Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.56
      1 /*	$NetBSD: pthread_mutex.c,v 1.56 2013/03/21 16:49:12 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.56 2013/03/21 16:49:12 christos Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <time.h>
     60 #include <string.h>
     61 #include <stdio.h>
     62 
     63 #include "pthread.h"
     64 #include "pthread_int.h"
     65 #include "reentrant.h"
     66 
     67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70 #define	MUTEX_THREAD			((uintptr_t)-16L)
     71 
     72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #if __GNUC_PREREQ__(3, 0)
     77 #define	NOINLINE		__attribute ((noinline))
     78 #else
     79 #define	NOINLINE		/* nothing */
     80 #endif
     81 
     82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85 static void	pthread__mutex_pause(void);
     86 
     87 int		_pthread_mutex_held_np(pthread_mutex_t *);
     88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89 
     90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92 
     93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98 
     99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102 
    103 int
    104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105 {
    106 	intptr_t type;
    107 
    108 	if (__predict_false(__uselibcstub))
    109 		return __libc_mutex_init_stub(ptm, attr);
    110 
    111 	if (attr == NULL)
    112 		type = PTHREAD_MUTEX_NORMAL;
    113 	else
    114 		type = (intptr_t)attr->ptma_private;
    115 
    116 	switch (type) {
    117 	case PTHREAD_MUTEX_ERRORCHECK:
    118 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    119 		ptm->ptm_owner = NULL;
    120 		break;
    121 	case PTHREAD_MUTEX_RECURSIVE:
    122 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    123 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    124 		break;
    125 	default:
    126 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    127 		ptm->ptm_owner = NULL;
    128 		break;
    129 	}
    130 
    131 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    132 	ptm->ptm_waiters = NULL;
    133 	ptm->ptm_recursed = 0;
    134 
    135 	return 0;
    136 }
    137 
    138 int
    139 pthread_mutex_destroy(pthread_mutex_t *ptm)
    140 {
    141 
    142 	if (__predict_false(__uselibcstub))
    143 		return __libc_mutex_destroy_stub(ptm);
    144 
    145 	pthread__error(EINVAL, "Invalid mutex",
    146 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    147 	pthread__error(EBUSY, "Destroying locked mutex",
    148 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    149 
    150 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    151 	return 0;
    152 }
    153 
    154 int
    155 pthread_mutex_lock(pthread_mutex_t *ptm)
    156 {
    157 	pthread_t self;
    158 	void *val;
    159 
    160 	if (__predict_false(__uselibcstub))
    161 		return __libc_mutex_lock_stub(ptm);
    162 
    163 	self = pthread__self();
    164 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    165 	if (__predict_true(val == NULL)) {
    166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    167 		membar_enter();
    168 #endif
    169 		return 0;
    170 	}
    171 	return pthread__mutex_lock_slow(ptm);
    172 }
    173 
    174 /* We want function call overhead. */
    175 NOINLINE static void
    176 pthread__mutex_pause(void)
    177 {
    178 
    179 	pthread__smt_pause();
    180 }
    181 
    182 /*
    183  * Spin while the holder is running.  'lwpctl' gives us the true
    184  * status of the thread.  pt_blocking is set by libpthread in order
    185  * to cut out system call and kernel spinlock overhead on remote CPUs
    186  * (could represent many thousands of clock cycles).  pt_blocking also
    187  * makes this thread yield if the target is calling sched_yield().
    188  */
    189 NOINLINE static void *
    190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    191 {
    192 	pthread_t thread;
    193 	unsigned int count, i;
    194 
    195 	for (count = 2;; owner = ptm->ptm_owner) {
    196 		thread = (pthread_t)MUTEX_OWNER(owner);
    197 		if (thread == NULL)
    198 			break;
    199 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    200 		    thread->pt_blocking)
    201 			break;
    202 		if (count < 128)
    203 			count += count;
    204 		for (i = count; i != 0; i--)
    205 			pthread__mutex_pause();
    206 	}
    207 
    208 	return owner;
    209 }
    210 
    211 NOINLINE static int
    212 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    213 {
    214 	void *waiters, *new, *owner, *next;
    215 	pthread_t self;
    216 
    217 	pthread__error(EINVAL, "Invalid mutex",
    218 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    219 
    220 	owner = ptm->ptm_owner;
    221 	self = pthread__self();
    222 
    223 	/* Recursive or errorcheck? */
    224 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    225 		if (MUTEX_RECURSIVE(owner)) {
    226 			if (ptm->ptm_recursed == INT_MAX)
    227 				return EAGAIN;
    228 			ptm->ptm_recursed++;
    229 			return 0;
    230 		}
    231 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    232 			return EDEADLK;
    233 	}
    234 
    235 	for (;; owner = ptm->ptm_owner) {
    236 		/* Spin while the owner is running. */
    237 		owner = pthread__mutex_spin(ptm, owner);
    238 
    239 		/* If it has become free, try to acquire it again. */
    240 		if (MUTEX_OWNER(owner) == 0) {
    241 			do {
    242 				new = (void *)
    243 				    ((uintptr_t)self | (uintptr_t)owner);
    244 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    245 				    new);
    246 				if (next == owner) {
    247 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    248 					membar_enter();
    249 #endif
    250 					return 0;
    251 				}
    252 				owner = next;
    253 			} while (MUTEX_OWNER(owner) == 0);
    254 			/*
    255 			 * We have lost the race to acquire the mutex.
    256 			 * The new owner could be running on another
    257 			 * CPU, in which case we should spin and avoid
    258 			 * the overhead of blocking.
    259 			 */
    260 			continue;
    261 		}
    262 
    263 		/*
    264 		 * Nope, still held.  Add thread to the list of waiters.
    265 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    266 		 * are visible before we enter the waiters list.
    267 		 */
    268 		self->pt_mutexwait = 1;
    269 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    270 			self->pt_mutexnext = waiters;
    271 			membar_producer();
    272 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    273 			if (next == waiters)
    274 			    	break;
    275 		}
    276 
    277 		/*
    278 		 * Set the waiters bit and block.
    279 		 *
    280 		 * Note that the mutex can become unlocked before we set
    281 		 * the waiters bit.  If that happens it's not safe to sleep
    282 		 * as we may never be awoken: we must remove the current
    283 		 * thread from the waiters list and try again.
    284 		 *
    285 		 * Because we are doing this atomically, we can't remove
    286 		 * one waiter: we must remove all waiters and awken them,
    287 		 * then sleep in _lwp_park() until we have been awoken.
    288 		 *
    289 		 * Issue a memory barrier to ensure that we are reading
    290 		 * the value of ptm_owner/pt_mutexwait after we have entered
    291 		 * the waiters list (the CAS itself must be atomic).
    292 		 */
    293 		membar_consumer();
    294 		for (owner = ptm->ptm_owner;; owner = next) {
    295 			if (MUTEX_HAS_WAITERS(owner))
    296 				break;
    297 			if (MUTEX_OWNER(owner) == 0) {
    298 				pthread__mutex_wakeup(self, ptm);
    299 				break;
    300 			}
    301 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    302 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    303 			if (next == owner) {
    304 				/*
    305 				 * pthread_mutex_unlock() can do a
    306 				 * non-interlocked CAS.  We cannot
    307 				 * know if our attempt to set the
    308 				 * waiters bit has succeeded while
    309 				 * the holding thread is running.
    310 				 * There are many assumptions; see
    311 				 * sys/kern/kern_mutex.c for details.
    312 				 * In short, we must spin if we see
    313 				 * that the holder is running again.
    314 				 */
    315 				membar_sync();
    316 				next = pthread__mutex_spin(ptm, owner);
    317 			}
    318 		}
    319 
    320 		/*
    321 		 * We may have been awoken by the current thread above,
    322 		 * or will be awoken by the current holder of the mutex.
    323 		 * The key requirement is that we must not proceed until
    324 		 * told that we are no longer waiting (via pt_mutexwait
    325 		 * being set to zero).  Otherwise it is unsafe to re-enter
    326 		 * the thread onto the waiters list.
    327 		 */
    328 		while (self->pt_mutexwait) {
    329 			self->pt_blocking++;
    330 			(void)_lwp_park(NULL, self->pt_unpark,
    331 			    __UNVOLATILE(&ptm->ptm_waiters),
    332 			    __UNVOLATILE(&ptm->ptm_waiters));
    333 			self->pt_unpark = 0;
    334 			self->pt_blocking--;
    335 			membar_sync();
    336 		}
    337 	}
    338 }
    339 
    340 int
    341 pthread_mutex_trylock(pthread_mutex_t *ptm)
    342 {
    343 	pthread_t self;
    344 	void *val, *new, *next;
    345 
    346 	if (__predict_false(__uselibcstub))
    347 		return __libc_mutex_trylock_stub(ptm);
    348 
    349 	self = pthread__self();
    350 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    351 	if (__predict_true(val == NULL)) {
    352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    353 		membar_enter();
    354 #endif
    355 		return 0;
    356 	}
    357 
    358 	if (MUTEX_RECURSIVE(val)) {
    359 		if (MUTEX_OWNER(val) == 0) {
    360 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    361 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    362 			if (__predict_true(next == val)) {
    363 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    364 				membar_enter();
    365 #endif
    366 				return 0;
    367 			}
    368 		}
    369 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    370 			if (ptm->ptm_recursed == INT_MAX)
    371 				return EAGAIN;
    372 			ptm->ptm_recursed++;
    373 			return 0;
    374 		}
    375 	}
    376 
    377 	return EBUSY;
    378 }
    379 
    380 int
    381 pthread_mutex_unlock(pthread_mutex_t *ptm)
    382 {
    383 	pthread_t self;
    384 	void *value;
    385 
    386 	if (__predict_false(__uselibcstub))
    387 		return __libc_mutex_unlock_stub(ptm);
    388 
    389 	/*
    390 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    391 	 * above and sys/kern/kern_mutex.c for details.
    392 	 */
    393 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    394 	membar_exit();
    395 #endif
    396 	self = pthread__self();
    397 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    398 	if (__predict_true(value == self)) {
    399 		pthread__smt_wake();
    400 		return 0;
    401 	}
    402 	return pthread__mutex_unlock_slow(ptm);
    403 }
    404 
    405 NOINLINE static int
    406 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    407 {
    408 	pthread_t self, owner, new;
    409 	int weown, error, deferred;
    410 
    411 	pthread__error(EINVAL, "Invalid mutex",
    412 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    413 
    414 	self = pthread__self();
    415 	owner = ptm->ptm_owner;
    416 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    417 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    418 	error = 0;
    419 
    420 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    421 		if (!weown) {
    422 			error = EPERM;
    423 			new = owner;
    424 		} else {
    425 			new = NULL;
    426 		}
    427 	} else if (MUTEX_RECURSIVE(owner)) {
    428 		if (!weown) {
    429 			error = EPERM;
    430 			new = owner;
    431 		} else if (ptm->ptm_recursed) {
    432 			ptm->ptm_recursed--;
    433 			new = owner;
    434 		} else {
    435 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    436 		}
    437 	} else {
    438 		pthread__error(EPERM,
    439 		    "Unlocking unlocked mutex", (owner != NULL));
    440 		pthread__error(EPERM,
    441 		    "Unlocking mutex owned by another thread", weown);
    442 		new = NULL;
    443 	}
    444 
    445 	/*
    446 	 * Release the mutex.  If there appear to be waiters, then
    447 	 * wake them up.
    448 	 */
    449 	if (new != owner) {
    450 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    451 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    452 			pthread__mutex_wakeup(self, ptm);
    453 			return 0;
    454 		}
    455 	}
    456 
    457 	/*
    458 	 * There were no waiters, but we may have deferred waking
    459 	 * other threads until mutex unlock - we must wake them now.
    460 	 */
    461 	if (!deferred)
    462 		return error;
    463 
    464 	if (self->pt_nwaiters == 1) {
    465 		/*
    466 		 * If the calling thread is about to block, defer
    467 		 * unparking the target until _lwp_park() is called.
    468 		 */
    469 		if (self->pt_willpark && self->pt_unpark == 0) {
    470 			self->pt_unpark = self->pt_waiters[0];
    471 		} else {
    472 			(void)_lwp_unpark(self->pt_waiters[0],
    473 			    __UNVOLATILE(&ptm->ptm_waiters));
    474 		}
    475 	} else {
    476 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    477 		    __UNVOLATILE(&ptm->ptm_waiters));
    478 	}
    479 	self->pt_nwaiters = 0;
    480 
    481 	return error;
    482 }
    483 
    484 /*
    485  * pthread__mutex_wakeup: unpark threads waiting for us
    486  *
    487  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    488  */
    489 
    490 static void
    491 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    492 {
    493 	pthread_t thread, next;
    494 	ssize_t n, rv;
    495 
    496 	/*
    497 	 * Take ownership of the current set of waiters.  No
    498 	 * need for a memory barrier following this, all loads
    499 	 * are dependent upon 'thread'.
    500 	 */
    501 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    502 	pthread__smt_wake();
    503 
    504 	for (;;) {
    505 		/*
    506 		 * Pull waiters from the queue and add to our list.
    507 		 * Use a memory barrier to ensure that we safely
    508 		 * read the value of pt_mutexnext before 'thread'
    509 		 * sees pt_mutexwait being cleared.
    510 		 */
    511 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    512 		    n < pthread__unpark_max && thread != NULL;
    513 		    thread = next) {
    514 		    	next = thread->pt_mutexnext;
    515 		    	if (thread != self) {
    516 				self->pt_waiters[n++] = thread->pt_lid;
    517 				membar_sync();
    518 			}
    519 			thread->pt_mutexwait = 0;
    520 			/* No longer safe to touch 'thread' */
    521 		}
    522 
    523 		switch (n) {
    524 		case 0:
    525 			return;
    526 		case 1:
    527 			/*
    528 			 * If the calling thread is about to block,
    529 			 * defer unparking the target until _lwp_park()
    530 			 * is called.
    531 			 */
    532 			if (self->pt_willpark && self->pt_unpark == 0) {
    533 				self->pt_unpark = self->pt_waiters[0];
    534 				return;
    535 			}
    536 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    537 			    __UNVOLATILE(&ptm->ptm_waiters));
    538 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    539 			    errno != ESRCH) {
    540 				pthread__errorfunc(__FILE__, __LINE__,
    541 				    __func__, "_lwp_unpark failed");
    542 			}
    543 			return;
    544 		default:
    545 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    546 			    __UNVOLATILE(&ptm->ptm_waiters));
    547 			if (rv != 0 && errno != EINTR) {
    548 				pthread__errorfunc(__FILE__, __LINE__,
    549 				    __func__, "_lwp_unpark_all failed");
    550 			}
    551 			break;
    552 		}
    553 	}
    554 }
    555 
    556 int
    557 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    558 {
    559 	if (__predict_false(__uselibcstub))
    560 		return __libc_mutexattr_init_stub(attr);
    561 
    562 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    563 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    564 	return 0;
    565 }
    566 
    567 int
    568 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    569 {
    570 	if (__predict_false(__uselibcstub))
    571 		return __libc_mutexattr_destroy_stub(attr);
    572 
    573 	pthread__error(EINVAL, "Invalid mutex attribute",
    574 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    575 
    576 	return 0;
    577 }
    578 
    579 int
    580 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    581 {
    582 	pthread__error(EINVAL, "Invalid mutex attribute",
    583 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    584 
    585 	*typep = (int)(intptr_t)attr->ptma_private;
    586 	return 0;
    587 }
    588 
    589 int
    590 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    591 {
    592 	if (__predict_false(__uselibcstub))
    593 		return __libc_mutexattr_settype_stub(attr, type);
    594 
    595 	pthread__error(EINVAL, "Invalid mutex attribute",
    596 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    597 
    598 	switch (type) {
    599 	case PTHREAD_MUTEX_NORMAL:
    600 	case PTHREAD_MUTEX_ERRORCHECK:
    601 	case PTHREAD_MUTEX_RECURSIVE:
    602 		attr->ptma_private = (void *)(intptr_t)type;
    603 		return 0;
    604 	default:
    605 		return EINVAL;
    606 	}
    607 }
    608 
    609 /*
    610  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    611  *
    612  * In order to avoid unnecessary contention on the interlocking mutex,
    613  * we defer waking up threads until we unlock the mutex.  The threads will
    614  * be woken up when the calling thread (self) releases the first mutex with
    615  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    616  * even if it isn't.
    617  */
    618 
    619 void
    620 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    621 {
    622 
    623 	if (__predict_false(ptm == NULL ||
    624 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    625 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    626 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    627 	    	self->pt_nwaiters = 0;
    628 	} else {
    629 		atomic_or_ulong((volatile unsigned long *)
    630 		    (uintptr_t)&ptm->ptm_owner,
    631 		    (unsigned long)MUTEX_DEFERRED_BIT);
    632 	}
    633 }
    634 
    635 int
    636 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    637 {
    638 
    639 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    640 }
    641 
    642 pthread_t
    643 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    644 {
    645 
    646 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    647 }
    648