pthread_mutex.c revision 1.48 1 /* $NetBSD: pthread_mutex.c,v 1.48 2008/04/28 20:23:01 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __RCSID("$NetBSD: pthread_mutex.c,v 1.48 2008/04/28 20:23:01 martin Exp $");
34
35 #include <sys/types.h>
36 #include <sys/lwpctl.h>
37
38 #include <errno.h>
39 #include <limits.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <stdio.h>
43
44 #include "pthread.h"
45 #include "pthread_int.h"
46
47 #define pt_nextwaiter pt_sleep.ptqe_next
48
49 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
50 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
51 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
52 #define MUTEX_THREAD ((uintptr_t)-16L)
53
54 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
55 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
56 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
57
58 #if __GNUC_PREREQ__(3, 0)
59 #define NOINLINE __attribute ((noinline))
60 #else
61 #define NOINLINE /* nothing */
62 #endif
63
64 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
65 static int pthread__mutex_lock_slow(pthread_mutex_t *);
66 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
67 static void pthread__mutex_pause(void);
68
69 int _pthread_mutex_held_np(pthread_mutex_t *);
70 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
71
72 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
73 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
74
75 __strong_alias(__libc_mutex_init,pthread_mutex_init)
76 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
77 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
78 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
79 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
80
81 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
82 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
83 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
84
85 __strong_alias(__libc_thr_once,pthread_once)
86
87 int
88 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
89 {
90 intptr_t type;
91
92 if (attr == NULL)
93 type = PTHREAD_MUTEX_NORMAL;
94 else
95 type = (intptr_t)attr->ptma_private;
96
97 switch (type) {
98 case PTHREAD_MUTEX_ERRORCHECK:
99 ptm->ptm_errorcheck = 1;
100 ptm->ptm_owner = NULL;
101 break;
102 case PTHREAD_MUTEX_RECURSIVE:
103 ptm->ptm_errorcheck = 0;
104 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
105 break;
106 default:
107 ptm->ptm_errorcheck = 0;
108 ptm->ptm_owner = NULL;
109 break;
110 }
111
112 ptm->ptm_magic = _PT_MUTEX_MAGIC;
113 ptm->ptm_waiters = NULL;
114 ptm->ptm_recursed = 0;
115
116 return 0;
117 }
118
119
120 int
121 pthread_mutex_destroy(pthread_mutex_t *ptm)
122 {
123
124 pthread__error(EINVAL, "Invalid mutex",
125 ptm->ptm_magic == _PT_MUTEX_MAGIC);
126 pthread__error(EBUSY, "Destroying locked mutex",
127 MUTEX_OWNER(ptm->ptm_owner) == 0);
128
129 ptm->ptm_magic = _PT_MUTEX_DEAD;
130 return 0;
131 }
132
133 int
134 pthread_mutex_lock(pthread_mutex_t *ptm)
135 {
136 pthread_t self;
137 void *val;
138
139 self = pthread__self();
140 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
141 if (__predict_true(val == NULL)) {
142 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
143 membar_enter();
144 #endif
145 return 0;
146 }
147 return pthread__mutex_lock_slow(ptm);
148 }
149
150 /* We want function call overhead. */
151 NOINLINE static void
152 pthread__mutex_pause(void)
153 {
154
155 pthread__smt_pause();
156 }
157
158 /*
159 * Spin while the holder is running. 'lwpctl' gives us the true
160 * status of the thread. pt_blocking is set by libpthread in order
161 * to cut out system call and kernel spinlock overhead on remote CPUs
162 * (could represent many thousands of clock cycles). pt_blocking also
163 * makes this thread yield if the target is calling sched_yield().
164 */
165 NOINLINE static void *
166 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
167 {
168 pthread_t thread;
169 unsigned int count, i;
170
171 for (count = 2;; owner = ptm->ptm_owner) {
172 thread = (pthread_t)MUTEX_OWNER(owner);
173 if (thread == NULL)
174 break;
175 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
176 thread->pt_blocking)
177 break;
178 if (count < 128)
179 count += count;
180 for (i = count; i != 0; i--)
181 pthread__mutex_pause();
182 }
183
184 return owner;
185 }
186
187 NOINLINE static int
188 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
189 {
190 void *waiters, *new, *owner, *next;
191 pthread_t self;
192
193 pthread__error(EINVAL, "Invalid mutex",
194 ptm->ptm_magic == _PT_MUTEX_MAGIC);
195
196 owner = ptm->ptm_owner;
197 self = pthread__self();
198
199 /* Recursive or errorcheck? */
200 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
201 if (MUTEX_RECURSIVE(owner)) {
202 if (ptm->ptm_recursed == INT_MAX)
203 return EAGAIN;
204 ptm->ptm_recursed++;
205 return 0;
206 }
207 if (ptm->ptm_errorcheck)
208 return EDEADLK;
209 }
210
211 for (;; owner = ptm->ptm_owner) {
212 /* Spin while the owner is running. */
213 owner = pthread__mutex_spin(ptm, owner);
214
215 /* If it has become free, try to acquire it again. */
216 if (MUTEX_OWNER(owner) == 0) {
217 do {
218 new = (void *)
219 ((uintptr_t)self | (uintptr_t)owner);
220 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
221 new);
222 if (next == owner) {
223 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
224 membar_enter();
225 #endif
226 return 0;
227 }
228 owner = next;
229 } while (MUTEX_OWNER(owner) == 0);
230 /*
231 * We have lost the race to acquire the mutex.
232 * The new owner could be running on another
233 * CPU, in which case we should spin and avoid
234 * the overhead of blocking.
235 */
236 continue;
237 }
238
239 /*
240 * Nope, still held. Add thread to the list of waiters.
241 * Issue a memory barrier to ensure sleeponq/nextwaiter
242 * are visible before we enter the waiters list.
243 */
244 self->pt_sleeponq = 1;
245 for (waiters = ptm->ptm_waiters;; waiters = next) {
246 self->pt_nextwaiter = waiters;
247 membar_producer();
248 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
249 if (next == waiters)
250 break;
251 }
252
253 /*
254 * Set the waiters bit and block.
255 *
256 * Note that the mutex can become unlocked before we set
257 * the waiters bit. If that happens it's not safe to sleep
258 * as we may never be awoken: we must remove the current
259 * thread from the waiters list and try again.
260 *
261 * Because we are doing this atomically, we can't remove
262 * one waiter: we must remove all waiters and awken them,
263 * then sleep in _lwp_park() until we have been awoken.
264 *
265 * Issue a memory barrier to ensure that we are reading
266 * the value of ptm_owner/pt_sleeponq after we have entered
267 * the waiters list (the CAS itself must be atomic).
268 */
269 membar_consumer();
270 for (owner = ptm->ptm_owner;; owner = next) {
271 if (MUTEX_HAS_WAITERS(owner))
272 break;
273 if (MUTEX_OWNER(owner) == 0) {
274 pthread__mutex_wakeup(self, ptm);
275 break;
276 }
277 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
278 next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
279 if (next == owner) {
280 /*
281 * pthread_mutex_unlock() can do a
282 * non-interlocked CAS. We cannot
283 * know if our attempt to set the
284 * waiters bit has succeeded while
285 * the holding thread is running.
286 * There are many assumptions; see
287 * sys/kern/kern_mutex.c for details.
288 * In short, we must spin if we see
289 * that the holder is running again.
290 */
291 membar_sync();
292 next = pthread__mutex_spin(ptm, owner);
293 }
294 }
295
296 /*
297 * We may have been awoken by the current thread above,
298 * or will be awoken by the current holder of the mutex.
299 * The key requirement is that we must not proceed until
300 * told that we are no longer waiting (via pt_sleeponq
301 * being set to zero). Otherwise it is unsafe to re-enter
302 * the thread onto the waiters list.
303 */
304 while (self->pt_sleeponq) {
305 self->pt_blocking++;
306 (void)_lwp_park(NULL, 0,
307 __UNVOLATILE(&ptm->ptm_waiters), NULL);
308 self->pt_blocking--;
309 membar_sync();
310 }
311 }
312 }
313
314 int
315 pthread_mutex_trylock(pthread_mutex_t *ptm)
316 {
317 pthread_t self;
318 void *val, *new, *next;
319
320 self = pthread__self();
321 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
322 if (__predict_true(val == NULL)) {
323 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
324 membar_enter();
325 #endif
326 return 0;
327 }
328
329 if (MUTEX_RECURSIVE(val)) {
330 if (MUTEX_OWNER(val) == 0) {
331 new = (void *)((uintptr_t)self | (uintptr_t)val);
332 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
333 if (__predict_true(next == val)) {
334 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
335 membar_enter();
336 #endif
337 return 0;
338 }
339 }
340 if (MUTEX_OWNER(val) == (uintptr_t)self) {
341 if (ptm->ptm_recursed == INT_MAX)
342 return EAGAIN;
343 ptm->ptm_recursed++;
344 return 0;
345 }
346 }
347
348 return EBUSY;
349 }
350
351 int
352 pthread_mutex_unlock(pthread_mutex_t *ptm)
353 {
354 pthread_t self;
355 void *value;
356
357 /*
358 * Note this may be a non-interlocked CAS. See lock_slow()
359 * above and sys/kern/kern_mutex.c for details.
360 */
361 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
362 membar_exit();
363 #endif
364 self = pthread__self();
365 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
366 if (__predict_true(value == self))
367 return 0;
368 return pthread__mutex_unlock_slow(ptm);
369 }
370
371 NOINLINE static int
372 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
373 {
374 pthread_t self, owner, new;
375 int weown, error, deferred;
376
377 pthread__error(EINVAL, "Invalid mutex",
378 ptm->ptm_magic == _PT_MUTEX_MAGIC);
379
380 self = pthread__self();
381 owner = ptm->ptm_owner;
382 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
383 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
384 error = 0;
385
386 if (ptm->ptm_errorcheck) {
387 if (!weown) {
388 error = EPERM;
389 new = owner;
390 } else {
391 new = NULL;
392 }
393 } else if (MUTEX_RECURSIVE(owner)) {
394 if (!weown) {
395 error = EPERM;
396 new = owner;
397 } else if (ptm->ptm_recursed) {
398 ptm->ptm_recursed--;
399 new = owner;
400 } else {
401 new = (pthread_t)MUTEX_RECURSIVE_BIT;
402 }
403 } else {
404 pthread__error(EPERM,
405 "Unlocking unlocked mutex", (owner != NULL));
406 pthread__error(EPERM,
407 "Unlocking mutex owned by another thread", weown);
408 new = NULL;
409 }
410
411 /*
412 * Release the mutex. If there appear to be waiters, then
413 * wake them up.
414 */
415 if (new != owner) {
416 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
417 if (MUTEX_HAS_WAITERS(owner) != 0) {
418 pthread__mutex_wakeup(self, ptm);
419 return 0;
420 }
421 }
422
423 /*
424 * There were no waiters, but we may have deferred waking
425 * other threads until mutex unlock - we must wake them now.
426 */
427 if (!deferred)
428 return error;
429
430 if (self->pt_nwaiters == 1) {
431 /*
432 * If the calling thread is about to block, defer
433 * unparking the target until _lwp_park() is called.
434 */
435 if (self->pt_willpark && self->pt_unpark == 0) {
436 self->pt_unpark = self->pt_waiters[0];
437 self->pt_unparkhint =
438 __UNVOLATILE(&ptm->ptm_waiters);
439 } else {
440 (void)_lwp_unpark(self->pt_waiters[0],
441 __UNVOLATILE(&ptm->ptm_waiters));
442 }
443 } else {
444 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
445 __UNVOLATILE(&ptm->ptm_waiters));
446 }
447 self->pt_nwaiters = 0;
448
449 return error;
450 }
451
452 static void
453 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
454 {
455 pthread_t thread, next;
456 ssize_t n, rv;
457
458 /*
459 * Take ownership of the current set of waiters. No
460 * need for a memory barrier following this, all loads
461 * are dependent upon 'thread'.
462 */
463 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
464
465 for (;;) {
466 /*
467 * Pull waiters from the queue and add to our list.
468 * Use a memory barrier to ensure that we safely
469 * read the value of pt_nextwaiter before 'thread'
470 * sees pt_sleeponq being cleared.
471 */
472 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
473 n < pthread__unpark_max && thread != NULL;
474 thread = next) {
475 next = thread->pt_nextwaiter;
476 if (thread != self) {
477 self->pt_waiters[n++] = thread->pt_lid;
478 membar_sync();
479 }
480 thread->pt_sleeponq = 0;
481 /* No longer safe to touch 'thread' */
482 }
483
484 switch (n) {
485 case 0:
486 return;
487 case 1:
488 /*
489 * If the calling thread is about to block,
490 * defer unparking the target until _lwp_park()
491 * is called.
492 */
493 if (self->pt_willpark && self->pt_unpark == 0) {
494 self->pt_unpark = self->pt_waiters[0];
495 self->pt_unparkhint =
496 __UNVOLATILE(&ptm->ptm_waiters);
497 return;
498 }
499 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
500 __UNVOLATILE(&ptm->ptm_waiters));
501 if (rv != 0 && errno != EALREADY && errno != EINTR &&
502 errno != ESRCH) {
503 pthread__errorfunc(__FILE__, __LINE__,
504 __func__, "_lwp_unpark failed");
505 }
506 return;
507 default:
508 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
509 __UNVOLATILE(&ptm->ptm_waiters));
510 if (rv != 0 && errno != EINTR) {
511 pthread__errorfunc(__FILE__, __LINE__,
512 __func__, "_lwp_unpark_all failed");
513 }
514 break;
515 }
516 }
517 }
518 int
519 pthread_mutexattr_init(pthread_mutexattr_t *attr)
520 {
521
522 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
523 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
524 return 0;
525 }
526
527 int
528 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
529 {
530
531 pthread__error(EINVAL, "Invalid mutex attribute",
532 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
533
534 return 0;
535 }
536
537
538 int
539 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
540 {
541
542 pthread__error(EINVAL, "Invalid mutex attribute",
543 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
544
545 *typep = (int)(intptr_t)attr->ptma_private;
546 return 0;
547 }
548
549
550 int
551 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
552 {
553
554 pthread__error(EINVAL, "Invalid mutex attribute",
555 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
556
557 switch (type) {
558 case PTHREAD_MUTEX_NORMAL:
559 case PTHREAD_MUTEX_ERRORCHECK:
560 case PTHREAD_MUTEX_RECURSIVE:
561 attr->ptma_private = (void *)(intptr_t)type;
562 return 0;
563 default:
564 return EINVAL;
565 }
566 }
567
568
569 static void
570 once_cleanup(void *closure)
571 {
572
573 pthread_mutex_unlock((pthread_mutex_t *)closure);
574 }
575
576
577 int
578 pthread_once(pthread_once_t *once_control, void (*routine)(void))
579 {
580
581 if (once_control->pto_done == 0) {
582 pthread_mutex_lock(&once_control->pto_mutex);
583 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
584 if (once_control->pto_done == 0) {
585 routine();
586 once_control->pto_done = 1;
587 }
588 pthread_cleanup_pop(1);
589 }
590
591 return 0;
592 }
593
594 int
595 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
596 {
597
598 if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
599 return 0;
600 atomic_or_ulong((volatile unsigned long *)
601 (uintptr_t)&ptm->ptm_owner,
602 (unsigned long)MUTEX_DEFERRED_BIT);
603 return 1;
604 }
605
606 int
607 _pthread_mutex_held_np(pthread_mutex_t *ptm)
608 {
609
610 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
611 }
612
613 pthread_t
614 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
615 {
616
617 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
618 }
619