Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.2.3
      1 /*	$NetBSD: pthread_mutex.c,v 1.51.2.3 2014/05/22 11:36:59 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.2.3 2014/05/22 11:36:59 yamt Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <time.h>
     60 #include <string.h>
     61 #include <stdio.h>
     62 
     63 #include "pthread.h"
     64 #include "pthread_int.h"
     65 #include "reentrant.h"
     66 
     67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70 #define	MUTEX_THREAD			((uintptr_t)-16L)
     71 
     72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #if __GNUC_PREREQ__(3, 0)
     77 #define	NOINLINE		__attribute ((noinline))
     78 #else
     79 #define	NOINLINE		/* nothing */
     80 #endif
     81 
     82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85 static void	pthread__mutex_pause(void);
     86 
     87 int		_pthread_mutex_held_np(pthread_mutex_t *);
     88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89 
     90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92 
     93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98 
     99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102 
    103 int
    104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105 {
    106 	intptr_t type;
    107 
    108 	if (__predict_false(__uselibcstub))
    109 		return __libc_mutex_init_stub(ptm, attr);
    110 
    111 	if (attr == NULL)
    112 		type = PTHREAD_MUTEX_NORMAL;
    113 	else
    114 		type = (intptr_t)attr->ptma_private;
    115 
    116 	switch (type) {
    117 	case PTHREAD_MUTEX_ERRORCHECK:
    118 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    119 		ptm->ptm_owner = NULL;
    120 		break;
    121 	case PTHREAD_MUTEX_RECURSIVE:
    122 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    123 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    124 		break;
    125 	default:
    126 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    127 		ptm->ptm_owner = NULL;
    128 		break;
    129 	}
    130 
    131 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    132 	ptm->ptm_waiters = NULL;
    133 	ptm->ptm_recursed = 0;
    134 
    135 	return 0;
    136 }
    137 
    138 int
    139 pthread_mutex_destroy(pthread_mutex_t *ptm)
    140 {
    141 
    142 	if (__predict_false(__uselibcstub))
    143 		return __libc_mutex_destroy_stub(ptm);
    144 
    145 	pthread__error(EINVAL, "Invalid mutex",
    146 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    147 	pthread__error(EBUSY, "Destroying locked mutex",
    148 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    149 
    150 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    151 	return 0;
    152 }
    153 
    154 int
    155 pthread_mutex_lock(pthread_mutex_t *ptm)
    156 {
    157 	pthread_t self;
    158 	void *val;
    159 
    160 	if (__predict_false(__uselibcstub))
    161 		return __libc_mutex_lock_stub(ptm);
    162 
    163 	self = pthread__self();
    164 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    165 	if (__predict_true(val == NULL)) {
    166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    167 		membar_enter();
    168 #endif
    169 		return 0;
    170 	}
    171 	return pthread__mutex_lock_slow(ptm);
    172 }
    173 
    174 /* We want function call overhead. */
    175 NOINLINE static void
    176 pthread__mutex_pause(void)
    177 {
    178 
    179 	pthread__smt_pause();
    180 }
    181 
    182 /*
    183  * Spin while the holder is running.  'lwpctl' gives us the true
    184  * status of the thread.  pt_blocking is set by libpthread in order
    185  * to cut out system call and kernel spinlock overhead on remote CPUs
    186  * (could represent many thousands of clock cycles).  pt_blocking also
    187  * makes this thread yield if the target is calling sched_yield().
    188  */
    189 NOINLINE static void *
    190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    191 {
    192 	pthread_t thread;
    193 	unsigned int count, i;
    194 
    195 	for (count = 2;; owner = ptm->ptm_owner) {
    196 		thread = (pthread_t)MUTEX_OWNER(owner);
    197 		if (thread == NULL)
    198 			break;
    199 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    200 		    thread->pt_blocking)
    201 			break;
    202 		if (count < 128)
    203 			count += count;
    204 		for (i = count; i != 0; i--)
    205 			pthread__mutex_pause();
    206 	}
    207 
    208 	return owner;
    209 }
    210 
    211 NOINLINE static void
    212 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
    213 {
    214 	void *new, *owner;
    215 
    216 	/*
    217 	 * Note that the mutex can become unlocked before we set
    218 	 * the waiters bit.  If that happens it's not safe to sleep
    219 	 * as we may never be awoken: we must remove the current
    220 	 * thread from the waiters list and try again.
    221 	 *
    222 	 * Because we are doing this atomically, we can't remove
    223 	 * one waiter: we must remove all waiters and awken them,
    224 	 * then sleep in _lwp_park() until we have been awoken.
    225 	 *
    226 	 * Issue a memory barrier to ensure that we are reading
    227 	 * the value of ptm_owner/pt_mutexwait after we have entered
    228 	 * the waiters list (the CAS itself must be atomic).
    229 	 */
    230 again:
    231 	membar_consumer();
    232 	owner = ptm->ptm_owner;
    233 
    234 	if (MUTEX_OWNER(owner) == 0) {
    235 		pthread__mutex_wakeup(self, ptm);
    236 		return;
    237 	}
    238 	if (!MUTEX_HAS_WAITERS(owner)) {
    239 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    240 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
    241 			goto again;
    242 		}
    243 	}
    244 
    245 	/*
    246 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
    247 	 * We cannot know if the presence of the waiters bit is stable
    248 	 * while the holding thread is running.  There are many assumptions;
    249 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
    250 	 * we see that the holder is running again.
    251 	 */
    252 	membar_sync();
    253 	pthread__mutex_spin(ptm, owner);
    254 
    255 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
    256 		goto again;
    257 	}
    258 }
    259 
    260 NOINLINE static int
    261 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    262 {
    263 	void *waiters, *new, *owner, *next;
    264 	pthread_t self;
    265 	int serrno;
    266 
    267 	pthread__error(EINVAL, "Invalid mutex",
    268 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    269 
    270 	owner = ptm->ptm_owner;
    271 	self = pthread__self();
    272 
    273 	/* Recursive or errorcheck? */
    274 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    275 		if (MUTEX_RECURSIVE(owner)) {
    276 			if (ptm->ptm_recursed == INT_MAX)
    277 				return EAGAIN;
    278 			ptm->ptm_recursed++;
    279 			return 0;
    280 		}
    281 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    282 			return EDEADLK;
    283 	}
    284 
    285 	serrno = errno;
    286 	for (;; owner = ptm->ptm_owner) {
    287 		/* Spin while the owner is running. */
    288 		owner = pthread__mutex_spin(ptm, owner);
    289 
    290 		/* If it has become free, try to acquire it again. */
    291 		if (MUTEX_OWNER(owner) == 0) {
    292 			do {
    293 				new = (void *)
    294 				    ((uintptr_t)self | (uintptr_t)owner);
    295 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    296 				    new);
    297 				if (next == owner) {
    298 					errno = serrno;
    299 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    300 					membar_enter();
    301 #endif
    302 					return 0;
    303 				}
    304 				owner = next;
    305 			} while (MUTEX_OWNER(owner) == 0);
    306 			/*
    307 			 * We have lost the race to acquire the mutex.
    308 			 * The new owner could be running on another
    309 			 * CPU, in which case we should spin and avoid
    310 			 * the overhead of blocking.
    311 			 */
    312 			continue;
    313 		}
    314 
    315 		/*
    316 		 * Nope, still held.  Add thread to the list of waiters.
    317 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    318 		 * are visible before we enter the waiters list.
    319 		 */
    320 		self->pt_mutexwait = 1;
    321 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    322 			self->pt_mutexnext = waiters;
    323 			membar_producer();
    324 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    325 			if (next == waiters)
    326 			    	break;
    327 		}
    328 
    329 		/* Set the waiters bit and block. */
    330 		pthread__mutex_setwaiters(self, ptm);
    331 
    332 		/*
    333 		 * We may have been awoken by the current thread above,
    334 		 * or will be awoken by the current holder of the mutex.
    335 		 * The key requirement is that we must not proceed until
    336 		 * told that we are no longer waiting (via pt_mutexwait
    337 		 * being set to zero).  Otherwise it is unsafe to re-enter
    338 		 * the thread onto the waiters list.
    339 		 */
    340 		while (self->pt_mutexwait) {
    341 			self->pt_blocking++;
    342 			(void)_lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, NULL,
    343 			    self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
    344 			    __UNVOLATILE(&ptm->ptm_waiters));
    345 			self->pt_unpark = 0;
    346 			self->pt_blocking--;
    347 			membar_sync();
    348 		}
    349 	}
    350 }
    351 
    352 int
    353 pthread_mutex_trylock(pthread_mutex_t *ptm)
    354 {
    355 	pthread_t self;
    356 	void *val, *new, *next;
    357 
    358 	if (__predict_false(__uselibcstub))
    359 		return __libc_mutex_trylock_stub(ptm);
    360 
    361 	self = pthread__self();
    362 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    363 	if (__predict_true(val == NULL)) {
    364 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    365 		membar_enter();
    366 #endif
    367 		return 0;
    368 	}
    369 
    370 	if (MUTEX_RECURSIVE(val)) {
    371 		if (MUTEX_OWNER(val) == 0) {
    372 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    373 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    374 			if (__predict_true(next == val)) {
    375 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    376 				membar_enter();
    377 #endif
    378 				return 0;
    379 			}
    380 		}
    381 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    382 			if (ptm->ptm_recursed == INT_MAX)
    383 				return EAGAIN;
    384 			ptm->ptm_recursed++;
    385 			return 0;
    386 		}
    387 	}
    388 
    389 	return EBUSY;
    390 }
    391 
    392 int
    393 pthread_mutex_unlock(pthread_mutex_t *ptm)
    394 {
    395 	pthread_t self;
    396 	void *value;
    397 
    398 	if (__predict_false(__uselibcstub))
    399 		return __libc_mutex_unlock_stub(ptm);
    400 
    401 	/*
    402 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    403 	 * above and sys/kern/kern_mutex.c for details.
    404 	 */
    405 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    406 	membar_exit();
    407 #endif
    408 	self = pthread__self();
    409 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    410 	if (__predict_true(value == self)) {
    411 		pthread__smt_wake();
    412 		return 0;
    413 	}
    414 	return pthread__mutex_unlock_slow(ptm);
    415 }
    416 
    417 NOINLINE static int
    418 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    419 {
    420 	pthread_t self, owner, new;
    421 	int weown, error, deferred;
    422 
    423 	pthread__error(EINVAL, "Invalid mutex",
    424 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    425 
    426 	self = pthread__self();
    427 	owner = ptm->ptm_owner;
    428 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    429 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    430 	error = 0;
    431 
    432 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    433 		if (!weown) {
    434 			error = EPERM;
    435 			new = owner;
    436 		} else {
    437 			new = NULL;
    438 		}
    439 	} else if (MUTEX_RECURSIVE(owner)) {
    440 		if (!weown) {
    441 			error = EPERM;
    442 			new = owner;
    443 		} else if (ptm->ptm_recursed) {
    444 			ptm->ptm_recursed--;
    445 			new = owner;
    446 		} else {
    447 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    448 		}
    449 	} else {
    450 		pthread__error(EPERM,
    451 		    "Unlocking unlocked mutex", (owner != NULL));
    452 		pthread__error(EPERM,
    453 		    "Unlocking mutex owned by another thread", weown);
    454 		new = NULL;
    455 	}
    456 
    457 	/*
    458 	 * Release the mutex.  If there appear to be waiters, then
    459 	 * wake them up.
    460 	 */
    461 	if (new != owner) {
    462 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    463 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    464 			pthread__mutex_wakeup(self, ptm);
    465 			return 0;
    466 		}
    467 	}
    468 
    469 	/*
    470 	 * There were no waiters, but we may have deferred waking
    471 	 * other threads until mutex unlock - we must wake them now.
    472 	 */
    473 	if (!deferred)
    474 		return error;
    475 
    476 	if (self->pt_nwaiters == 1) {
    477 		/*
    478 		 * If the calling thread is about to block, defer
    479 		 * unparking the target until _lwp_park() is called.
    480 		 */
    481 		if (self->pt_willpark && self->pt_unpark == 0) {
    482 			self->pt_unpark = self->pt_waiters[0];
    483 		} else {
    484 			(void)_lwp_unpark(self->pt_waiters[0],
    485 			    __UNVOLATILE(&ptm->ptm_waiters));
    486 		}
    487 	} else {
    488 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    489 		    __UNVOLATILE(&ptm->ptm_waiters));
    490 	}
    491 	self->pt_nwaiters = 0;
    492 
    493 	return error;
    494 }
    495 
    496 /*
    497  * pthread__mutex_wakeup: unpark threads waiting for us
    498  *
    499  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    500  */
    501 
    502 static void
    503 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    504 {
    505 	pthread_t thread, next;
    506 	ssize_t n, rv;
    507 
    508 	/*
    509 	 * Take ownership of the current set of waiters.  No
    510 	 * need for a memory barrier following this, all loads
    511 	 * are dependent upon 'thread'.
    512 	 */
    513 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    514 	pthread__smt_wake();
    515 
    516 	for (;;) {
    517 		/*
    518 		 * Pull waiters from the queue and add to our list.
    519 		 * Use a memory barrier to ensure that we safely
    520 		 * read the value of pt_mutexnext before 'thread'
    521 		 * sees pt_mutexwait being cleared.
    522 		 */
    523 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    524 		    n < pthread__unpark_max && thread != NULL;
    525 		    thread = next) {
    526 		    	next = thread->pt_mutexnext;
    527 		    	if (thread != self) {
    528 				self->pt_waiters[n++] = thread->pt_lid;
    529 				membar_sync();
    530 			}
    531 			thread->pt_mutexwait = 0;
    532 			/* No longer safe to touch 'thread' */
    533 		}
    534 
    535 		switch (n) {
    536 		case 0:
    537 			return;
    538 		case 1:
    539 			/*
    540 			 * If the calling thread is about to block,
    541 			 * defer unparking the target until _lwp_park()
    542 			 * is called.
    543 			 */
    544 			if (self->pt_willpark && self->pt_unpark == 0) {
    545 				self->pt_unpark = self->pt_waiters[0];
    546 				return;
    547 			}
    548 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    549 			    __UNVOLATILE(&ptm->ptm_waiters));
    550 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    551 			    errno != ESRCH) {
    552 				pthread__errorfunc(__FILE__, __LINE__,
    553 				    __func__, "_lwp_unpark failed");
    554 			}
    555 			return;
    556 		default:
    557 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    558 			    __UNVOLATILE(&ptm->ptm_waiters));
    559 			if (rv != 0 && errno != EINTR) {
    560 				pthread__errorfunc(__FILE__, __LINE__,
    561 				    __func__, "_lwp_unpark_all failed");
    562 			}
    563 			break;
    564 		}
    565 	}
    566 }
    567 
    568 int
    569 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    570 {
    571 	if (__predict_false(__uselibcstub))
    572 		return __libc_mutexattr_init_stub(attr);
    573 
    574 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    575 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    576 	return 0;
    577 }
    578 
    579 int
    580 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    581 {
    582 	if (__predict_false(__uselibcstub))
    583 		return __libc_mutexattr_destroy_stub(attr);
    584 
    585 	pthread__error(EINVAL, "Invalid mutex attribute",
    586 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    587 
    588 	return 0;
    589 }
    590 
    591 int
    592 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    593 {
    594 	pthread__error(EINVAL, "Invalid mutex attribute",
    595 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    596 
    597 	*typep = (int)(intptr_t)attr->ptma_private;
    598 	return 0;
    599 }
    600 
    601 int
    602 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    603 {
    604 	if (__predict_false(__uselibcstub))
    605 		return __libc_mutexattr_settype_stub(attr, type);
    606 
    607 	pthread__error(EINVAL, "Invalid mutex attribute",
    608 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    609 
    610 	switch (type) {
    611 	case PTHREAD_MUTEX_NORMAL:
    612 	case PTHREAD_MUTEX_ERRORCHECK:
    613 	case PTHREAD_MUTEX_RECURSIVE:
    614 		attr->ptma_private = (void *)(intptr_t)type;
    615 		return 0;
    616 	default:
    617 		return EINVAL;
    618 	}
    619 }
    620 
    621 /*
    622  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    623  *
    624  * In order to avoid unnecessary contention on the interlocking mutex,
    625  * we defer waking up threads until we unlock the mutex.  The threads will
    626  * be woken up when the calling thread (self) releases the first mutex with
    627  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    628  * even if it isn't.
    629  */
    630 
    631 void
    632 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    633 {
    634 
    635 	if (__predict_false(ptm == NULL ||
    636 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    637 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    638 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    639 	    	self->pt_nwaiters = 0;
    640 	} else {
    641 		atomic_or_ulong((volatile unsigned long *)
    642 		    (uintptr_t)&ptm->ptm_owner,
    643 		    (unsigned long)MUTEX_DEFERRED_BIT);
    644 	}
    645 }
    646 
    647 int
    648 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    649 {
    650 
    651 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    652 }
    653 
    654 pthread_t
    655 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    656 {
    657 
    658 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    659 }
    660