Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.4.1
      1 /*	$NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <string.h>
     60 #include <stdio.h>
     61 
     62 #include "pthread.h"
     63 #include "pthread_int.h"
     64 
     65 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     66 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     67 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     68 #define	MUTEX_THREAD			((uintptr_t)-16L)
     69 
     70 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     71 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     72 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     73 
     74 #if __GNUC_PREREQ__(3, 0)
     75 #define	NOINLINE		__attribute ((noinline))
     76 #else
     77 #define	NOINLINE		/* nothing */
     78 #endif
     79 
     80 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     81 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     82 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     83 static void	pthread__mutex_pause(void);
     84 
     85 int		_pthread_mutex_held_np(pthread_mutex_t *);
     86 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     87 
     88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     90 
     91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     96 
     97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    100 
    101 __strong_alias(__libc_thr_once,pthread_once)
    102 
    103 int
    104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105 {
    106 	intptr_t type;
    107 
    108 	if (attr == NULL)
    109 		type = PTHREAD_MUTEX_NORMAL;
    110 	else
    111 		type = (intptr_t)attr->ptma_private;
    112 
    113 	switch (type) {
    114 	case PTHREAD_MUTEX_ERRORCHECK:
    115 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    116 		ptm->ptm_owner = NULL;
    117 		break;
    118 	case PTHREAD_MUTEX_RECURSIVE:
    119 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    120 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    121 		break;
    122 	default:
    123 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    124 		ptm->ptm_owner = NULL;
    125 		break;
    126 	}
    127 
    128 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    129 	ptm->ptm_waiters = NULL;
    130 	ptm->ptm_recursed = 0;
    131 
    132 	return 0;
    133 }
    134 
    135 
    136 int
    137 pthread_mutex_destroy(pthread_mutex_t *ptm)
    138 {
    139 
    140 	pthread__error(EINVAL, "Invalid mutex",
    141 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    142 	pthread__error(EBUSY, "Destroying locked mutex",
    143 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    144 
    145 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    146 	return 0;
    147 }
    148 
    149 int
    150 pthread_mutex_lock(pthread_mutex_t *ptm)
    151 {
    152 	pthread_t self;
    153 	void *val;
    154 
    155 	self = pthread__self();
    156 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    157 	if (__predict_true(val == NULL)) {
    158 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    159 		membar_enter();
    160 #endif
    161 		return 0;
    162 	}
    163 	return pthread__mutex_lock_slow(ptm);
    164 }
    165 
    166 /* We want function call overhead. */
    167 NOINLINE static void
    168 pthread__mutex_pause(void)
    169 {
    170 
    171 	pthread__smt_pause();
    172 }
    173 
    174 /*
    175  * Spin while the holder is running.  'lwpctl' gives us the true
    176  * status of the thread.  pt_blocking is set by libpthread in order
    177  * to cut out system call and kernel spinlock overhead on remote CPUs
    178  * (could represent many thousands of clock cycles).  pt_blocking also
    179  * makes this thread yield if the target is calling sched_yield().
    180  */
    181 NOINLINE static void *
    182 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    183 {
    184 	pthread_t thread;
    185 	unsigned int count, i;
    186 
    187 	for (count = 2;; owner = ptm->ptm_owner) {
    188 		thread = (pthread_t)MUTEX_OWNER(owner);
    189 		if (thread == NULL)
    190 			break;
    191 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    192 		    thread->pt_blocking)
    193 			break;
    194 		if (count < 128)
    195 			count += count;
    196 		for (i = count; i != 0; i--)
    197 			pthread__mutex_pause();
    198 	}
    199 
    200 	return owner;
    201 }
    202 
    203 NOINLINE static void
    204 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
    205 {
    206 	void *new, *owner;
    207 
    208 	/*
    209 	 * Note that the mutex can become unlocked before we set
    210 	 * the waiters bit.  If that happens it's not safe to sleep
    211 	 * as we may never be awoken: we must remove the current
    212 	 * thread from the waiters list and try again.
    213 	 *
    214 	 * Because we are doing this atomically, we can't remove
    215 	 * one waiter: we must remove all waiters and awken them,
    216 	 * then sleep in _lwp_park() until we have been awoken.
    217 	 *
    218 	 * Issue a memory barrier to ensure that we are reading
    219 	 * the value of ptm_owner/pt_mutexwait after we have entered
    220 	 * the waiters list (the CAS itself must be atomic).
    221 	 */
    222 again:
    223 	membar_consumer();
    224 	owner = ptm->ptm_owner;
    225 
    226 	if (MUTEX_OWNER(owner) == 0) {
    227 		pthread__mutex_wakeup(self, ptm);
    228 		return;
    229 	}
    230 	if (!MUTEX_HAS_WAITERS(owner)) {
    231 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    232 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
    233 			goto again;
    234 		}
    235 	}
    236 
    237 	/*
    238 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
    239 	 * We cannot know if the presence of the waiters bit is stable
    240 	 * while the holding thread is running.  There are many assumptions;
    241 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
    242 	 * we see that the holder is running again.
    243 	 */
    244 	membar_sync();
    245 	pthread__mutex_spin(ptm, owner);
    246 
    247 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
    248 		goto again;
    249 	}
    250 }
    251 
    252 NOINLINE static int
    253 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    254 {
    255 	void *waiters, *new, *owner, *next;
    256 	pthread_t self;
    257 	int serrno;
    258 
    259 	pthread__error(EINVAL, "Invalid mutex",
    260 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    261 
    262 	owner = ptm->ptm_owner;
    263 	self = pthread__self();
    264 
    265 	/* Recursive or errorcheck? */
    266 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    267 		if (MUTEX_RECURSIVE(owner)) {
    268 			if (ptm->ptm_recursed == INT_MAX)
    269 				return EAGAIN;
    270 			ptm->ptm_recursed++;
    271 			return 0;
    272 		}
    273 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    274 			return EDEADLK;
    275 	}
    276 
    277 	serrno = errno;
    278 	for (;; owner = ptm->ptm_owner) {
    279 		/* Spin while the owner is running. */
    280 		owner = pthread__mutex_spin(ptm, owner);
    281 
    282 		/* If it has become free, try to acquire it again. */
    283 		if (MUTEX_OWNER(owner) == 0) {
    284 			do {
    285 				new = (void *)
    286 				    ((uintptr_t)self | (uintptr_t)owner);
    287 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    288 				    new);
    289 				if (next == owner) {
    290 					errno = serrno;
    291 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    292 					membar_enter();
    293 #endif
    294 					return 0;
    295 				}
    296 				owner = next;
    297 			} while (MUTEX_OWNER(owner) == 0);
    298 			/*
    299 			 * We have lost the race to acquire the mutex.
    300 			 * The new owner could be running on another
    301 			 * CPU, in which case we should spin and avoid
    302 			 * the overhead of blocking.
    303 			 */
    304 			continue;
    305 		}
    306 
    307 		/*
    308 		 * Nope, still held.  Add thread to the list of waiters.
    309 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    310 		 * are visible before we enter the waiters list.
    311 		 */
    312 		self->pt_mutexwait = 1;
    313 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    314 			self->pt_mutexnext = waiters;
    315 			membar_producer();
    316 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    317 			if (next == waiters)
    318 			    	break;
    319 		}
    320 
    321 		/* Set the waiters bit and block. */
    322 		pthread__mutex_setwaiters(self, ptm);
    323 
    324 		/*
    325 		 * We may have been awoken by the current thread above,
    326 		 * or will be awoken by the current holder of the mutex.
    327 		 * The key requirement is that we must not proceed until
    328 		 * told that we are no longer waiting (via pt_mutexwait
    329 		 * being set to zero).  Otherwise it is unsafe to re-enter
    330 		 * the thread onto the waiters list.
    331 		 */
    332 		while (self->pt_mutexwait) {
    333 			self->pt_blocking++;
    334 			(void)_lwp_park(NULL, self->pt_unpark,
    335 			    __UNVOLATILE(&ptm->ptm_waiters),
    336 			    __UNVOLATILE(&ptm->ptm_waiters));
    337 			self->pt_unpark = 0;
    338 			self->pt_blocking--;
    339 			membar_sync();
    340 		}
    341 	}
    342 }
    343 
    344 int
    345 pthread_mutex_trylock(pthread_mutex_t *ptm)
    346 {
    347 	pthread_t self;
    348 	void *val, *new, *next;
    349 
    350 	self = pthread__self();
    351 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    352 	if (__predict_true(val == NULL)) {
    353 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    354 		membar_enter();
    355 #endif
    356 		return 0;
    357 	}
    358 
    359 	if (MUTEX_RECURSIVE(val)) {
    360 		if (MUTEX_OWNER(val) == 0) {
    361 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    362 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    363 			if (__predict_true(next == val)) {
    364 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    365 				membar_enter();
    366 #endif
    367 				return 0;
    368 			}
    369 		}
    370 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    371 			if (ptm->ptm_recursed == INT_MAX)
    372 				return EAGAIN;
    373 			ptm->ptm_recursed++;
    374 			return 0;
    375 		}
    376 	}
    377 
    378 	return EBUSY;
    379 }
    380 
    381 int
    382 pthread_mutex_unlock(pthread_mutex_t *ptm)
    383 {
    384 	pthread_t self;
    385 	void *value;
    386 
    387 	/*
    388 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    389 	 * above and sys/kern/kern_mutex.c for details.
    390 	 */
    391 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    392 	membar_exit();
    393 #endif
    394 	self = pthread__self();
    395 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    396 	if (__predict_true(value == self))
    397 		return 0;
    398 	return pthread__mutex_unlock_slow(ptm);
    399 }
    400 
    401 NOINLINE static int
    402 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    403 {
    404 	pthread_t self, owner, new;
    405 	int weown, error, deferred;
    406 
    407 	pthread__error(EINVAL, "Invalid mutex",
    408 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    409 
    410 	self = pthread__self();
    411 	owner = ptm->ptm_owner;
    412 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    413 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    414 	error = 0;
    415 
    416 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    417 		if (!weown) {
    418 			error = EPERM;
    419 			new = owner;
    420 		} else {
    421 			new = NULL;
    422 		}
    423 	} else if (MUTEX_RECURSIVE(owner)) {
    424 		if (!weown) {
    425 			error = EPERM;
    426 			new = owner;
    427 		} else if (ptm->ptm_recursed) {
    428 			ptm->ptm_recursed--;
    429 			new = owner;
    430 		} else {
    431 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    432 		}
    433 	} else {
    434 		pthread__error(EPERM,
    435 		    "Unlocking unlocked mutex", (owner != NULL));
    436 		pthread__error(EPERM,
    437 		    "Unlocking mutex owned by another thread", weown);
    438 		new = NULL;
    439 	}
    440 
    441 	/*
    442 	 * Release the mutex.  If there appear to be waiters, then
    443 	 * wake them up.
    444 	 */
    445 	if (new != owner) {
    446 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    447 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    448 			pthread__mutex_wakeup(self, ptm);
    449 			return 0;
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * There were no waiters, but we may have deferred waking
    455 	 * other threads until mutex unlock - we must wake them now.
    456 	 */
    457 	if (!deferred)
    458 		return error;
    459 
    460 	if (self->pt_nwaiters == 1) {
    461 		/*
    462 		 * If the calling thread is about to block, defer
    463 		 * unparking the target until _lwp_park() is called.
    464 		 */
    465 		if (self->pt_willpark && self->pt_unpark == 0) {
    466 			self->pt_unpark = self->pt_waiters[0];
    467 		} else {
    468 			(void)_lwp_unpark(self->pt_waiters[0],
    469 			    __UNVOLATILE(&ptm->ptm_waiters));
    470 		}
    471 	} else {
    472 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    473 		    __UNVOLATILE(&ptm->ptm_waiters));
    474 	}
    475 	self->pt_nwaiters = 0;
    476 
    477 	return error;
    478 }
    479 
    480 static void
    481 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    482 {
    483 	pthread_t thread, next;
    484 	ssize_t n, rv;
    485 
    486 	/*
    487 	 * Take ownership of the current set of waiters.  No
    488 	 * need for a memory barrier following this, all loads
    489 	 * are dependent upon 'thread'.
    490 	 */
    491 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    492 
    493 	for (;;) {
    494 		/*
    495 		 * Pull waiters from the queue and add to our list.
    496 		 * Use a memory barrier to ensure that we safely
    497 		 * read the value of pt_mutexnext before 'thread'
    498 		 * sees pt_mutexwait being cleared.
    499 		 */
    500 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    501 		    n < pthread__unpark_max && thread != NULL;
    502 		    thread = next) {
    503 		    	next = thread->pt_mutexnext;
    504 		    	if (thread != self) {
    505 				self->pt_waiters[n++] = thread->pt_lid;
    506 				membar_sync();
    507 			}
    508 			thread->pt_mutexwait = 0;
    509 			/* No longer safe to touch 'thread' */
    510 		}
    511 
    512 		switch (n) {
    513 		case 0:
    514 			return;
    515 		case 1:
    516 			/*
    517 			 * If the calling thread is about to block,
    518 			 * defer unparking the target until _lwp_park()
    519 			 * is called.
    520 			 */
    521 			if (self->pt_willpark && self->pt_unpark == 0) {
    522 				self->pt_unpark = self->pt_waiters[0];
    523 				return;
    524 			}
    525 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    526 			    __UNVOLATILE(&ptm->ptm_waiters));
    527 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    528 			    errno != ESRCH) {
    529 				pthread__errorfunc(__FILE__, __LINE__,
    530 				    __func__, "_lwp_unpark failed");
    531 			}
    532 			return;
    533 		default:
    534 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    535 			    __UNVOLATILE(&ptm->ptm_waiters));
    536 			if (rv != 0 && errno != EINTR) {
    537 				pthread__errorfunc(__FILE__, __LINE__,
    538 				    __func__, "_lwp_unpark_all failed");
    539 			}
    540 			break;
    541 		}
    542 	}
    543 }
    544 int
    545 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    546 {
    547 
    548 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    549 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    550 	return 0;
    551 }
    552 
    553 int
    554 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    555 {
    556 
    557 	pthread__error(EINVAL, "Invalid mutex attribute",
    558 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    559 
    560 	return 0;
    561 }
    562 
    563 
    564 int
    565 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    566 {
    567 
    568 	pthread__error(EINVAL, "Invalid mutex attribute",
    569 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    570 
    571 	*typep = (int)(intptr_t)attr->ptma_private;
    572 	return 0;
    573 }
    574 
    575 
    576 int
    577 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    578 {
    579 
    580 	pthread__error(EINVAL, "Invalid mutex attribute",
    581 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    582 
    583 	switch (type) {
    584 	case PTHREAD_MUTEX_NORMAL:
    585 	case PTHREAD_MUTEX_ERRORCHECK:
    586 	case PTHREAD_MUTEX_RECURSIVE:
    587 		attr->ptma_private = (void *)(intptr_t)type;
    588 		return 0;
    589 	default:
    590 		return EINVAL;
    591 	}
    592 }
    593 
    594 
    595 static void
    596 once_cleanup(void *closure)
    597 {
    598 
    599        pthread_mutex_unlock((pthread_mutex_t *)closure);
    600 }
    601 
    602 
    603 int
    604 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    605 {
    606 
    607 	if (once_control->pto_done == 0) {
    608 		pthread_mutex_lock(&once_control->pto_mutex);
    609 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    610 		if (once_control->pto_done == 0) {
    611 			routine();
    612 			once_control->pto_done = 1;
    613 		}
    614 		pthread_cleanup_pop(1);
    615 	}
    616 
    617 	return 0;
    618 }
    619 
    620 void
    621 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    622 {
    623 
    624 	if (__predict_false(ptm == NULL ||
    625 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    626 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    627 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    628 	    	self->pt_nwaiters = 0;
    629 	} else {
    630 		atomic_or_ulong((volatile unsigned long *)
    631 		    (uintptr_t)&ptm->ptm_owner,
    632 		    (unsigned long)MUTEX_DEFERRED_BIT);
    633 	}
    634 }
    635 
    636 int
    637 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    638 {
    639 
    640 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    641 }
    642 
    643 pthread_t
    644 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    645 {
    646 
    647 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    648 }
    649