pthread_mutex.c revision 1.51.2.1 1 /* $NetBSD: pthread_mutex.c,v 1.51.2.1 2012/04/17 00:05:31 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.2.1 2012/04/17 00:05:31 yamt Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
55
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <stdio.h>
61
62 #include "pthread.h"
63 #include "pthread_int.h"
64
65 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
66 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
67 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
68 #define MUTEX_THREAD ((uintptr_t)-16L)
69
70 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
73
74 #if __GNUC_PREREQ__(3, 0)
75 #define NOINLINE __attribute ((noinline))
76 #else
77 #define NOINLINE /* nothing */
78 #endif
79
80 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 static int pthread__mutex_lock_slow(pthread_mutex_t *);
82 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
83 static void pthread__mutex_pause(void);
84
85 int _pthread_mutex_held_np(pthread_mutex_t *);
86 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
87
88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
90
91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
96
97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
100
101 int
102 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
103 {
104 intptr_t type;
105
106 if (attr == NULL)
107 type = PTHREAD_MUTEX_NORMAL;
108 else
109 type = (intptr_t)attr->ptma_private;
110
111 switch (type) {
112 case PTHREAD_MUTEX_ERRORCHECK:
113 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
114 ptm->ptm_owner = NULL;
115 break;
116 case PTHREAD_MUTEX_RECURSIVE:
117 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
118 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
119 break;
120 default:
121 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
122 ptm->ptm_owner = NULL;
123 break;
124 }
125
126 ptm->ptm_magic = _PT_MUTEX_MAGIC;
127 ptm->ptm_waiters = NULL;
128 ptm->ptm_recursed = 0;
129
130 return 0;
131 }
132
133
134 int
135 pthread_mutex_destroy(pthread_mutex_t *ptm)
136 {
137
138 pthread__error(EINVAL, "Invalid mutex",
139 ptm->ptm_magic == _PT_MUTEX_MAGIC);
140 pthread__error(EBUSY, "Destroying locked mutex",
141 MUTEX_OWNER(ptm->ptm_owner) == 0);
142
143 ptm->ptm_magic = _PT_MUTEX_DEAD;
144 return 0;
145 }
146
147 int
148 pthread_mutex_lock(pthread_mutex_t *ptm)
149 {
150 pthread_t self;
151 void *val;
152
153 self = pthread__self();
154 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
155 if (__predict_true(val == NULL)) {
156 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
157 membar_enter();
158 #endif
159 return 0;
160 }
161 return pthread__mutex_lock_slow(ptm);
162 }
163
164 /* We want function call overhead. */
165 NOINLINE static void
166 pthread__mutex_pause(void)
167 {
168
169 pthread__smt_pause();
170 }
171
172 /*
173 * Spin while the holder is running. 'lwpctl' gives us the true
174 * status of the thread. pt_blocking is set by libpthread in order
175 * to cut out system call and kernel spinlock overhead on remote CPUs
176 * (could represent many thousands of clock cycles). pt_blocking also
177 * makes this thread yield if the target is calling sched_yield().
178 */
179 NOINLINE static void *
180 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
181 {
182 pthread_t thread;
183 unsigned int count, i;
184
185 for (count = 2;; owner = ptm->ptm_owner) {
186 thread = (pthread_t)MUTEX_OWNER(owner);
187 if (thread == NULL)
188 break;
189 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
190 thread->pt_blocking)
191 break;
192 if (count < 128)
193 count += count;
194 for (i = count; i != 0; i--)
195 pthread__mutex_pause();
196 }
197
198 return owner;
199 }
200
201 NOINLINE static int
202 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
203 {
204 void *waiters, *new, *owner, *next;
205 pthread_t self;
206
207 pthread__error(EINVAL, "Invalid mutex",
208 ptm->ptm_magic == _PT_MUTEX_MAGIC);
209
210 owner = ptm->ptm_owner;
211 self = pthread__self();
212
213 /* Recursive or errorcheck? */
214 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
215 if (MUTEX_RECURSIVE(owner)) {
216 if (ptm->ptm_recursed == INT_MAX)
217 return EAGAIN;
218 ptm->ptm_recursed++;
219 return 0;
220 }
221 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
222 return EDEADLK;
223 }
224
225 for (;; owner = ptm->ptm_owner) {
226 /* Spin while the owner is running. */
227 owner = pthread__mutex_spin(ptm, owner);
228
229 /* If it has become free, try to acquire it again. */
230 if (MUTEX_OWNER(owner) == 0) {
231 do {
232 new = (void *)
233 ((uintptr_t)self | (uintptr_t)owner);
234 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
235 new);
236 if (next == owner) {
237 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
238 membar_enter();
239 #endif
240 return 0;
241 }
242 owner = next;
243 } while (MUTEX_OWNER(owner) == 0);
244 /*
245 * We have lost the race to acquire the mutex.
246 * The new owner could be running on another
247 * CPU, in which case we should spin and avoid
248 * the overhead of blocking.
249 */
250 continue;
251 }
252
253 /*
254 * Nope, still held. Add thread to the list of waiters.
255 * Issue a memory barrier to ensure mutexwait/mutexnext
256 * are visible before we enter the waiters list.
257 */
258 self->pt_mutexwait = 1;
259 for (waiters = ptm->ptm_waiters;; waiters = next) {
260 self->pt_mutexnext = waiters;
261 membar_producer();
262 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
263 if (next == waiters)
264 break;
265 }
266
267 /*
268 * Set the waiters bit and block.
269 *
270 * Note that the mutex can become unlocked before we set
271 * the waiters bit. If that happens it's not safe to sleep
272 * as we may never be awoken: we must remove the current
273 * thread from the waiters list and try again.
274 *
275 * Because we are doing this atomically, we can't remove
276 * one waiter: we must remove all waiters and awken them,
277 * then sleep in _lwp_park() until we have been awoken.
278 *
279 * Issue a memory barrier to ensure that we are reading
280 * the value of ptm_owner/pt_mutexwait after we have entered
281 * the waiters list (the CAS itself must be atomic).
282 */
283 membar_consumer();
284 for (owner = ptm->ptm_owner;; owner = next) {
285 if (MUTEX_HAS_WAITERS(owner))
286 break;
287 if (MUTEX_OWNER(owner) == 0) {
288 pthread__mutex_wakeup(self, ptm);
289 break;
290 }
291 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
292 next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
293 if (next == owner) {
294 /*
295 * pthread_mutex_unlock() can do a
296 * non-interlocked CAS. We cannot
297 * know if our attempt to set the
298 * waiters bit has succeeded while
299 * the holding thread is running.
300 * There are many assumptions; see
301 * sys/kern/kern_mutex.c for details.
302 * In short, we must spin if we see
303 * that the holder is running again.
304 */
305 membar_sync();
306 next = pthread__mutex_spin(ptm, owner);
307 }
308 }
309
310 /*
311 * We may have been awoken by the current thread above,
312 * or will be awoken by the current holder of the mutex.
313 * The key requirement is that we must not proceed until
314 * told that we are no longer waiting (via pt_mutexwait
315 * being set to zero). Otherwise it is unsafe to re-enter
316 * the thread onto the waiters list.
317 */
318 while (self->pt_mutexwait) {
319 self->pt_blocking++;
320 (void)_lwp_park(NULL, self->pt_unpark,
321 __UNVOLATILE(&ptm->ptm_waiters),
322 __UNVOLATILE(&ptm->ptm_waiters));
323 self->pt_unpark = 0;
324 self->pt_blocking--;
325 membar_sync();
326 }
327 }
328 }
329
330 int
331 pthread_mutex_trylock(pthread_mutex_t *ptm)
332 {
333 pthread_t self;
334 void *val, *new, *next;
335
336 self = pthread__self();
337 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
338 if (__predict_true(val == NULL)) {
339 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
340 membar_enter();
341 #endif
342 return 0;
343 }
344
345 if (MUTEX_RECURSIVE(val)) {
346 if (MUTEX_OWNER(val) == 0) {
347 new = (void *)((uintptr_t)self | (uintptr_t)val);
348 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
349 if (__predict_true(next == val)) {
350 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
351 membar_enter();
352 #endif
353 return 0;
354 }
355 }
356 if (MUTEX_OWNER(val) == (uintptr_t)self) {
357 if (ptm->ptm_recursed == INT_MAX)
358 return EAGAIN;
359 ptm->ptm_recursed++;
360 return 0;
361 }
362 }
363
364 return EBUSY;
365 }
366
367 int
368 pthread_mutex_unlock(pthread_mutex_t *ptm)
369 {
370 pthread_t self;
371 void *value;
372
373 /*
374 * Note this may be a non-interlocked CAS. See lock_slow()
375 * above and sys/kern/kern_mutex.c for details.
376 */
377 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
378 membar_exit();
379 #endif
380 self = pthread__self();
381 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
382 if (__predict_true(value == self))
383 return 0;
384 return pthread__mutex_unlock_slow(ptm);
385 }
386
387 NOINLINE static int
388 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
389 {
390 pthread_t self, owner, new;
391 int weown, error, deferred;
392
393 pthread__error(EINVAL, "Invalid mutex",
394 ptm->ptm_magic == _PT_MUTEX_MAGIC);
395
396 self = pthread__self();
397 owner = ptm->ptm_owner;
398 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
399 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
400 error = 0;
401
402 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
403 if (!weown) {
404 error = EPERM;
405 new = owner;
406 } else {
407 new = NULL;
408 }
409 } else if (MUTEX_RECURSIVE(owner)) {
410 if (!weown) {
411 error = EPERM;
412 new = owner;
413 } else if (ptm->ptm_recursed) {
414 ptm->ptm_recursed--;
415 new = owner;
416 } else {
417 new = (pthread_t)MUTEX_RECURSIVE_BIT;
418 }
419 } else {
420 pthread__error(EPERM,
421 "Unlocking unlocked mutex", (owner != NULL));
422 pthread__error(EPERM,
423 "Unlocking mutex owned by another thread", weown);
424 new = NULL;
425 }
426
427 /*
428 * Release the mutex. If there appear to be waiters, then
429 * wake them up.
430 */
431 if (new != owner) {
432 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
433 if (MUTEX_HAS_WAITERS(owner) != 0) {
434 pthread__mutex_wakeup(self, ptm);
435 return 0;
436 }
437 }
438
439 /*
440 * There were no waiters, but we may have deferred waking
441 * other threads until mutex unlock - we must wake them now.
442 */
443 if (!deferred)
444 return error;
445
446 if (self->pt_nwaiters == 1) {
447 /*
448 * If the calling thread is about to block, defer
449 * unparking the target until _lwp_park() is called.
450 */
451 if (self->pt_willpark && self->pt_unpark == 0) {
452 self->pt_unpark = self->pt_waiters[0];
453 } else {
454 (void)_lwp_unpark(self->pt_waiters[0],
455 __UNVOLATILE(&ptm->ptm_waiters));
456 }
457 } else {
458 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
459 __UNVOLATILE(&ptm->ptm_waiters));
460 }
461 self->pt_nwaiters = 0;
462
463 return error;
464 }
465
466 static void
467 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
468 {
469 pthread_t thread, next;
470 ssize_t n, rv;
471
472 /*
473 * Take ownership of the current set of waiters. No
474 * need for a memory barrier following this, all loads
475 * are dependent upon 'thread'.
476 */
477 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
478
479 for (;;) {
480 /*
481 * Pull waiters from the queue and add to our list.
482 * Use a memory barrier to ensure that we safely
483 * read the value of pt_mutexnext before 'thread'
484 * sees pt_mutexwait being cleared.
485 */
486 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
487 n < pthread__unpark_max && thread != NULL;
488 thread = next) {
489 next = thread->pt_mutexnext;
490 if (thread != self) {
491 self->pt_waiters[n++] = thread->pt_lid;
492 membar_sync();
493 }
494 thread->pt_mutexwait = 0;
495 /* No longer safe to touch 'thread' */
496 }
497
498 switch (n) {
499 case 0:
500 return;
501 case 1:
502 /*
503 * If the calling thread is about to block,
504 * defer unparking the target until _lwp_park()
505 * is called.
506 */
507 if (self->pt_willpark && self->pt_unpark == 0) {
508 self->pt_unpark = self->pt_waiters[0];
509 return;
510 }
511 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
512 __UNVOLATILE(&ptm->ptm_waiters));
513 if (rv != 0 && errno != EALREADY && errno != EINTR &&
514 errno != ESRCH) {
515 pthread__errorfunc(__FILE__, __LINE__,
516 __func__, "_lwp_unpark failed");
517 }
518 return;
519 default:
520 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
521 __UNVOLATILE(&ptm->ptm_waiters));
522 if (rv != 0 && errno != EINTR) {
523 pthread__errorfunc(__FILE__, __LINE__,
524 __func__, "_lwp_unpark_all failed");
525 }
526 break;
527 }
528 }
529 }
530 int
531 pthread_mutexattr_init(pthread_mutexattr_t *attr)
532 {
533
534 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
535 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
536 return 0;
537 }
538
539 int
540 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
541 {
542
543 pthread__error(EINVAL, "Invalid mutex attribute",
544 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
545
546 return 0;
547 }
548
549 int
550 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
551 {
552
553 pthread__error(EINVAL, "Invalid mutex attribute",
554 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
555
556 *typep = (int)(intptr_t)attr->ptma_private;
557 return 0;
558 }
559
560 int
561 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
562 {
563
564 pthread__error(EINVAL, "Invalid mutex attribute",
565 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
566
567 switch (type) {
568 case PTHREAD_MUTEX_NORMAL:
569 case PTHREAD_MUTEX_ERRORCHECK:
570 case PTHREAD_MUTEX_RECURSIVE:
571 attr->ptma_private = (void *)(intptr_t)type;
572 return 0;
573 default:
574 return EINVAL;
575 }
576 }
577
578 void
579 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
580 {
581
582 if (__predict_false(ptm == NULL ||
583 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
584 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
585 __UNVOLATILE(&ptm->ptm_waiters));
586 self->pt_nwaiters = 0;
587 } else {
588 atomic_or_ulong((volatile unsigned long *)
589 (uintptr_t)&ptm->ptm_owner,
590 (unsigned long)MUTEX_DEFERRED_BIT);
591 }
592 }
593
594 int
595 _pthread_mutex_held_np(pthread_mutex_t *ptm)
596 {
597
598 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
599 }
600
601 pthread_t
602 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
603 {
604
605 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
606 }
607