Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.22.1
      1 /*	$NetBSD: pthread_mutex.c,v 1.51.22.1 2013/04/29 01:50:18 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.22.1 2013/04/29 01:50:18 riz Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <time.h>
     60 #include <string.h>
     61 #include <stdio.h>
     62 
     63 #include "pthread.h"
     64 #include "pthread_int.h"
     65 #include "reentrant.h"
     66 
     67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70 #define	MUTEX_THREAD			((uintptr_t)-16L)
     71 
     72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #if __GNUC_PREREQ__(3, 0)
     77 #define	NOINLINE		__attribute ((noinline))
     78 #else
     79 #define	NOINLINE		/* nothing */
     80 #endif
     81 
     82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85 static void	pthread__mutex_pause(void);
     86 
     87 int		_pthread_mutex_held_np(pthread_mutex_t *);
     88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89 
     90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92 
     93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98 
     99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102 
    103 __strong_alias(__libc_thr_once,pthread_once)
    104 
    105 int
    106 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    107 {
    108 	intptr_t type;
    109 
    110 	if (__predict_false(__uselibcstub))
    111 		return __libc_mutex_init_stub(ptm, attr);
    112 
    113 	if (attr == NULL)
    114 		type = PTHREAD_MUTEX_NORMAL;
    115 	else
    116 		type = (intptr_t)attr->ptma_private;
    117 
    118 	switch (type) {
    119 	case PTHREAD_MUTEX_ERRORCHECK:
    120 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    121 		ptm->ptm_owner = NULL;
    122 		break;
    123 	case PTHREAD_MUTEX_RECURSIVE:
    124 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    125 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    126 		break;
    127 	default:
    128 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    129 		ptm->ptm_owner = NULL;
    130 		break;
    131 	}
    132 
    133 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    134 	ptm->ptm_waiters = NULL;
    135 	ptm->ptm_recursed = 0;
    136 
    137 	return 0;
    138 }
    139 
    140 
    141 int
    142 pthread_mutex_destroy(pthread_mutex_t *ptm)
    143 {
    144 
    145 	if (__predict_false(__uselibcstub))
    146 		return __libc_mutex_destroy_stub(ptm);
    147 
    148 	pthread__error(EINVAL, "Invalid mutex",
    149 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    150 	pthread__error(EBUSY, "Destroying locked mutex",
    151 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    152 
    153 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    154 	return 0;
    155 }
    156 
    157 int
    158 pthread_mutex_lock(pthread_mutex_t *ptm)
    159 {
    160 	pthread_t self;
    161 	void *val;
    162 
    163 	if (__predict_false(__uselibcstub))
    164 		return __libc_mutex_lock_stub(ptm);
    165 
    166 	self = pthread__self();
    167 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    168 	if (__predict_true(val == NULL)) {
    169 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    170 		membar_enter();
    171 #endif
    172 		return 0;
    173 	}
    174 	return pthread__mutex_lock_slow(ptm);
    175 }
    176 
    177 /* We want function call overhead. */
    178 NOINLINE static void
    179 pthread__mutex_pause(void)
    180 {
    181 
    182 	pthread__smt_pause();
    183 }
    184 
    185 /*
    186  * Spin while the holder is running.  'lwpctl' gives us the true
    187  * status of the thread.  pt_blocking is set by libpthread in order
    188  * to cut out system call and kernel spinlock overhead on remote CPUs
    189  * (could represent many thousands of clock cycles).  pt_blocking also
    190  * makes this thread yield if the target is calling sched_yield().
    191  */
    192 NOINLINE static void *
    193 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    194 {
    195 	pthread_t thread;
    196 	unsigned int count, i;
    197 
    198 	for (count = 2;; owner = ptm->ptm_owner) {
    199 		thread = (pthread_t)MUTEX_OWNER(owner);
    200 		if (thread == NULL)
    201 			break;
    202 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    203 		    thread->pt_blocking)
    204 			break;
    205 		if (count < 128)
    206 			count += count;
    207 		for (i = count; i != 0; i--)
    208 			pthread__mutex_pause();
    209 	}
    210 
    211 	return owner;
    212 }
    213 
    214 NOINLINE static int
    215 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    216 {
    217 	void *waiters, *new, *owner, *next;
    218 	pthread_t self;
    219 
    220 	pthread__error(EINVAL, "Invalid mutex",
    221 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    222 
    223 	owner = ptm->ptm_owner;
    224 	self = pthread__self();
    225 
    226 	/* Recursive or errorcheck? */
    227 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    228 		if (MUTEX_RECURSIVE(owner)) {
    229 			if (ptm->ptm_recursed == INT_MAX)
    230 				return EAGAIN;
    231 			ptm->ptm_recursed++;
    232 			return 0;
    233 		}
    234 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    235 			return EDEADLK;
    236 	}
    237 
    238 	for (;; owner = ptm->ptm_owner) {
    239 		/* Spin while the owner is running. */
    240 		owner = pthread__mutex_spin(ptm, owner);
    241 
    242 		/* If it has become free, try to acquire it again. */
    243 		if (MUTEX_OWNER(owner) == 0) {
    244 			do {
    245 				new = (void *)
    246 				    ((uintptr_t)self | (uintptr_t)owner);
    247 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    248 				    new);
    249 				if (next == owner) {
    250 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    251 					membar_enter();
    252 #endif
    253 					return 0;
    254 				}
    255 				owner = next;
    256 			} while (MUTEX_OWNER(owner) == 0);
    257 			/*
    258 			 * We have lost the race to acquire the mutex.
    259 			 * The new owner could be running on another
    260 			 * CPU, in which case we should spin and avoid
    261 			 * the overhead of blocking.
    262 			 */
    263 			continue;
    264 		}
    265 
    266 		/*
    267 		 * Nope, still held.  Add thread to the list of waiters.
    268 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    269 		 * are visible before we enter the waiters list.
    270 		 */
    271 		self->pt_mutexwait = 1;
    272 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    273 			self->pt_mutexnext = waiters;
    274 			membar_producer();
    275 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    276 			if (next == waiters)
    277 			    	break;
    278 		}
    279 
    280 		/*
    281 		 * Set the waiters bit and block.
    282 		 *
    283 		 * Note that the mutex can become unlocked before we set
    284 		 * the waiters bit.  If that happens it's not safe to sleep
    285 		 * as we may never be awoken: we must remove the current
    286 		 * thread from the waiters list and try again.
    287 		 *
    288 		 * Because we are doing this atomically, we can't remove
    289 		 * one waiter: we must remove all waiters and awken them,
    290 		 * then sleep in _lwp_park() until we have been awoken.
    291 		 *
    292 		 * Issue a memory barrier to ensure that we are reading
    293 		 * the value of ptm_owner/pt_mutexwait after we have entered
    294 		 * the waiters list (the CAS itself must be atomic).
    295 		 */
    296 		membar_consumer();
    297 		for (owner = ptm->ptm_owner;; owner = next) {
    298 			if (MUTEX_HAS_WAITERS(owner))
    299 				break;
    300 			if (MUTEX_OWNER(owner) == 0) {
    301 				pthread__mutex_wakeup(self, ptm);
    302 				break;
    303 			}
    304 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    305 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    306 			if (next == owner) {
    307 				/*
    308 				 * pthread_mutex_unlock() can do a
    309 				 * non-interlocked CAS.  We cannot
    310 				 * know if our attempt to set the
    311 				 * waiters bit has succeeded while
    312 				 * the holding thread is running.
    313 				 * There are many assumptions; see
    314 				 * sys/kern/kern_mutex.c for details.
    315 				 * In short, we must spin if we see
    316 				 * that the holder is running again.
    317 				 */
    318 				membar_sync();
    319 				next = pthread__mutex_spin(ptm, owner);
    320 			}
    321 		}
    322 
    323 		/*
    324 		 * We may have been awoken by the current thread above,
    325 		 * or will be awoken by the current holder of the mutex.
    326 		 * The key requirement is that we must not proceed until
    327 		 * told that we are no longer waiting (via pt_mutexwait
    328 		 * being set to zero).  Otherwise it is unsafe to re-enter
    329 		 * the thread onto the waiters list.
    330 		 */
    331 		while (self->pt_mutexwait) {
    332 			self->pt_blocking++;
    333 			(void)_lwp_park(NULL, self->pt_unpark,
    334 			    __UNVOLATILE(&ptm->ptm_waiters),
    335 			    __UNVOLATILE(&ptm->ptm_waiters));
    336 			self->pt_unpark = 0;
    337 			self->pt_blocking--;
    338 			membar_sync();
    339 		}
    340 	}
    341 }
    342 
    343 int
    344 pthread_mutex_trylock(pthread_mutex_t *ptm)
    345 {
    346 	pthread_t self;
    347 	void *val, *new, *next;
    348 
    349 	if (__predict_false(__uselibcstub))
    350 		return __libc_mutex_trylock_stub(ptm);
    351 
    352 	self = pthread__self();
    353 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    354 	if (__predict_true(val == NULL)) {
    355 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    356 		membar_enter();
    357 #endif
    358 		return 0;
    359 	}
    360 
    361 	if (MUTEX_RECURSIVE(val)) {
    362 		if (MUTEX_OWNER(val) == 0) {
    363 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    364 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    365 			if (__predict_true(next == val)) {
    366 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    367 				membar_enter();
    368 #endif
    369 				return 0;
    370 			}
    371 		}
    372 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    373 			if (ptm->ptm_recursed == INT_MAX)
    374 				return EAGAIN;
    375 			ptm->ptm_recursed++;
    376 			return 0;
    377 		}
    378 	}
    379 
    380 	return EBUSY;
    381 }
    382 
    383 int
    384 pthread_mutex_unlock(pthread_mutex_t *ptm)
    385 {
    386 	pthread_t self;
    387 	void *value;
    388 
    389 	if (__predict_false(__uselibcstub))
    390 		return __libc_mutex_unlock_stub(ptm);
    391 
    392 	/*
    393 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    394 	 * above and sys/kern/kern_mutex.c for details.
    395 	 */
    396 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    397 	membar_exit();
    398 #endif
    399 	self = pthread__self();
    400 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    401 	if (__predict_true(value == self))
    402 		return 0;
    403 	return pthread__mutex_unlock_slow(ptm);
    404 }
    405 
    406 NOINLINE static int
    407 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    408 {
    409 	pthread_t self, owner, new;
    410 	int weown, error, deferred;
    411 
    412 	pthread__error(EINVAL, "Invalid mutex",
    413 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    414 
    415 	self = pthread__self();
    416 	owner = ptm->ptm_owner;
    417 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    418 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    419 	error = 0;
    420 
    421 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    422 		if (!weown) {
    423 			error = EPERM;
    424 			new = owner;
    425 		} else {
    426 			new = NULL;
    427 		}
    428 	} else if (MUTEX_RECURSIVE(owner)) {
    429 		if (!weown) {
    430 			error = EPERM;
    431 			new = owner;
    432 		} else if (ptm->ptm_recursed) {
    433 			ptm->ptm_recursed--;
    434 			new = owner;
    435 		} else {
    436 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    437 		}
    438 	} else {
    439 		pthread__error(EPERM,
    440 		    "Unlocking unlocked mutex", (owner != NULL));
    441 		pthread__error(EPERM,
    442 		    "Unlocking mutex owned by another thread", weown);
    443 		new = NULL;
    444 	}
    445 
    446 	/*
    447 	 * Release the mutex.  If there appear to be waiters, then
    448 	 * wake them up.
    449 	 */
    450 	if (new != owner) {
    451 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    452 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    453 			pthread__mutex_wakeup(self, ptm);
    454 			return 0;
    455 		}
    456 	}
    457 
    458 	/*
    459 	 * There were no waiters, but we may have deferred waking
    460 	 * other threads until mutex unlock - we must wake them now.
    461 	 */
    462 	if (!deferred)
    463 		return error;
    464 
    465 	if (self->pt_nwaiters == 1) {
    466 		/*
    467 		 * If the calling thread is about to block, defer
    468 		 * unparking the target until _lwp_park() is called.
    469 		 */
    470 		if (self->pt_willpark && self->pt_unpark == 0) {
    471 			self->pt_unpark = self->pt_waiters[0];
    472 		} else {
    473 			(void)_lwp_unpark(self->pt_waiters[0],
    474 			    __UNVOLATILE(&ptm->ptm_waiters));
    475 		}
    476 	} else {
    477 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    478 		    __UNVOLATILE(&ptm->ptm_waiters));
    479 	}
    480 	self->pt_nwaiters = 0;
    481 
    482 	return error;
    483 }
    484 
    485 static void
    486 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    487 {
    488 	pthread_t thread, next;
    489 	ssize_t n, rv;
    490 
    491 	/*
    492 	 * Take ownership of the current set of waiters.  No
    493 	 * need for a memory barrier following this, all loads
    494 	 * are dependent upon 'thread'.
    495 	 */
    496 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    497 
    498 	for (;;) {
    499 		/*
    500 		 * Pull waiters from the queue and add to our list.
    501 		 * Use a memory barrier to ensure that we safely
    502 		 * read the value of pt_mutexnext before 'thread'
    503 		 * sees pt_mutexwait being cleared.
    504 		 */
    505 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    506 		    n < pthread__unpark_max && thread != NULL;
    507 		    thread = next) {
    508 		    	next = thread->pt_mutexnext;
    509 		    	if (thread != self) {
    510 				self->pt_waiters[n++] = thread->pt_lid;
    511 				membar_sync();
    512 			}
    513 			thread->pt_mutexwait = 0;
    514 			/* No longer safe to touch 'thread' */
    515 		}
    516 
    517 		switch (n) {
    518 		case 0:
    519 			return;
    520 		case 1:
    521 			/*
    522 			 * If the calling thread is about to block,
    523 			 * defer unparking the target until _lwp_park()
    524 			 * is called.
    525 			 */
    526 			if (self->pt_willpark && self->pt_unpark == 0) {
    527 				self->pt_unpark = self->pt_waiters[0];
    528 				return;
    529 			}
    530 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    531 			    __UNVOLATILE(&ptm->ptm_waiters));
    532 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    533 			    errno != ESRCH) {
    534 				pthread__errorfunc(__FILE__, __LINE__,
    535 				    __func__, "_lwp_unpark failed");
    536 			}
    537 			return;
    538 		default:
    539 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    540 			    __UNVOLATILE(&ptm->ptm_waiters));
    541 			if (rv != 0 && errno != EINTR) {
    542 				pthread__errorfunc(__FILE__, __LINE__,
    543 				    __func__, "_lwp_unpark_all failed");
    544 			}
    545 			break;
    546 		}
    547 	}
    548 }
    549 int
    550 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    551 {
    552 	if (__predict_false(__uselibcstub))
    553 		return __libc_mutexattr_init_stub(attr);
    554 
    555 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    556 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    557 	return 0;
    558 }
    559 
    560 int
    561 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    562 {
    563 	if (__predict_false(__uselibcstub))
    564 		return __libc_mutexattr_destroy_stub(attr);
    565 
    566 	pthread__error(EINVAL, "Invalid mutex attribute",
    567 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    568 
    569 	return 0;
    570 }
    571 
    572 
    573 int
    574 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    575 {
    576 	pthread__error(EINVAL, "Invalid mutex attribute",
    577 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    578 
    579 	*typep = (int)(intptr_t)attr->ptma_private;
    580 	return 0;
    581 }
    582 
    583 
    584 int
    585 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    586 {
    587 	if (__predict_false(__uselibcstub))
    588 		return __libc_mutexattr_settype_stub(attr, type);
    589 
    590 	pthread__error(EINVAL, "Invalid mutex attribute",
    591 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    592 
    593 	switch (type) {
    594 	case PTHREAD_MUTEX_NORMAL:
    595 	case PTHREAD_MUTEX_ERRORCHECK:
    596 	case PTHREAD_MUTEX_RECURSIVE:
    597 		attr->ptma_private = (void *)(intptr_t)type;
    598 		return 0;
    599 	default:
    600 		return EINVAL;
    601 	}
    602 }
    603 
    604 
    605 static void
    606 once_cleanup(void *closure)
    607 {
    608 
    609        pthread_mutex_unlock((pthread_mutex_t *)closure);
    610 }
    611 
    612 
    613 int
    614 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    615 {
    616 	if (__predict_false(__uselibcstub))
    617 		return __libc_thr_once_stub(once_control, routine);
    618 
    619 	if (once_control->pto_done == 0) {
    620 		pthread_mutex_lock(&once_control->pto_mutex);
    621 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    622 		if (once_control->pto_done == 0) {
    623 			routine();
    624 			once_control->pto_done = 1;
    625 		}
    626 		pthread_cleanup_pop(1);
    627 	}
    628 
    629 	return 0;
    630 }
    631 
    632 void
    633 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    634 {
    635 
    636 	if (__predict_false(ptm == NULL ||
    637 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    638 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    639 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    640 	    	self->pt_nwaiters = 0;
    641 	} else {
    642 		atomic_or_ulong((volatile unsigned long *)
    643 		    (uintptr_t)&ptm->ptm_owner,
    644 		    (unsigned long)MUTEX_DEFERRED_BIT);
    645 	}
    646 }
    647 
    648 int
    649 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    650 {
    651 
    652 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    653 }
    654 
    655 pthread_t
    656 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    657 {
    658 
    659 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    660 }
    661