Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.50
      1 /*	$NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 
     55 #include <errno.h>
     56 #include <limits.h>
     57 #include <stdlib.h>
     58 #include <string.h>
     59 #include <stdio.h>
     60 
     61 #include "pthread.h"
     62 #include "pthread_int.h"
     63 
     64 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     65 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     66 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     67 #define	MUTEX_THREAD			((uintptr_t)-16L)
     68 
     69 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     70 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     71 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     72 
     73 #if __GNUC_PREREQ__(3, 0)
     74 #define	NOINLINE		__attribute ((noinline))
     75 #else
     76 #define	NOINLINE		/* nothing */
     77 #endif
     78 
     79 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     80 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     81 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     82 static void	pthread__mutex_pause(void);
     83 
     84 int		_pthread_mutex_held_np(pthread_mutex_t *);
     85 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     86 
     87 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     88 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     89 
     90 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     91 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     92 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     93 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     94 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     95 
     96 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     97 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     98 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     99 
    100 __strong_alias(__libc_thr_once,pthread_once)
    101 
    102 int
    103 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    104 {
    105 	intptr_t type;
    106 
    107 	if (attr == NULL)
    108 		type = PTHREAD_MUTEX_NORMAL;
    109 	else
    110 		type = (intptr_t)attr->ptma_private;
    111 
    112 	switch (type) {
    113 	case PTHREAD_MUTEX_ERRORCHECK:
    114 		ptm->ptm_errorcheck = 1;
    115 		ptm->ptm_owner = NULL;
    116 		break;
    117 	case PTHREAD_MUTEX_RECURSIVE:
    118 		ptm->ptm_errorcheck = 0;
    119 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    120 		break;
    121 	default:
    122 		ptm->ptm_errorcheck = 0;
    123 		ptm->ptm_owner = NULL;
    124 		break;
    125 	}
    126 
    127 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    128 	ptm->ptm_waiters = NULL;
    129 	ptm->ptm_recursed = 0;
    130 
    131 	return 0;
    132 }
    133 
    134 
    135 int
    136 pthread_mutex_destroy(pthread_mutex_t *ptm)
    137 {
    138 
    139 	pthread__error(EINVAL, "Invalid mutex",
    140 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    141 	pthread__error(EBUSY, "Destroying locked mutex",
    142 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    143 
    144 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    145 	return 0;
    146 }
    147 
    148 int
    149 pthread_mutex_lock(pthread_mutex_t *ptm)
    150 {
    151 	pthread_t self;
    152 	void *val;
    153 
    154 	self = pthread__self();
    155 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    156 	if (__predict_true(val == NULL)) {
    157 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    158 		membar_enter();
    159 #endif
    160 		return 0;
    161 	}
    162 	return pthread__mutex_lock_slow(ptm);
    163 }
    164 
    165 /* We want function call overhead. */
    166 NOINLINE static void
    167 pthread__mutex_pause(void)
    168 {
    169 
    170 	pthread__smt_pause();
    171 }
    172 
    173 /*
    174  * Spin while the holder is running.  'lwpctl' gives us the true
    175  * status of the thread.  pt_blocking is set by libpthread in order
    176  * to cut out system call and kernel spinlock overhead on remote CPUs
    177  * (could represent many thousands of clock cycles).  pt_blocking also
    178  * makes this thread yield if the target is calling sched_yield().
    179  */
    180 NOINLINE static void *
    181 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    182 {
    183 	pthread_t thread;
    184 	unsigned int count, i;
    185 
    186 	for (count = 2;; owner = ptm->ptm_owner) {
    187 		thread = (pthread_t)MUTEX_OWNER(owner);
    188 		if (thread == NULL)
    189 			break;
    190 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    191 		    thread->pt_blocking)
    192 			break;
    193 		if (count < 128)
    194 			count += count;
    195 		for (i = count; i != 0; i--)
    196 			pthread__mutex_pause();
    197 	}
    198 
    199 	return owner;
    200 }
    201 
    202 NOINLINE static int
    203 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    204 {
    205 	void *waiters, *new, *owner, *next;
    206 	pthread_t self;
    207 
    208 	pthread__error(EINVAL, "Invalid mutex",
    209 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    210 
    211 	owner = ptm->ptm_owner;
    212 	self = pthread__self();
    213 
    214 	/* Recursive or errorcheck? */
    215 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    216 		if (MUTEX_RECURSIVE(owner)) {
    217 			if (ptm->ptm_recursed == INT_MAX)
    218 				return EAGAIN;
    219 			ptm->ptm_recursed++;
    220 			return 0;
    221 		}
    222 		if (ptm->ptm_errorcheck)
    223 			return EDEADLK;
    224 	}
    225 
    226 	for (;; owner = ptm->ptm_owner) {
    227 		/* Spin while the owner is running. */
    228 		owner = pthread__mutex_spin(ptm, owner);
    229 
    230 		/* If it has become free, try to acquire it again. */
    231 		if (MUTEX_OWNER(owner) == 0) {
    232 			do {
    233 				new = (void *)
    234 				    ((uintptr_t)self | (uintptr_t)owner);
    235 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    236 				    new);
    237 				if (next == owner) {
    238 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    239 					membar_enter();
    240 #endif
    241 					return 0;
    242 				}
    243 				owner = next;
    244 			} while (MUTEX_OWNER(owner) == 0);
    245 			/*
    246 			 * We have lost the race to acquire the mutex.
    247 			 * The new owner could be running on another
    248 			 * CPU, in which case we should spin and avoid
    249 			 * the overhead of blocking.
    250 			 */
    251 			continue;
    252 		}
    253 
    254 		/*
    255 		 * Nope, still held.  Add thread to the list of waiters.
    256 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    257 		 * are visible before we enter the waiters list.
    258 		 */
    259 		self->pt_mutexwait = 1;
    260 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    261 			self->pt_mutexnext = waiters;
    262 			membar_producer();
    263 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    264 			if (next == waiters)
    265 			    	break;
    266 		}
    267 
    268 		/*
    269 		 * Set the waiters bit and block.
    270 		 *
    271 		 * Note that the mutex can become unlocked before we set
    272 		 * the waiters bit.  If that happens it's not safe to sleep
    273 		 * as we may never be awoken: we must remove the current
    274 		 * thread from the waiters list and try again.
    275 		 *
    276 		 * Because we are doing this atomically, we can't remove
    277 		 * one waiter: we must remove all waiters and awken them,
    278 		 * then sleep in _lwp_park() until we have been awoken.
    279 		 *
    280 		 * Issue a memory barrier to ensure that we are reading
    281 		 * the value of ptm_owner/pt_mutexwait after we have entered
    282 		 * the waiters list (the CAS itself must be atomic).
    283 		 */
    284 		membar_consumer();
    285 		for (owner = ptm->ptm_owner;; owner = next) {
    286 			if (MUTEX_HAS_WAITERS(owner))
    287 				break;
    288 			if (MUTEX_OWNER(owner) == 0) {
    289 				pthread__mutex_wakeup(self, ptm);
    290 				break;
    291 			}
    292 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    293 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    294 			if (next == owner) {
    295 				/*
    296 				 * pthread_mutex_unlock() can do a
    297 				 * non-interlocked CAS.  We cannot
    298 				 * know if our attempt to set the
    299 				 * waiters bit has succeeded while
    300 				 * the holding thread is running.
    301 				 * There are many assumptions; see
    302 				 * sys/kern/kern_mutex.c for details.
    303 				 * In short, we must spin if we see
    304 				 * that the holder is running again.
    305 				 */
    306 				membar_sync();
    307 				next = pthread__mutex_spin(ptm, owner);
    308 			}
    309 		}
    310 
    311 		/*
    312 		 * We may have been awoken by the current thread above,
    313 		 * or will be awoken by the current holder of the mutex.
    314 		 * The key requirement is that we must not proceed until
    315 		 * told that we are no longer waiting (via pt_mutexwait
    316 		 * being set to zero).  Otherwise it is unsafe to re-enter
    317 		 * the thread onto the waiters list.
    318 		 */
    319 		while (self->pt_mutexwait) {
    320 			self->pt_blocking++;
    321 			(void)_lwp_park(NULL, self->pt_unpark,
    322 			    __UNVOLATILE(&ptm->ptm_waiters),
    323 			    __UNVOLATILE(&ptm->ptm_waiters));
    324 			self->pt_unpark = 0;
    325 			self->pt_blocking--;
    326 			membar_sync();
    327 		}
    328 	}
    329 }
    330 
    331 int
    332 pthread_mutex_trylock(pthread_mutex_t *ptm)
    333 {
    334 	pthread_t self;
    335 	void *val, *new, *next;
    336 
    337 	self = pthread__self();
    338 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    339 	if (__predict_true(val == NULL)) {
    340 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    341 		membar_enter();
    342 #endif
    343 		return 0;
    344 	}
    345 
    346 	if (MUTEX_RECURSIVE(val)) {
    347 		if (MUTEX_OWNER(val) == 0) {
    348 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    349 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    350 			if (__predict_true(next == val)) {
    351 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    352 				membar_enter();
    353 #endif
    354 				return 0;
    355 			}
    356 		}
    357 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    358 			if (ptm->ptm_recursed == INT_MAX)
    359 				return EAGAIN;
    360 			ptm->ptm_recursed++;
    361 			return 0;
    362 		}
    363 	}
    364 
    365 	return EBUSY;
    366 }
    367 
    368 int
    369 pthread_mutex_unlock(pthread_mutex_t *ptm)
    370 {
    371 	pthread_t self;
    372 	void *value;
    373 
    374 	/*
    375 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    376 	 * above and sys/kern/kern_mutex.c for details.
    377 	 */
    378 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    379 	membar_exit();
    380 #endif
    381 	self = pthread__self();
    382 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    383 	if (__predict_true(value == self))
    384 		return 0;
    385 	return pthread__mutex_unlock_slow(ptm);
    386 }
    387 
    388 NOINLINE static int
    389 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    390 {
    391 	pthread_t self, owner, new;
    392 	int weown, error, deferred;
    393 
    394 	pthread__error(EINVAL, "Invalid mutex",
    395 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    396 
    397 	self = pthread__self();
    398 	owner = ptm->ptm_owner;
    399 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    400 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    401 	error = 0;
    402 
    403 	if (ptm->ptm_errorcheck) {
    404 		if (!weown) {
    405 			error = EPERM;
    406 			new = owner;
    407 		} else {
    408 			new = NULL;
    409 		}
    410 	} else if (MUTEX_RECURSIVE(owner)) {
    411 		if (!weown) {
    412 			error = EPERM;
    413 			new = owner;
    414 		} else if (ptm->ptm_recursed) {
    415 			ptm->ptm_recursed--;
    416 			new = owner;
    417 		} else {
    418 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    419 		}
    420 	} else {
    421 		pthread__error(EPERM,
    422 		    "Unlocking unlocked mutex", (owner != NULL));
    423 		pthread__error(EPERM,
    424 		    "Unlocking mutex owned by another thread", weown);
    425 		new = NULL;
    426 	}
    427 
    428 	/*
    429 	 * Release the mutex.  If there appear to be waiters, then
    430 	 * wake them up.
    431 	 */
    432 	if (new != owner) {
    433 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    434 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    435 			pthread__mutex_wakeup(self, ptm);
    436 			return 0;
    437 		}
    438 	}
    439 
    440 	/*
    441 	 * There were no waiters, but we may have deferred waking
    442 	 * other threads until mutex unlock - we must wake them now.
    443 	 */
    444 	if (!deferred)
    445 		return error;
    446 
    447 	if (self->pt_nwaiters == 1) {
    448 		/*
    449 		 * If the calling thread is about to block, defer
    450 		 * unparking the target until _lwp_park() is called.
    451 		 */
    452 		if (self->pt_willpark && self->pt_unpark == 0) {
    453 			self->pt_unpark = self->pt_waiters[0];
    454 		} else {
    455 			(void)_lwp_unpark(self->pt_waiters[0],
    456 			    __UNVOLATILE(&ptm->ptm_waiters));
    457 		}
    458 	} else {
    459 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    460 		    __UNVOLATILE(&ptm->ptm_waiters));
    461 	}
    462 	self->pt_nwaiters = 0;
    463 
    464 	return error;
    465 }
    466 
    467 static void
    468 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    469 {
    470 	pthread_t thread, next;
    471 	ssize_t n, rv;
    472 
    473 	/*
    474 	 * Take ownership of the current set of waiters.  No
    475 	 * need for a memory barrier following this, all loads
    476 	 * are dependent upon 'thread'.
    477 	 */
    478 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    479 
    480 	for (;;) {
    481 		/*
    482 		 * Pull waiters from the queue and add to our list.
    483 		 * Use a memory barrier to ensure that we safely
    484 		 * read the value of pt_mutexnext before 'thread'
    485 		 * sees pt_mutexwait being cleared.
    486 		 */
    487 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    488 		    n < pthread__unpark_max && thread != NULL;
    489 		    thread = next) {
    490 		    	next = thread->pt_mutexnext;
    491 		    	if (thread != self) {
    492 				self->pt_waiters[n++] = thread->pt_lid;
    493 				membar_sync();
    494 			}
    495 			thread->pt_mutexwait = 0;
    496 			/* No longer safe to touch 'thread' */
    497 		}
    498 
    499 		switch (n) {
    500 		case 0:
    501 			return;
    502 		case 1:
    503 			/*
    504 			 * If the calling thread is about to block,
    505 			 * defer unparking the target until _lwp_park()
    506 			 * is called.
    507 			 */
    508 			if (self->pt_willpark && self->pt_unpark == 0) {
    509 				self->pt_unpark = self->pt_waiters[0];
    510 				return;
    511 			}
    512 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    513 			    __UNVOLATILE(&ptm->ptm_waiters));
    514 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    515 			    errno != ESRCH) {
    516 				pthread__errorfunc(__FILE__, __LINE__,
    517 				    __func__, "_lwp_unpark failed");
    518 			}
    519 			return;
    520 		default:
    521 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    522 			    __UNVOLATILE(&ptm->ptm_waiters));
    523 			if (rv != 0 && errno != EINTR) {
    524 				pthread__errorfunc(__FILE__, __LINE__,
    525 				    __func__, "_lwp_unpark_all failed");
    526 			}
    527 			break;
    528 		}
    529 	}
    530 }
    531 int
    532 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    533 {
    534 
    535 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    536 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    537 	return 0;
    538 }
    539 
    540 int
    541 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    542 {
    543 
    544 	pthread__error(EINVAL, "Invalid mutex attribute",
    545 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    546 
    547 	return 0;
    548 }
    549 
    550 
    551 int
    552 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    553 {
    554 
    555 	pthread__error(EINVAL, "Invalid mutex attribute",
    556 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    557 
    558 	*typep = (int)(intptr_t)attr->ptma_private;
    559 	return 0;
    560 }
    561 
    562 
    563 int
    564 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    565 {
    566 
    567 	pthread__error(EINVAL, "Invalid mutex attribute",
    568 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    569 
    570 	switch (type) {
    571 	case PTHREAD_MUTEX_NORMAL:
    572 	case PTHREAD_MUTEX_ERRORCHECK:
    573 	case PTHREAD_MUTEX_RECURSIVE:
    574 		attr->ptma_private = (void *)(intptr_t)type;
    575 		return 0;
    576 	default:
    577 		return EINVAL;
    578 	}
    579 }
    580 
    581 
    582 static void
    583 once_cleanup(void *closure)
    584 {
    585 
    586        pthread_mutex_unlock((pthread_mutex_t *)closure);
    587 }
    588 
    589 
    590 int
    591 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    592 {
    593 
    594 	if (once_control->pto_done == 0) {
    595 		pthread_mutex_lock(&once_control->pto_mutex);
    596 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    597 		if (once_control->pto_done == 0) {
    598 			routine();
    599 			once_control->pto_done = 1;
    600 		}
    601 		pthread_cleanup_pop(1);
    602 	}
    603 
    604 	return 0;
    605 }
    606 
    607 void
    608 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    609 {
    610 
    611 	if (__predict_false(ptm == NULL ||
    612 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    613 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    614 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    615 	    	self->pt_nwaiters = 0;
    616 	} else {
    617 		atomic_or_ulong((volatile unsigned long *)
    618 		    (uintptr_t)&ptm->ptm_owner,
    619 		    (unsigned long)MUTEX_DEFERRED_BIT);
    620 	}
    621 }
    622 
    623 int
    624 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    625 {
    626 
    627 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    628 }
    629 
    630 pthread_t
    631 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    632 {
    633 
    634 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    635 }
    636