Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.57
      1 /*	$NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/lock.h>
     55 
     56 #include <errno.h>
     57 #include <limits.h>
     58 #include <stdlib.h>
     59 #include <time.h>
     60 #include <string.h>
     61 #include <stdio.h>
     62 
     63 #include "pthread.h"
     64 #include "pthread_int.h"
     65 #include "reentrant.h"
     66 
     67 #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70 #define	MUTEX_THREAD			((uintptr_t)-16L)
     71 
     72 #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #if __GNUC_PREREQ__(3, 0)
     77 #define	NOINLINE		__attribute ((noinline))
     78 #else
     79 #define	NOINLINE		/* nothing */
     80 #endif
     81 
     82 static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83 static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84 static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85 static void	pthread__mutex_pause(void);
     86 
     87 int		_pthread_mutex_held_np(pthread_mutex_t *);
     88 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89 
     90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92 
     93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98 
     99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102 
    103 int
    104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105 {
    106 	intptr_t type;
    107 
    108 	if (__predict_false(__uselibcstub))
    109 		return __libc_mutex_init_stub(ptm, attr);
    110 
    111 	if (attr == NULL)
    112 		type = PTHREAD_MUTEX_NORMAL;
    113 	else
    114 		type = (intptr_t)attr->ptma_private;
    115 
    116 	switch (type) {
    117 	case PTHREAD_MUTEX_ERRORCHECK:
    118 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    119 		ptm->ptm_owner = NULL;
    120 		break;
    121 	case PTHREAD_MUTEX_RECURSIVE:
    122 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    123 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    124 		break;
    125 	default:
    126 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    127 		ptm->ptm_owner = NULL;
    128 		break;
    129 	}
    130 
    131 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    132 	ptm->ptm_waiters = NULL;
    133 	ptm->ptm_recursed = 0;
    134 
    135 	return 0;
    136 }
    137 
    138 int
    139 pthread_mutex_destroy(pthread_mutex_t *ptm)
    140 {
    141 
    142 	if (__predict_false(__uselibcstub))
    143 		return __libc_mutex_destroy_stub(ptm);
    144 
    145 	pthread__error(EINVAL, "Invalid mutex",
    146 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    147 	pthread__error(EBUSY, "Destroying locked mutex",
    148 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    149 
    150 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    151 	return 0;
    152 }
    153 
    154 int
    155 pthread_mutex_lock(pthread_mutex_t *ptm)
    156 {
    157 	pthread_t self;
    158 	void *val;
    159 
    160 	if (__predict_false(__uselibcstub))
    161 		return __libc_mutex_lock_stub(ptm);
    162 
    163 	self = pthread__self();
    164 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    165 	if (__predict_true(val == NULL)) {
    166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    167 		membar_enter();
    168 #endif
    169 		return 0;
    170 	}
    171 	return pthread__mutex_lock_slow(ptm);
    172 }
    173 
    174 /* We want function call overhead. */
    175 NOINLINE static void
    176 pthread__mutex_pause(void)
    177 {
    178 
    179 	pthread__smt_pause();
    180 }
    181 
    182 /*
    183  * Spin while the holder is running.  'lwpctl' gives us the true
    184  * status of the thread.  pt_blocking is set by libpthread in order
    185  * to cut out system call and kernel spinlock overhead on remote CPUs
    186  * (could represent many thousands of clock cycles).  pt_blocking also
    187  * makes this thread yield if the target is calling sched_yield().
    188  */
    189 NOINLINE static void *
    190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    191 {
    192 	pthread_t thread;
    193 	unsigned int count, i;
    194 
    195 	for (count = 2;; owner = ptm->ptm_owner) {
    196 		thread = (pthread_t)MUTEX_OWNER(owner);
    197 		if (thread == NULL)
    198 			break;
    199 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    200 		    thread->pt_blocking)
    201 			break;
    202 		if (count < 128)
    203 			count += count;
    204 		for (i = count; i != 0; i--)
    205 			pthread__mutex_pause();
    206 	}
    207 
    208 	return owner;
    209 }
    210 
    211 NOINLINE static int
    212 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    213 {
    214 	void *waiters, *new, *owner, *next;
    215 	pthread_t self;
    216 	int serrno;
    217 
    218 	pthread__error(EINVAL, "Invalid mutex",
    219 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    220 
    221 	owner = ptm->ptm_owner;
    222 	self = pthread__self();
    223 
    224 	/* Recursive or errorcheck? */
    225 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    226 		if (MUTEX_RECURSIVE(owner)) {
    227 			if (ptm->ptm_recursed == INT_MAX)
    228 				return EAGAIN;
    229 			ptm->ptm_recursed++;
    230 			return 0;
    231 		}
    232 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    233 			return EDEADLK;
    234 	}
    235 
    236 	serrno = errno;
    237 	for (;; owner = ptm->ptm_owner) {
    238 		/* Spin while the owner is running. */
    239 		owner = pthread__mutex_spin(ptm, owner);
    240 
    241 		/* If it has become free, try to acquire it again. */
    242 		if (MUTEX_OWNER(owner) == 0) {
    243 			do {
    244 				new = (void *)
    245 				    ((uintptr_t)self | (uintptr_t)owner);
    246 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    247 				    new);
    248 				if (next == owner) {
    249 					errno = serrno;
    250 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    251 					membar_enter();
    252 #endif
    253 					return 0;
    254 				}
    255 				owner = next;
    256 			} while (MUTEX_OWNER(owner) == 0);
    257 			/*
    258 			 * We have lost the race to acquire the mutex.
    259 			 * The new owner could be running on another
    260 			 * CPU, in which case we should spin and avoid
    261 			 * the overhead of blocking.
    262 			 */
    263 			continue;
    264 		}
    265 
    266 		/*
    267 		 * Nope, still held.  Add thread to the list of waiters.
    268 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    269 		 * are visible before we enter the waiters list.
    270 		 */
    271 		self->pt_mutexwait = 1;
    272 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    273 			self->pt_mutexnext = waiters;
    274 			membar_producer();
    275 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    276 			if (next == waiters)
    277 			    	break;
    278 		}
    279 
    280 		/*
    281 		 * Set the waiters bit and block.
    282 		 *
    283 		 * Note that the mutex can become unlocked before we set
    284 		 * the waiters bit.  If that happens it's not safe to sleep
    285 		 * as we may never be awoken: we must remove the current
    286 		 * thread from the waiters list and try again.
    287 		 *
    288 		 * Because we are doing this atomically, we can't remove
    289 		 * one waiter: we must remove all waiters and awken them,
    290 		 * then sleep in _lwp_park() until we have been awoken.
    291 		 *
    292 		 * Issue a memory barrier to ensure that we are reading
    293 		 * the value of ptm_owner/pt_mutexwait after we have entered
    294 		 * the waiters list (the CAS itself must be atomic).
    295 		 */
    296 		membar_consumer();
    297 		for (owner = ptm->ptm_owner;; owner = next) {
    298 			if (MUTEX_HAS_WAITERS(owner))
    299 				break;
    300 			if (MUTEX_OWNER(owner) == 0) {
    301 				pthread__mutex_wakeup(self, ptm);
    302 				break;
    303 			}
    304 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    305 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    306 			if (next == owner) {
    307 				/*
    308 				 * pthread_mutex_unlock() can do a
    309 				 * non-interlocked CAS.  We cannot
    310 				 * know if our attempt to set the
    311 				 * waiters bit has succeeded while
    312 				 * the holding thread is running.
    313 				 * There are many assumptions; see
    314 				 * sys/kern/kern_mutex.c for details.
    315 				 * In short, we must spin if we see
    316 				 * that the holder is running again.
    317 				 */
    318 				membar_sync();
    319 				next = pthread__mutex_spin(ptm, owner);
    320 			}
    321 		}
    322 
    323 		/*
    324 		 * We may have been awoken by the current thread above,
    325 		 * or will be awoken by the current holder of the mutex.
    326 		 * The key requirement is that we must not proceed until
    327 		 * told that we are no longer waiting (via pt_mutexwait
    328 		 * being set to zero).  Otherwise it is unsafe to re-enter
    329 		 * the thread onto the waiters list.
    330 		 */
    331 		while (self->pt_mutexwait) {
    332 			self->pt_blocking++;
    333 			(void)_lwp_park(NULL, self->pt_unpark,
    334 			    __UNVOLATILE(&ptm->ptm_waiters),
    335 			    __UNVOLATILE(&ptm->ptm_waiters));
    336 			self->pt_unpark = 0;
    337 			self->pt_blocking--;
    338 			membar_sync();
    339 		}
    340 	}
    341 }
    342 
    343 int
    344 pthread_mutex_trylock(pthread_mutex_t *ptm)
    345 {
    346 	pthread_t self;
    347 	void *val, *new, *next;
    348 
    349 	if (__predict_false(__uselibcstub))
    350 		return __libc_mutex_trylock_stub(ptm);
    351 
    352 	self = pthread__self();
    353 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    354 	if (__predict_true(val == NULL)) {
    355 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    356 		membar_enter();
    357 #endif
    358 		return 0;
    359 	}
    360 
    361 	if (MUTEX_RECURSIVE(val)) {
    362 		if (MUTEX_OWNER(val) == 0) {
    363 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    364 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    365 			if (__predict_true(next == val)) {
    366 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    367 				membar_enter();
    368 #endif
    369 				return 0;
    370 			}
    371 		}
    372 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    373 			if (ptm->ptm_recursed == INT_MAX)
    374 				return EAGAIN;
    375 			ptm->ptm_recursed++;
    376 			return 0;
    377 		}
    378 	}
    379 
    380 	return EBUSY;
    381 }
    382 
    383 int
    384 pthread_mutex_unlock(pthread_mutex_t *ptm)
    385 {
    386 	pthread_t self;
    387 	void *value;
    388 
    389 	if (__predict_false(__uselibcstub))
    390 		return __libc_mutex_unlock_stub(ptm);
    391 
    392 	/*
    393 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    394 	 * above and sys/kern/kern_mutex.c for details.
    395 	 */
    396 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    397 	membar_exit();
    398 #endif
    399 	self = pthread__self();
    400 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    401 	if (__predict_true(value == self)) {
    402 		pthread__smt_wake();
    403 		return 0;
    404 	}
    405 	return pthread__mutex_unlock_slow(ptm);
    406 }
    407 
    408 NOINLINE static int
    409 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    410 {
    411 	pthread_t self, owner, new;
    412 	int weown, error, deferred;
    413 
    414 	pthread__error(EINVAL, "Invalid mutex",
    415 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    416 
    417 	self = pthread__self();
    418 	owner = ptm->ptm_owner;
    419 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    420 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    421 	error = 0;
    422 
    423 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    424 		if (!weown) {
    425 			error = EPERM;
    426 			new = owner;
    427 		} else {
    428 			new = NULL;
    429 		}
    430 	} else if (MUTEX_RECURSIVE(owner)) {
    431 		if (!weown) {
    432 			error = EPERM;
    433 			new = owner;
    434 		} else if (ptm->ptm_recursed) {
    435 			ptm->ptm_recursed--;
    436 			new = owner;
    437 		} else {
    438 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    439 		}
    440 	} else {
    441 		pthread__error(EPERM,
    442 		    "Unlocking unlocked mutex", (owner != NULL));
    443 		pthread__error(EPERM,
    444 		    "Unlocking mutex owned by another thread", weown);
    445 		new = NULL;
    446 	}
    447 
    448 	/*
    449 	 * Release the mutex.  If there appear to be waiters, then
    450 	 * wake them up.
    451 	 */
    452 	if (new != owner) {
    453 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    454 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    455 			pthread__mutex_wakeup(self, ptm);
    456 			return 0;
    457 		}
    458 	}
    459 
    460 	/*
    461 	 * There were no waiters, but we may have deferred waking
    462 	 * other threads until mutex unlock - we must wake them now.
    463 	 */
    464 	if (!deferred)
    465 		return error;
    466 
    467 	if (self->pt_nwaiters == 1) {
    468 		/*
    469 		 * If the calling thread is about to block, defer
    470 		 * unparking the target until _lwp_park() is called.
    471 		 */
    472 		if (self->pt_willpark && self->pt_unpark == 0) {
    473 			self->pt_unpark = self->pt_waiters[0];
    474 		} else {
    475 			(void)_lwp_unpark(self->pt_waiters[0],
    476 			    __UNVOLATILE(&ptm->ptm_waiters));
    477 		}
    478 	} else {
    479 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    480 		    __UNVOLATILE(&ptm->ptm_waiters));
    481 	}
    482 	self->pt_nwaiters = 0;
    483 
    484 	return error;
    485 }
    486 
    487 /*
    488  * pthread__mutex_wakeup: unpark threads waiting for us
    489  *
    490  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    491  */
    492 
    493 static void
    494 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    495 {
    496 	pthread_t thread, next;
    497 	ssize_t n, rv;
    498 
    499 	/*
    500 	 * Take ownership of the current set of waiters.  No
    501 	 * need for a memory barrier following this, all loads
    502 	 * are dependent upon 'thread'.
    503 	 */
    504 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    505 	pthread__smt_wake();
    506 
    507 	for (;;) {
    508 		/*
    509 		 * Pull waiters from the queue and add to our list.
    510 		 * Use a memory barrier to ensure that we safely
    511 		 * read the value of pt_mutexnext before 'thread'
    512 		 * sees pt_mutexwait being cleared.
    513 		 */
    514 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    515 		    n < pthread__unpark_max && thread != NULL;
    516 		    thread = next) {
    517 		    	next = thread->pt_mutexnext;
    518 		    	if (thread != self) {
    519 				self->pt_waiters[n++] = thread->pt_lid;
    520 				membar_sync();
    521 			}
    522 			thread->pt_mutexwait = 0;
    523 			/* No longer safe to touch 'thread' */
    524 		}
    525 
    526 		switch (n) {
    527 		case 0:
    528 			return;
    529 		case 1:
    530 			/*
    531 			 * If the calling thread is about to block,
    532 			 * defer unparking the target until _lwp_park()
    533 			 * is called.
    534 			 */
    535 			if (self->pt_willpark && self->pt_unpark == 0) {
    536 				self->pt_unpark = self->pt_waiters[0];
    537 				return;
    538 			}
    539 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    540 			    __UNVOLATILE(&ptm->ptm_waiters));
    541 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    542 			    errno != ESRCH) {
    543 				pthread__errorfunc(__FILE__, __LINE__,
    544 				    __func__, "_lwp_unpark failed");
    545 			}
    546 			return;
    547 		default:
    548 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    549 			    __UNVOLATILE(&ptm->ptm_waiters));
    550 			if (rv != 0 && errno != EINTR) {
    551 				pthread__errorfunc(__FILE__, __LINE__,
    552 				    __func__, "_lwp_unpark_all failed");
    553 			}
    554 			break;
    555 		}
    556 	}
    557 }
    558 
    559 int
    560 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    561 {
    562 	if (__predict_false(__uselibcstub))
    563 		return __libc_mutexattr_init_stub(attr);
    564 
    565 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    566 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    567 	return 0;
    568 }
    569 
    570 int
    571 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    572 {
    573 	if (__predict_false(__uselibcstub))
    574 		return __libc_mutexattr_destroy_stub(attr);
    575 
    576 	pthread__error(EINVAL, "Invalid mutex attribute",
    577 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    578 
    579 	return 0;
    580 }
    581 
    582 int
    583 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    584 {
    585 	pthread__error(EINVAL, "Invalid mutex attribute",
    586 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    587 
    588 	*typep = (int)(intptr_t)attr->ptma_private;
    589 	return 0;
    590 }
    591 
    592 int
    593 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    594 {
    595 	if (__predict_false(__uselibcstub))
    596 		return __libc_mutexattr_settype_stub(attr, type);
    597 
    598 	pthread__error(EINVAL, "Invalid mutex attribute",
    599 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    600 
    601 	switch (type) {
    602 	case PTHREAD_MUTEX_NORMAL:
    603 	case PTHREAD_MUTEX_ERRORCHECK:
    604 	case PTHREAD_MUTEX_RECURSIVE:
    605 		attr->ptma_private = (void *)(intptr_t)type;
    606 		return 0;
    607 	default:
    608 		return EINVAL;
    609 	}
    610 }
    611 
    612 /*
    613  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    614  *
    615  * In order to avoid unnecessary contention on the interlocking mutex,
    616  * we defer waking up threads until we unlock the mutex.  The threads will
    617  * be woken up when the calling thread (self) releases the first mutex with
    618  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    619  * even if it isn't.
    620  */
    621 
    622 void
    623 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    624 {
    625 
    626 	if (__predict_false(ptm == NULL ||
    627 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    628 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    629 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    630 	    	self->pt_nwaiters = 0;
    631 	} else {
    632 		atomic_or_ulong((volatile unsigned long *)
    633 		    (uintptr_t)&ptm->ptm_owner,
    634 		    (unsigned long)MUTEX_DEFERRED_BIT);
    635 	}
    636 }
    637 
    638 int
    639 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    640 {
    641 
    642 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    643 }
    644 
    645 pthread_t
    646 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    647 {
    648 
    649 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    650 }
    651