mutex attribute",
    543 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    544 
    545 	*typep = (int)(intptr_t)attr->ptma_private;
    546 	return 0;
    547 }
    548 
    549 
    550 int
    551 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    552 {
    553 
    554 	pthread__error(EINVAL, "Invalid mutex attribute",
    555 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    556 
    557 	switch (type) {
    558 	case PTHREAD_MUTEX_NORMAL:
    559 	case PTHREAD_MUTEX_ERRORCHECK:
    560 	case PTHREAD_MUTEX_RECURSIVE:
    561 		attr->ptma_private = (void *)(intptr_t)type;
    562 		return 0;
    563 	default:
    564 		return EINVAL;
    565 	}
    566 }
    567 
    568 
    569 static void
    570 once_cleanup(void *closure)
    571 {
    572 
    573        pthread_mutex_unlock((pthread_mutex_t *)closure);
    574 }
    575 
    576 
    577 int
    578 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    579 {
    580 
    581 	if (once_control->pto_done == 0) {
    582 		pthread_mutex_lock(&once_control->pto_mutex);
    583 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    584 		if (once_control->pto_done == 0) {
    585 			routine();
    586 			once_control->pto_done = 1;
    587 		}
    588 		pthread_cleanup_pop(1);
    589 	}
    590 
    591 	return 0;
    592 }
    593 
    594 int
    595 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
    596 {
    597 
    598 	if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
    599 		return 0;
    600 	atomic_or_ulong((volatile unsigned long *)
    601 	    (uintptr_t)&ptm->ptm_owner,
    602 	    (unsigned long)MUTEX_DEFERRED_BIT);
    603 	return 1;
    604 }
    605 
    606 int
    607 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    608 {
    609 
    610 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    611 }
    612 
    613 pthread_t
    614 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    615 {
    616 
    617 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    618 }
    619