Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.22.2
      1 /*	$NetBSD: pthread_mutex.c,v 1.51.22.2 2014/02/20 13:00:40 sborrill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.22.2 2014/02/20 13:00:40 sborrill Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <time.h>
     60 #include <string.h>
     61 #include <stdio.h>
     62 
     63 #include "pthread.h"
     64 #include "pthread_int.h"
     65 #include "reentrant.h"
     66 
     67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70 #define	MUTEX_THREAD			((uintptr_t)-16L)
     71 
     72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #if __GNUC_PREREQ__(3, 0)
     77 #define	NOINLINE		__attribute ((noinline))
     78 #else
     79 #define	NOINLINE		/* nothing */
     80 #endif
     81 
     82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85 static void	pthread__mutex_pause(void);
     86 
     87 int		_pthread_mutex_held_np(pthread_mutex_t *);
     88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89 
     90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92 
     93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98 
     99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102 
    103 __strong_alias(__libc_thr_once,pthread_once)
    104 
    105 int
    106 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    107 {
    108 	intptr_t type;
    109 
    110 	if (__predict_false(__uselibcstub))
    111 		return __libc_mutex_init_stub(ptm, attr);
    112 
    113 	if (attr == NULL)
    114 		type = PTHREAD_MUTEX_NORMAL;
    115 	else
    116 		type = (intptr_t)attr->ptma_private;
    117 
    118 	switch (type) {
    119 	case PTHREAD_MUTEX_ERRORCHECK:
    120 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    121 		ptm->ptm_owner = NULL;
    122 		break;
    123 	case PTHREAD_MUTEX_RECURSIVE:
    124 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    125 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    126 		break;
    127 	default:
    128 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    129 		ptm->ptm_owner = NULL;
    130 		break;
    131 	}
    132 
    133 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    134 	ptm->ptm_waiters = NULL;
    135 	ptm->ptm_recursed = 0;
    136 
    137 	return 0;
    138 }
    139 
    140 
    141 int
    142 pthread_mutex_destroy(pthread_mutex_t *ptm)
    143 {
    144 
    145 	if (__predict_false(__uselibcstub))
    146 		return __libc_mutex_destroy_stub(ptm);
    147 
    148 	pthread__error(EINVAL, "Invalid mutex",
    149 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    150 	pthread__error(EBUSY, "Destroying locked mutex",
    151 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    152 
    153 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    154 	return 0;
    155 }
    156 
    157 int
    158 pthread_mutex_lock(pthread_mutex_t *ptm)
    159 {
    160 	pthread_t self;
    161 	void *val;
    162 
    163 	if (__predict_false(__uselibcstub))
    164 		return __libc_mutex_lock_stub(ptm);
    165 
    166 	self = pthread__self();
    167 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    168 	if (__predict_true(val == NULL)) {
    169 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    170 		membar_enter();
    171 #endif
    172 		return 0;
    173 	}
    174 	return pthread__mutex_lock_slow(ptm);
    175 }
    176 
    177 /* We want function call overhead. */
    178 NOINLINE static void
    179 pthread__mutex_pause(void)
    180 {
    181 
    182 	pthread__smt_pause();
    183 }
    184 
    185 /*
    186  * Spin while the holder is running.  'lwpctl' gives us the true
    187  * status of the thread.  pt_blocking is set by libpthread in order
    188  * to cut out system call and kernel spinlock overhead on remote CPUs
    189  * (could represent many thousands of clock cycles).  pt_blocking also
    190  * makes this thread yield if the target is calling sched_yield().
    191  */
    192 NOINLINE static void *
    193 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    194 {
    195 	pthread_t thread;
    196 	unsigned int count, i;
    197 
    198 	for (count = 2;; owner = ptm->ptm_owner) {
    199 		thread = (pthread_t)MUTEX_OWNER(owner);
    200 		if (thread == NULL)
    201 			break;
    202 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    203 		    thread->pt_blocking)
    204 			break;
    205 		if (count < 128)
    206 			count += count;
    207 		for (i = count; i != 0; i--)
    208 			pthread__mutex_pause();
    209 	}
    210 
    211 	return owner;
    212 }
    213 
    214 NOINLINE static void
    215 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
    216 {
    217 	void *new, *owner;
    218 
    219 	/*
    220 	 * Note that the mutex can become unlocked before we set
    221 	 * the waiters bit.  If that happens it's not safe to sleep
    222 	 * as we may never be awoken: we must remove the current
    223 	 * thread from the waiters list and try again.
    224 	 *
    225 	 * Because we are doing this atomically, we can't remove
    226 	 * one waiter: we must remove all waiters and awken them,
    227 	 * then sleep in _lwp_park() until we have been awoken.
    228 	 *
    229 	 * Issue a memory barrier to ensure that we are reading
    230 	 * the value of ptm_owner/pt_mutexwait after we have entered
    231 	 * the waiters list (the CAS itself must be atomic).
    232 	 */
    233 again:
    234 	membar_consumer();
    235 	owner = ptm->ptm_owner;
    236 
    237 	if (MUTEX_OWNER(owner) == 0) {
    238 		pthread__mutex_wakeup(self, ptm);
    239 		return;
    240 	}
    241 	if (!MUTEX_HAS_WAITERS(owner)) {
    242 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    243 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
    244 			goto again;
    245 		}
    246 	}
    247 
    248 	/*
    249 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
    250 	 * We cannot know if the presence of the waiters bit is stable
    251 	 * while the holding thread is running.  There are many assumptions;
    252 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
    253 	 * we see that the holder is running again.
    254 	 */
    255 	membar_sync();
    256 	pthread__mutex_spin(ptm, owner);
    257 
    258 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
    259 		goto again;
    260 	}
    261 }
    262 
    263 NOINLINE static int
    264 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    265 {
    266 	void *waiters, *new, *owner, *next;
    267 	pthread_t self;
    268 	int serrno;
    269 
    270 	pthread__error(EINVAL, "Invalid mutex",
    271 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    272 
    273 	owner = ptm->ptm_owner;
    274 	self = pthread__self();
    275 
    276 	/* Recursive or errorcheck? */
    277 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    278 		if (MUTEX_RECURSIVE(owner)) {
    279 			if (ptm->ptm_recursed == INT_MAX)
    280 				return EAGAIN;
    281 			ptm->ptm_recursed++;
    282 			return 0;
    283 		}
    284 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    285 			return EDEADLK;
    286 	}
    287 
    288 	serrno = errno;
    289 	for (;; owner = ptm->ptm_owner) {
    290 		/* Spin while the owner is running. */
    291 		owner = pthread__mutex_spin(ptm, owner);
    292 
    293 		/* If it has become free, try to acquire it again. */
    294 		if (MUTEX_OWNER(owner) == 0) {
    295 			do {
    296 				new = (void *)
    297 				    ((uintptr_t)self | (uintptr_t)owner);
    298 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    299 				    new);
    300 				if (next == owner) {
    301 					errno = serrno;
    302 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    303 					membar_enter();
    304 #endif
    305 					return 0;
    306 				}
    307 				owner = next;
    308 			} while (MUTEX_OWNER(owner) == 0);
    309 			/*
    310 			 * We have lost the race to acquire the mutex.
    311 			 * The new owner could be running on another
    312 			 * CPU, in which case we should spin and avoid
    313 			 * the overhead of blocking.
    314 			 */
    315 			continue;
    316 		}
    317 
    318 		/*
    319 		 * Nope, still held.  Add thread to the list of waiters.
    320 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    321 		 * are visible before we enter the waiters list.
    322 		 */
    323 		self->pt_mutexwait = 1;
    324 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    325 			self->pt_mutexnext = waiters;
    326 			membar_producer();
    327 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    328 			if (next == waiters)
    329 			    	break;
    330 		}
    331 
    332 		/* Set the waiters bit and block. */
    333 		pthread__mutex_setwaiters(self, ptm);
    334 
    335 		/*
    336 		 * We may have been awoken by the current thread above,
    337 		 * or will be awoken by the current holder of the mutex.
    338 		 * The key requirement is that we must not proceed until
    339 		 * told that we are no longer waiting (via pt_mutexwait
    340 		 * being set to zero).  Otherwise it is unsafe to re-enter
    341 		 * the thread onto the waiters list.
    342 		 */
    343 		while (self->pt_mutexwait) {
    344 			self->pt_blocking++;
    345 			(void)_lwp_park(NULL, self->pt_unpark,
    346 			    __UNVOLATILE(&ptm->ptm_waiters),
    347 			    __UNVOLATILE(&ptm->ptm_waiters));
    348 			self->pt_unpark = 0;
    349 			self->pt_blocking--;
    350 			membar_sync();
    351 		}
    352 	}
    353 }
    354 
    355 int
    356 pthread_mutex_trylock(pthread_mutex_t *ptm)
    357 {
    358 	pthread_t self;
    359 	void *val, *new, *next;
    360 
    361 	if (__predict_false(__uselibcstub))
    362 		return __libc_mutex_trylock_stub(ptm);
    363 
    364 	self = pthread__self();
    365 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    366 	if (__predict_true(val == NULL)) {
    367 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    368 		membar_enter();
    369 #endif
    370 		return 0;
    371 	}
    372 
    373 	if (MUTEX_RECURSIVE(val)) {
    374 		if (MUTEX_OWNER(val) == 0) {
    375 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    376 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    377 			if (__predict_true(next == val)) {
    378 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    379 				membar_enter();
    380 #endif
    381 				return 0;
    382 			}
    383 		}
    384 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    385 			if (ptm->ptm_recursed == INT_MAX)
    386 				return EAGAIN;
    387 			ptm->ptm_recursed++;
    388 			return 0;
    389 		}
    390 	}
    391 
    392 	return EBUSY;
    393 }
    394 
    395 int
    396 pthread_mutex_unlock(pthread_mutex_t *ptm)
    397 {
    398 	pthread_t self;
    399 	void *value;
    400 
    401 	if (__predict_false(__uselibcstub))
    402 		return __libc_mutex_unlock_stub(ptm);
    403 
    404 	/*
    405 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    406 	 * above and sys/kern/kern_mutex.c for details.
    407 	 */
    408 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    409 	membar_exit();
    410 #endif
    411 	self = pthread__self();
    412 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    413 	if (__predict_true(value == self))
    414 		return 0;
    415 	return pthread__mutex_unlock_slow(ptm);
    416 }
    417 
    418 NOINLINE static int
    419 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    420 {
    421 	pthread_t self, owner, new;
    422 	int weown, error, deferred;
    423 
    424 	pthread__error(EINVAL, "Invalid mutex",
    425 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    426 
    427 	self = pthread__self();
    428 	owner = ptm->ptm_owner;
    429 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    430 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    431 	error = 0;
    432 
    433 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    434 		if (!weown) {
    435 			error = EPERM;
    436 			new = owner;
    437 		} else {
    438 			new = NULL;
    439 		}
    440 	} else if (MUTEX_RECURSIVE(owner)) {
    441 		if (!weown) {
    442 			error = EPERM;
    443 			new = owner;
    444 		} else if (ptm->ptm_recursed) {
    445 			ptm->ptm_recursed--;
    446 			new = owner;
    447 		} else {
    448 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    449 		}
    450 	} else {
    451 		pthread__error(EPERM,
    452 		    "Unlocking unlocked mutex", (owner != NULL));
    453 		pthread__error(EPERM,
    454 		    "Unlocking mutex owned by another thread", weown);
    455 		new = NULL;
    456 	}
    457 
    458 	/*
    459 	 * Release the mutex.  If there appear to be waiters, then
    460 	 * wake them up.
    461 	 */
    462 	if (new != owner) {
    463 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    464 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    465 			pthread__mutex_wakeup(self, ptm);
    466 			return 0;
    467 		}
    468 	}
    469 
    470 	/*
    471 	 * There were no waiters, but we may have deferred waking
    472 	 * other threads until mutex unlock - we must wake them now.
    473 	 */
    474 	if (!deferred)
    475 		return error;
    476 
    477 	if (self->pt_nwaiters == 1) {
    478 		/*
    479 		 * If the calling thread is about to block, defer
    480 		 * unparking the target until _lwp_park() is called.
    481 		 */
    482 		if (self->pt_willpark && self->pt_unpark == 0) {
    483 			self->pt_unpark = self->pt_waiters[0];
    484 		} else {
    485 			(void)_lwp_unpark(self->pt_waiters[0],
    486 			    __UNVOLATILE(&ptm->ptm_waiters));
    487 		}
    488 	} else {
    489 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    490 		    __UNVOLATILE(&ptm->ptm_waiters));
    491 	}
    492 	self->pt_nwaiters = 0;
    493 
    494 	return error;
    495 }
    496 
    497 static void
    498 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    499 {
    500 	pthread_t thread, next;
    501 	ssize_t n, rv;
    502 
    503 	/*
    504 	 * Take ownership of the current set of waiters.  No
    505 	 * need for a memory barrier following this, all loads
    506 	 * are dependent upon 'thread'.
    507 	 */
    508 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    509 
    510 	for (;;) {
    511 		/*
    512 		 * Pull waiters from the queue and add to our list.
    513 		 * Use a memory barrier to ensure that we safely
    514 		 * read the value of pt_mutexnext before 'thread'
    515 		 * sees pt_mutexwait being cleared.
    516 		 */
    517 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    518 		    n < pthread__unpark_max && thread != NULL;
    519 		    thread = next) {
    520 		    	next = thread->pt_mutexnext;
    521 		    	if (thread != self) {
    522 				self->pt_waiters[n++] = thread->pt_lid;
    523 				membar_sync();
    524 			}
    525 			thread->pt_mutexwait = 0;
    526 			/* No longer safe to touch 'thread' */
    527 		}
    528 
    529 		switch (n) {
    530 		case 0:
    531 			return;
    532 		case 1:
    533 			/*
    534 			 * If the calling thread is about to block,
    535 			 * defer unparking the target until _lwp_park()
    536 			 * is called.
    537 			 */
    538 			if (self->pt_willpark && self->pt_unpark == 0) {
    539 				self->pt_unpark = self->pt_waiters[0];
    540 				return;
    541 			}
    542 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    543 			    __UNVOLATILE(&ptm->ptm_waiters));
    544 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    545 			    errno != ESRCH) {
    546 				pthread__errorfunc(__FILE__, __LINE__,
    547 				    __func__, "_lwp_unpark failed");
    548 			}
    549 			return;
    550 		default:
    551 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    552 			    __UNVOLATILE(&ptm->ptm_waiters));
    553 			if (rv != 0 && errno != EINTR) {
    554 				pthread__errorfunc(__FILE__, __LINE__,
    555 				    __func__, "_lwp_unpark_all failed");
    556 			}
    557 			break;
    558 		}
    559 	}
    560 }
    561 int
    562 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    563 {
    564 	if (__predict_false(__uselibcstub))
    565 		return __libc_mutexattr_init_stub(attr);
    566 
    567 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    568 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    569 	return 0;
    570 }
    571 
    572 int
    573 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    574 {
    575 	if (__predict_false(__uselibcstub))
    576 		return __libc_mutexattr_destroy_stub(attr);
    577 
    578 	pthread__error(EINVAL, "Invalid mutex attribute",
    579 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    580 
    581 	return 0;
    582 }
    583 
    584 
    585 int
    586 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    587 {
    588 	pthread__error(EINVAL, "Invalid mutex attribute",
    589 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    590 
    591 	*typep = (int)(intptr_t)attr->ptma_private;
    592 	return 0;
    593 }
    594 
    595 
    596 int
    597 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    598 {
    599 	if (__predict_false(__uselibcstub))
    600 		return __libc_mutexattr_settype_stub(attr, type);
    601 
    602 	pthread__error(EINVAL, "Invalid mutex attribute",
    603 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    604 
    605 	switch (type) {
    606 	case PTHREAD_MUTEX_NORMAL:
    607 	case PTHREAD_MUTEX_ERRORCHECK:
    608 	case PTHREAD_MUTEX_RECURSIVE:
    609 		attr->ptma_private = (void *)(intptr_t)type;
    610 		return 0;
    611 	default:
    612 		return EINVAL;
    613 	}
    614 }
    615 
    616 
    617 static void
    618 once_cleanup(void *closure)
    619 {
    620 
    621        pthread_mutex_unlock((pthread_mutex_t *)closure);
    622 }
    623 
    624 
    625 int
    626 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    627 {
    628 	if (__predict_false(__uselibcstub))
    629 		return __libc_thr_once_stub(once_control, routine);
    630 
    631 	if (once_control->pto_done == 0) {
    632 		pthread_mutex_lock(&once_control->pto_mutex);
    633 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    634 		if (once_control->pto_done == 0) {
    635 			routine();
    636 			once_control->pto_done = 1;
    637 		}
    638 		pthread_cleanup_pop(1);
    639 	}
    640 
    641 	return 0;
    642 }
    643 
    644 void
    645 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    646 {
    647 
    648 	if (__predict_false(ptm == NULL ||
    649 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    650 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    651 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    652 	    	self->pt_nwaiters = 0;
    653 	} else {
    654 		atomic_or_ulong((volatile unsigned long *)
    655 		    (uintptr_t)&ptm->ptm_owner,
    656 		    (unsigned long)MUTEX_DEFERRED_BIT);
    657 	}
    658 }
    659 
    660 int
    661 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    662 {
    663 
    664 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    665 }
    666 
    667 pthread_t
    668 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    669 {
    670 
    671 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    672 }
    673