Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.6.2
      1 /*	$NetBSD: pthread_mutex.c,v 1.51.6.2 2008/08/02 19:46:31 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.51.6.2 2008/08/02 19:46:31 matt Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <string.h>
     60 #include <stdio.h>
     61 
     62 #include "pthread.h"
     63 #include "pthread_int.h"
     64 
     65 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     66 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     67 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     68 #define	MUTEX_THREAD			((uintptr_t)-16L)
     69 
     70 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     71 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     72 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     73 
     74 #if __GNUC_PREREQ__(3, 0)
     75 #define	NOINLINE		__attribute ((noinline))
     76 #else
     77 #define	NOINLINE		/* nothing */
     78 #endif
     79 
     80 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     81 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     82 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     83 static void	pthread__mutex_pause(void);
     84 
     85 int		_pthread_mutex_held_np(pthread_mutex_t *);
     86 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     87 
     88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     90 
     91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     96 
     97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    100 
    101 __strong_alias(__libc_thr_once,pthread_once)
    102 
    103 int
    104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105 {
    106 	intptr_t type;
    107 
    108 	if (attr == NULL)
    109 		type = PTHREAD_MUTEX_NORMAL;
    110 	else
    111 		type = (intptr_t)attr->ptma_private;
    112 
    113 	switch (type) {
    114 	case PTHREAD_MUTEX_ERRORCHECK:
    115 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    116 		ptm->ptm_owner = NULL;
    117 		break;
    118 	case PTHREAD_MUTEX_RECURSIVE:
    119 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    120 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    121 		break;
    122 	default:
    123 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    124 		ptm->ptm_owner = NULL;
    125 		break;
    126 	}
    127 
    128 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    129 	ptm->ptm_waiters = NULL;
    130 	ptm->ptm_recursed = 0;
    131 
    132 	return 0;
    133 }
    134 
    135 
    136 int
    137 pthread_mutex_destroy(pthread_mutex_t *ptm)
    138 {
    139 
    140 	pthread__error(EINVAL, "Invalid mutex",
    141 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    142 	pthread__error(EBUSY, "Destroying locked mutex",
    143 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    144 
    145 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    146 	return 0;
    147 }
    148 
    149 int
    150 pthread_mutex_lock(pthread_mutex_t *ptm)
    151 {
    152 	pthread_t self;
    153 	void *val;
    154 
    155 	self = pthread__self();
    156 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    157 	if (__predict_true(val == NULL)) {
    158 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    159 		membar_enter();
    160 #endif
    161 		return 0;
    162 	}
    163 	return pthread__mutex_lock_slow(ptm);
    164 }
    165 
    166 /* We want function call overhead. */
    167 NOINLINE static void
    168 pthread__mutex_pause(void)
    169 {
    170 
    171 	pthread__smt_pause();
    172 }
    173 
    174 /*
    175  * Spin while the holder is running.  'lwpctl' gives us the true
    176  * status of the thread.  pt_blocking is set by libpthread in order
    177  * to cut out system call and kernel spinlock overhead on remote CPUs
    178  * (could represent many thousands of clock cycles).  pt_blocking also
    179  * makes this thread yield if the target is calling sched_yield().
    180  */
    181 NOINLINE static void *
    182 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    183 {
    184 	pthread_t thread;
    185 	unsigned int count, i;
    186 
    187 	for (count = 2;; owner = ptm->ptm_owner) {
    188 		thread = (pthread_t)MUTEX_OWNER(owner);
    189 		if (thread == NULL)
    190 			break;
    191 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    192 		    thread->pt_blocking)
    193 			break;
    194 		if (count < 128)
    195 			count += count;
    196 		for (i = count; i != 0; i--)
    197 			pthread__mutex_pause();
    198 	}
    199 
    200 	return owner;
    201 }
    202 
    203 NOINLINE static int
    204 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    205 {
    206 	void *waiters, *new, *owner, *next;
    207 	pthread_t self;
    208 
    209 	pthread__error(EINVAL, "Invalid mutex",
    210 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    211 
    212 	owner = ptm->ptm_owner;
    213 	self = pthread__self();
    214 
    215 	/* Recursive or errorcheck? */
    216 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    217 		if (MUTEX_RECURSIVE(owner)) {
    218 			if (ptm->ptm_recursed == INT_MAX)
    219 				return EAGAIN;
    220 			ptm->ptm_recursed++;
    221 			return 0;
    222 		}
    223 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    224 			return EDEADLK;
    225 	}
    226 
    227 	for (;; owner = ptm->ptm_owner) {
    228 		/* Spin while the owner is running. */
    229 		owner = pthread__mutex_spin(ptm, owner);
    230 
    231 		/* If it has become free, try to acquire it again. */
    232 		if (MUTEX_OWNER(owner) == 0) {
    233 			do {
    234 				new = (void *)
    235 				    ((uintptr_t)self | (uintptr_t)owner);
    236 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    237 				    new);
    238 				if (next == owner) {
    239 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    240 					membar_enter();
    241 #endif
    242 					return 0;
    243 				}
    244 				owner = next;
    245 			} while (MUTEX_OWNER(owner) == 0);
    246 			/*
    247 			 * We have lost the race to acquire the mutex.
    248 			 * The new owner could be running on another
    249 			 * CPU, in which case we should spin and avoid
    250 			 * the overhead of blocking.
    251 			 */
    252 			continue;
    253 		}
    254 
    255 		/*
    256 		 * Nope, still held.  Add thread to the list of waiters.
    257 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    258 		 * are visible before we enter the waiters list.
    259 		 */
    260 		self->pt_mutexwait = 1;
    261 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    262 			self->pt_mutexnext = waiters;
    263 			membar_producer();
    264 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    265 			if (next == waiters)
    266 			    	break;
    267 		}
    268 
    269 		/*
    270 		 * Set the waiters bit and block.
    271 		 *
    272 		 * Note that the mutex can become unlocked before we set
    273 		 * the waiters bit.  If that happens it's not safe to sleep
    274 		 * as we may never be awoken: we must remove the current
    275 		 * thread from the waiters list and try again.
    276 		 *
    277 		 * Because we are doing this atomically, we can't remove
    278 		 * one waiter: we must remove all waiters and awken them,
    279 		 * then sleep in _lwp_park() until we have been awoken.
    280 		 *
    281 		 * Issue a memory barrier to ensure that we are reading
    282 		 * the value of ptm_owner/pt_mutexwait after we have entered
    283 		 * the waiters list (the CAS itself must be atomic).
    284 		 */
    285 		membar_consumer();
    286 		for (owner = ptm->ptm_owner;; owner = next) {
    287 			if (MUTEX_HAS_WAITERS(owner))
    288 				break;
    289 			if (MUTEX_OWNER(owner) == 0) {
    290 				pthread__mutex_wakeup(self, ptm);
    291 				break;
    292 			}
    293 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    294 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    295 			if (next == owner) {
    296 				/*
    297 				 * pthread_mutex_unlock() can do a
    298 				 * non-interlocked CAS.  We cannot
    299 				 * know if our attempt to set the
    300 				 * waiters bit has succeeded while
    301 				 * the holding thread is running.
    302 				 * There are many assumptions; see
    303 				 * sys/kern/kern_mutex.c for details.
    304 				 * In short, we must spin if we see
    305 				 * that the holder is running again.
    306 				 */
    307 				membar_sync();
    308 				next = pthread__mutex_spin(ptm, owner);
    309 			}
    310 		}
    311 
    312 		/*
    313 		 * We may have been awoken by the current thread above,
    314 		 * or will be awoken by the current holder of the mutex.
    315 		 * The key requirement is that we must not proceed until
    316 		 * told that we are no longer waiting (via pt_mutexwait
    317 		 * being set to zero).  Otherwise it is unsafe to re-enter
    318 		 * the thread onto the waiters list.
    319 		 */
    320 		while (self->pt_mutexwait) {
    321 			self->pt_blocking++;
    322 			(void)_lwp_park(NULL, self->pt_unpark,
    323 			    __UNVOLATILE(&ptm->ptm_waiters),
    324 			    __UNVOLATILE(&ptm->ptm_waiters));
    325 			self->pt_unpark = 0;
    326 			self->pt_blocking--;
    327 			membar_sync();
    328 		}
    329 	}
    330 }
    331 
    332 int
    333 pthread_mutex_trylock(pthread_mutex_t *ptm)
    334 {
    335 	pthread_t self;
    336 	void *val, *new, *next;
    337 
    338 	self = pthread__self();
    339 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    340 	if (__predict_true(val == NULL)) {
    341 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    342 		membar_enter();
    343 #endif
    344 		return 0;
    345 	}
    346 
    347 	if (MUTEX_RECURSIVE(val)) {
    348 		if (MUTEX_OWNER(val) == 0) {
    349 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    350 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    351 			if (__predict_true(next == val)) {
    352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    353 				membar_enter();
    354 #endif
    355 				return 0;
    356 			}
    357 		}
    358 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    359 			if (ptm->ptm_recursed == INT_MAX)
    360 				return EAGAIN;
    361 			ptm->ptm_recursed++;
    362 			return 0;
    363 		}
    364 	}
    365 
    366 	return EBUSY;
    367 }
    368 
    369 int
    370 pthread_mutex_unlock(pthread_mutex_t *ptm)
    371 {
    372 	pthread_t self;
    373 	void *value;
    374 
    375 	/*
    376 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    377 	 * above and sys/kern/kern_mutex.c for details.
    378 	 */
    379 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    380 	membar_exit();
    381 #endif
    382 	self = pthread__self();
    383 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    384 	if (__predict_true(value == self))
    385 		return 0;
    386 	return pthread__mutex_unlock_slow(ptm);
    387 }
    388 
    389 NOINLINE static int
    390 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    391 {
    392 	pthread_t self, owner, new;
    393 	int weown, error, deferred;
    394 
    395 	pthread__error(EINVAL, "Invalid mutex",
    396 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    397 
    398 	self = pthread__self();
    399 	owner = ptm->ptm_owner;
    400 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    401 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    402 	error = 0;
    403 
    404 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    405 		if (!weown) {
    406 			error = EPERM;
    407 			new = owner;
    408 		} else {
    409 			new = NULL;
    410 		}
    411 	} else if (MUTEX_RECURSIVE(owner)) {
    412 		if (!weown) {
    413 			error = EPERM;
    414 			new = owner;
    415 		} else if (ptm->ptm_recursed) {
    416 			ptm->ptm_recursed--;
    417 			new = owner;
    418 		} else {
    419 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    420 		}
    421 	} else {
    422 		pthread__error(EPERM,
    423 		    "Unlocking unlocked mutex", (owner != NULL));
    424 		pthread__error(EPERM,
    425 		    "Unlocking mutex owned by another thread", weown);
    426 		new = NULL;
    427 	}
    428 
    429 	/*
    430 	 * Release the mutex.  If there appear to be waiters, then
    431 	 * wake them up.
    432 	 */
    433 	if (new != owner) {
    434 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    435 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    436 			pthread__mutex_wakeup(self, ptm);
    437 			return 0;
    438 		}
    439 	}
    440 
    441 	/*
    442 	 * There were no waiters, but we may have deferred waking
    443 	 * other threads until mutex unlock - we must wake them now.
    444 	 */
    445 	if (!deferred)
    446 		return error;
    447 
    448 	if (self->pt_nwaiters == 1) {
    449 		/*
    450 		 * If the calling thread is about to block, defer
    451 		 * unparking the target until _lwp_park() is called.
    452 		 */
    453 		if (self->pt_willpark && self->pt_unpark == 0) {
    454 			self->pt_unpark = self->pt_waiters[0];
    455 		} else {
    456 			(void)_lwp_unpark(self->pt_waiters[0],
    457 			    __UNVOLATILE(&ptm->ptm_waiters));
    458 		}
    459 	} else {
    460 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    461 		    __UNVOLATILE(&ptm->ptm_waiters));
    462 	}
    463 	self->pt_nwaiters = 0;
    464 
    465 	return error;
    466 }
    467 
    468 static void
    469 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    470 {
    471 	pthread_t thread, next;
    472 	ssize_t n, rv;
    473 
    474 	/*
    475 	 * Take ownership of the current set of waiters.  No
    476 	 * need for a memory barrier following this, all loads
    477 	 * are dependent upon 'thread'.
    478 	 */
    479 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    480 
    481 	for (;;) {
    482 		/*
    483 		 * Pull waiters from the queue and add to our list.
    484 		 * Use a memory barrier to ensure that we safely
    485 		 * read the value of pt_mutexnext before 'thread'
    486 		 * sees pt_mutexwait being cleared.
    487 		 */
    488 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    489 		    n < pthread__unpark_max && thread != NULL;
    490 		    thread = next) {
    491 		    	next = thread->pt_mutexnext;
    492 		    	if (thread != self) {
    493 				self->pt_waiters[n++] = thread->pt_lid;
    494 				membar_sync();
    495 			}
    496 			thread->pt_mutexwait = 0;
    497 			/* No longer safe to touch 'thread' */
    498 		}
    499 
    500 		switch (n) {
    501 		case 0:
    502 			return;
    503 		case 1:
    504 			/*
    505 			 * If the calling thread is about to block,
    506 			 * defer unparking the target until _lwp_park()
    507 			 * is called.
    508 			 */
    509 			if (self->pt_willpark && self->pt_unpark == 0) {
    510 				self->pt_unpark = self->pt_waiters[0];
    511 				return;
    512 			}
    513 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    514 			    __UNVOLATILE(&ptm->ptm_waiters));
    515 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    516 			    errno != ESRCH) {
    517 				pthread__errorfunc(__FILE__, __LINE__,
    518 				    __func__, "_lwp_unpark failed");
    519 			}
    520 			return;
    521 		default:
    522 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    523 			    __UNVOLATILE(&ptm->ptm_waiters));
    524 			if (rv != 0 && errno != EINTR) {
    525 				pthread__errorfunc(__FILE__, __LINE__,
    526 				    __func__, "_lwp_unpark_all failed");
    527 			}
    528 			break;
    529 		}
    530 	}
    531 }
    532 int
    533 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    534 {
    535 
    536 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    537 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    538 	return 0;
    539 }
    540 
    541 int
    542 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    543 {
    544 
    545 	pthread__error(EINVAL, "Invalid mutex attribute",
    546 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    547 
    548 	return 0;
    549 }
    550 
    551 
    552 int
    553 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    554 {
    555 
    556 	pthread__error(EINVAL, "Invalid mutex attribute",
    557 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    558 
    559 	*typep = (int)(intptr_t)attr->ptma_private;
    560 	return 0;
    561 }
    562 
    563 
    564 int
    565 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    566 {
    567 
    568 	pthread__error(EINVAL, "Invalid mutex attribute",
    569 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    570 
    571 	switch (type) {
    572 	case PTHREAD_MUTEX_NORMAL:
    573 	case PTHREAD_MUTEX_ERRORCHECK:
    574 	case PTHREAD_MUTEX_RECURSIVE:
    575 		attr->ptma_private = (void *)(intptr_t)type;
    576 		return 0;
    577 	default:
    578 		return EINVAL;
    579 	}
    580 }
    581 
    582 
    583 static void
    584 once_cleanup(void *closure)
    585 {
    586 
    587        pthread_mutex_unlock((pthread_mutex_t *)closure);
    588 }
    589 
    590 
    591 int
    592 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    593 {
    594 
    595 	if (once_control->pto_done == 0) {
    596 		pthread_mutex_lock(&once_control->pto_mutex);
    597 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    598 		if (once_control->pto_done == 0) {
    599 			routine();
    600 			once_control->pto_done = 1;
    601 		}
    602 		pthread_cleanup_pop(1);
    603 	}
    604 
    605 	return 0;
    606 }
    607 
    608 void
    609 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    610 {
    611 
    612 	if (__predict_false(ptm == NULL ||
    613 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    614 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    615 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    616 	    	self->pt_nwaiters = 0;
    617 	} else {
    618 		atomic_or_ulong((volatile unsigned long *)
    619 		    (uintptr_t)&ptm->ptm_owner,
    620 		    (unsigned long)MUTEX_DEFERRED_BIT);
    621 	}
    622 }
    623 
    624 int
    625 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    626 {
    627 
    628 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    629 }
    630 
    631 pthread_t
    632 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    633 {
    634 
    635 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    636 }
    637