Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.55
      1 /*	$NetBSD: pthread_mutex.c,v 1.55 2013/03/06 11:31:34 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.55 2013/03/06 11:31:34 yamt Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <string.h>
     60 #include <stdio.h>
     61 
     62 #include "pthread.h"
     63 #include "pthread_int.h"
     64 
     65 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     66 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     67 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     68 #define	MUTEX_THREAD			((uintptr_t)-16L)
     69 
     70 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     71 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     72 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     73 
     74 #if __GNUC_PREREQ__(3, 0)
     75 #define	NOINLINE		__attribute ((noinline))
     76 #else
     77 #define	NOINLINE		/* nothing */
     78 #endif
     79 
     80 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     81 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     82 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     83 static void	pthread__mutex_pause(void);
     84 
     85 int		_pthread_mutex_held_np(pthread_mutex_t *);
     86 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     87 
     88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     90 
     91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     96 
     97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    100 
    101 int
    102 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    103 {
    104 	intptr_t type;
    105 
    106 	if (attr == NULL)
    107 		type = PTHREAD_MUTEX_NORMAL;
    108 	else
    109 		type = (intptr_t)attr->ptma_private;
    110 
    111 	switch (type) {
    112 	case PTHREAD_MUTEX_ERRORCHECK:
    113 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    114 		ptm->ptm_owner = NULL;
    115 		break;
    116 	case PTHREAD_MUTEX_RECURSIVE:
    117 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    118 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    119 		break;
    120 	default:
    121 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    122 		ptm->ptm_owner = NULL;
    123 		break;
    124 	}
    125 
    126 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    127 	ptm->ptm_waiters = NULL;
    128 	ptm->ptm_recursed = 0;
    129 
    130 	return 0;
    131 }
    132 
    133 int
    134 pthread_mutex_destroy(pthread_mutex_t *ptm)
    135 {
    136 
    137 	pthread__error(EINVAL, "Invalid mutex",
    138 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    139 	pthread__error(EBUSY, "Destroying locked mutex",
    140 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    141 
    142 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    143 	return 0;
    144 }
    145 
    146 int
    147 pthread_mutex_lock(pthread_mutex_t *ptm)
    148 {
    149 	pthread_t self;
    150 	void *val;
    151 
    152 	self = pthread__self();
    153 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    154 	if (__predict_true(val == NULL)) {
    155 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    156 		membar_enter();
    157 #endif
    158 		return 0;
    159 	}
    160 	return pthread__mutex_lock_slow(ptm);
    161 }
    162 
    163 /* We want function call overhead. */
    164 NOINLINE static void
    165 pthread__mutex_pause(void)
    166 {
    167 
    168 	pthread__smt_pause();
    169 }
    170 
    171 /*
    172  * Spin while the holder is running.  'lwpctl' gives us the true
    173  * status of the thread.  pt_blocking is set by libpthread in order
    174  * to cut out system call and kernel spinlock overhead on remote CPUs
    175  * (could represent many thousands of clock cycles).  pt_blocking also
    176  * makes this thread yield if the target is calling sched_yield().
    177  */
    178 NOINLINE static void *
    179 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    180 {
    181 	pthread_t thread;
    182 	unsigned int count, i;
    183 
    184 	for (count = 2;; owner = ptm->ptm_owner) {
    185 		thread = (pthread_t)MUTEX_OWNER(owner);
    186 		if (thread == NULL)
    187 			break;
    188 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    189 		    thread->pt_blocking)
    190 			break;
    191 		if (count < 128)
    192 			count += count;
    193 		for (i = count; i != 0; i--)
    194 			pthread__mutex_pause();
    195 	}
    196 
    197 	return owner;
    198 }
    199 
    200 NOINLINE static int
    201 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    202 {
    203 	void *waiters, *new, *owner, *next;
    204 	pthread_t self;
    205 
    206 	pthread__error(EINVAL, "Invalid mutex",
    207 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    208 
    209 	owner = ptm->ptm_owner;
    210 	self = pthread__self();
    211 
    212 	/* Recursive or errorcheck? */
    213 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    214 		if (MUTEX_RECURSIVE(owner)) {
    215 			if (ptm->ptm_recursed == INT_MAX)
    216 				return EAGAIN;
    217 			ptm->ptm_recursed++;
    218 			return 0;
    219 		}
    220 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    221 			return EDEADLK;
    222 	}
    223 
    224 	for (;; owner = ptm->ptm_owner) {
    225 		/* Spin while the owner is running. */
    226 		owner = pthread__mutex_spin(ptm, owner);
    227 
    228 		/* If it has become free, try to acquire it again. */
    229 		if (MUTEX_OWNER(owner) == 0) {
    230 			do {
    231 				new = (void *)
    232 				    ((uintptr_t)self | (uintptr_t)owner);
    233 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    234 				    new);
    235 				if (next == owner) {
    236 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    237 					membar_enter();
    238 #endif
    239 					return 0;
    240 				}
    241 				owner = next;
    242 			} while (MUTEX_OWNER(owner) == 0);
    243 			/*
    244 			 * We have lost the race to acquire the mutex.
    245 			 * The new owner could be running on another
    246 			 * CPU, in which case we should spin and avoid
    247 			 * the overhead of blocking.
    248 			 */
    249 			continue;
    250 		}
    251 
    252 		/*
    253 		 * Nope, still held.  Add thread to the list of waiters.
    254 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    255 		 * are visible before we enter the waiters list.
    256 		 */
    257 		self->pt_mutexwait = 1;
    258 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    259 			self->pt_mutexnext = waiters;
    260 			membar_producer();
    261 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    262 			if (next == waiters)
    263 			    	break;
    264 		}
    265 
    266 		/*
    267 		 * Set the waiters bit and block.
    268 		 *
    269 		 * Note that the mutex can become unlocked before we set
    270 		 * the waiters bit.  If that happens it's not safe to sleep
    271 		 * as we may never be awoken: we must remove the current
    272 		 * thread from the waiters list and try again.
    273 		 *
    274 		 * Because we are doing this atomically, we can't remove
    275 		 * one waiter: we must remove all waiters and awken them,
    276 		 * then sleep in _lwp_park() until we have been awoken.
    277 		 *
    278 		 * Issue a memory barrier to ensure that we are reading
    279 		 * the value of ptm_owner/pt_mutexwait after we have entered
    280 		 * the waiters list (the CAS itself must be atomic).
    281 		 */
    282 		membar_consumer();
    283 		for (owner = ptm->ptm_owner;; owner = next) {
    284 			if (MUTEX_HAS_WAITERS(owner))
    285 				break;
    286 			if (MUTEX_OWNER(owner) == 0) {
    287 				pthread__mutex_wakeup(self, ptm);
    288 				break;
    289 			}
    290 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    291 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    292 			if (next == owner) {
    293 				/*
    294 				 * pthread_mutex_unlock() can do a
    295 				 * non-interlocked CAS.  We cannot
    296 				 * know if our attempt to set the
    297 				 * waiters bit has succeeded while
    298 				 * the holding thread is running.
    299 				 * There are many assumptions; see
    300 				 * sys/kern/kern_mutex.c for details.
    301 				 * In short, we must spin if we see
    302 				 * that the holder is running again.
    303 				 */
    304 				membar_sync();
    305 				next = pthread__mutex_spin(ptm, owner);
    306 			}
    307 		}
    308 
    309 		/*
    310 		 * We may have been awoken by the current thread above,
    311 		 * or will be awoken by the current holder of the mutex.
    312 		 * The key requirement is that we must not proceed until
    313 		 * told that we are no longer waiting (via pt_mutexwait
    314 		 * being set to zero).  Otherwise it is unsafe to re-enter
    315 		 * the thread onto the waiters list.
    316 		 */
    317 		while (self->pt_mutexwait) {
    318 			self->pt_blocking++;
    319 			(void)_lwp_park(NULL, self->pt_unpark,
    320 			    __UNVOLATILE(&ptm->ptm_waiters),
    321 			    __UNVOLATILE(&ptm->ptm_waiters));
    322 			self->pt_unpark = 0;
    323 			self->pt_blocking--;
    324 			membar_sync();
    325 		}
    326 	}
    327 }
    328 
    329 int
    330 pthread_mutex_trylock(pthread_mutex_t *ptm)
    331 {
    332 	pthread_t self;
    333 	void *val, *new, *next;
    334 
    335 	self = pthread__self();
    336 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    337 	if (__predict_true(val == NULL)) {
    338 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    339 		membar_enter();
    340 #endif
    341 		return 0;
    342 	}
    343 
    344 	if (MUTEX_RECURSIVE(val)) {
    345 		if (MUTEX_OWNER(val) == 0) {
    346 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    347 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    348 			if (__predict_true(next == val)) {
    349 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    350 				membar_enter();
    351 #endif
    352 				return 0;
    353 			}
    354 		}
    355 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    356 			if (ptm->ptm_recursed == INT_MAX)
    357 				return EAGAIN;
    358 			ptm->ptm_recursed++;
    359 			return 0;
    360 		}
    361 	}
    362 
    363 	return EBUSY;
    364 }
    365 
    366 int
    367 pthread_mutex_unlock(pthread_mutex_t *ptm)
    368 {
    369 	pthread_t self;
    370 	void *value;
    371 
    372 	/*
    373 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    374 	 * above and sys/kern/kern_mutex.c for details.
    375 	 */
    376 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    377 	membar_exit();
    378 #endif
    379 	self = pthread__self();
    380 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    381 	if (__predict_true(value == self)) {
    382 		pthread__smt_wake();
    383 		return 0;
    384 	}
    385 	return pthread__mutex_unlock_slow(ptm);
    386 }
    387 
    388 NOINLINE static int
    389 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    390 {
    391 	pthread_t self, owner, new;
    392 	int weown, error, deferred;
    393 
    394 	pthread__error(EINVAL, "Invalid mutex",
    395 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    396 
    397 	self = pthread__self();
    398 	owner = ptm->ptm_owner;
    399 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    400 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    401 	error = 0;
    402 
    403 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    404 		if (!weown) {
    405 			error = EPERM;
    406 			new = owner;
    407 		} else {
    408 			new = NULL;
    409 		}
    410 	} else if (MUTEX_RECURSIVE(owner)) {
    411 		if (!weown) {
    412 			error = EPERM;
    413 			new = owner;
    414 		} else if (ptm->ptm_recursed) {
    415 			ptm->ptm_recursed--;
    416 			new = owner;
    417 		} else {
    418 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    419 		}
    420 	} else {
    421 		pthread__error(EPERM,
    422 		    "Unlocking unlocked mutex", (owner != NULL));
    423 		pthread__error(EPERM,
    424 		    "Unlocking mutex owned by another thread", weown);
    425 		new = NULL;
    426 	}
    427 
    428 	/*
    429 	 * Release the mutex.  If there appear to be waiters, then
    430 	 * wake them up.
    431 	 */
    432 	if (new != owner) {
    433 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    434 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    435 			pthread__mutex_wakeup(self, ptm);
    436 			return 0;
    437 		}
    438 	}
    439 
    440 	/*
    441 	 * There were no waiters, but we may have deferred waking
    442 	 * other threads until mutex unlock - we must wake them now.
    443 	 */
    444 	if (!deferred)
    445 		return error;
    446 
    447 	if (self->pt_nwaiters == 1) {
    448 		/*
    449 		 * If the calling thread is about to block, defer
    450 		 * unparking the target until _lwp_park() is called.
    451 		 */
    452 		if (self->pt_willpark && self->pt_unpark == 0) {
    453 			self->pt_unpark = self->pt_waiters[0];
    454 		} else {
    455 			(void)_lwp_unpark(self->pt_waiters[0],
    456 			    __UNVOLATILE(&ptm->ptm_waiters));
    457 		}
    458 	} else {
    459 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    460 		    __UNVOLATILE(&ptm->ptm_waiters));
    461 	}
    462 	self->pt_nwaiters = 0;
    463 
    464 	return error;
    465 }
    466 
    467 /*
    468  * pthread__mutex_wakeup: unpark threads waiting for us
    469  *
    470  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    471  */
    472 
    473 static void
    474 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    475 {
    476 	pthread_t thread, next;
    477 	ssize_t n, rv;
    478 
    479 	/*
    480 	 * Take ownership of the current set of waiters.  No
    481 	 * need for a memory barrier following this, all loads
    482 	 * are dependent upon 'thread'.
    483 	 */
    484 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    485 	pthread__smt_wake();
    486 
    487 	for (;;) {
    488 		/*
    489 		 * Pull waiters from the queue and add to our list.
    490 		 * Use a memory barrier to ensure that we safely
    491 		 * read the value of pt_mutexnext before 'thread'
    492 		 * sees pt_mutexwait being cleared.
    493 		 */
    494 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    495 		    n < pthread__unpark_max && thread != NULL;
    496 		    thread = next) {
    497 		    	next = thread->pt_mutexnext;
    498 		    	if (thread != self) {
    499 				self->pt_waiters[n++] = thread->pt_lid;
    500 				membar_sync();
    501 			}
    502 			thread->pt_mutexwait = 0;
    503 			/* No longer safe to touch 'thread' */
    504 		}
    505 
    506 		switch (n) {
    507 		case 0:
    508 			return;
    509 		case 1:
    510 			/*
    511 			 * If the calling thread is about to block,
    512 			 * defer unparking the target until _lwp_park()
    513 			 * is called.
    514 			 */
    515 			if (self->pt_willpark && self->pt_unpark == 0) {
    516 				self->pt_unpark = self->pt_waiters[0];
    517 				return;
    518 			}
    519 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    520 			    __UNVOLATILE(&ptm->ptm_waiters));
    521 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    522 			    errno != ESRCH) {
    523 				pthread__errorfunc(__FILE__, __LINE__,
    524 				    __func__, "_lwp_unpark failed");
    525 			}
    526 			return;
    527 		default:
    528 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    529 			    __UNVOLATILE(&ptm->ptm_waiters));
    530 			if (rv != 0 && errno != EINTR) {
    531 				pthread__errorfunc(__FILE__, __LINE__,
    532 				    __func__, "_lwp_unpark_all failed");
    533 			}
    534 			break;
    535 		}
    536 	}
    537 }
    538 
    539 int
    540 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    541 {
    542 
    543 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    544 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    545 	return 0;
    546 }
    547 
    548 int
    549 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    550 {
    551 
    552 	pthread__error(EINVAL, "Invalid mutex attribute",
    553 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    554 
    555 	return 0;
    556 }
    557 
    558 int
    559 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    560 {
    561 
    562 	pthread__error(EINVAL, "Invalid mutex attribute",
    563 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    564 
    565 	*typep = (int)(intptr_t)attr->ptma_private;
    566 	return 0;
    567 }
    568 
    569 int
    570 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    571 {
    572 
    573 	pthread__error(EINVAL, "Invalid mutex attribute",
    574 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    575 
    576 	switch (type) {
    577 	case PTHREAD_MUTEX_NORMAL:
    578 	case PTHREAD_MUTEX_ERRORCHECK:
    579 	case PTHREAD_MUTEX_RECURSIVE:
    580 		attr->ptma_private = (void *)(intptr_t)type;
    581 		return 0;
    582 	default:
    583 		return EINVAL;
    584 	}
    585 }
    586 
    587 /*
    588  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    589  *
    590  * In order to avoid unnecessary contention on the interlocking mutex,
    591  * we defer waking up threads until we unlock the mutex.  The threads will
    592  * be woken up when the calling thread (self) releases the first mutex with
    593  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    594  * even if it isn't.
    595  */
    596 
    597 void
    598 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    599 {
    600 
    601 	if (__predict_false(ptm == NULL ||
    602 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    603 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    604 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    605 	    	self->pt_nwaiters = 0;
    606 	} else {
    607 		atomic_or_ulong((volatile unsigned long *)
    608 		    (uintptr_t)&ptm->ptm_owner,
    609 		    (unsigned long)MUTEX_DEFERRED_BIT);
    610 	}
    611 }
    612 
    613 int
    614 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    615 {
    616 
    617 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    618 }
    619 
    620 pthread_t
    621 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    622 {
    623 
    624 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    625 }
    626