pthread_mutex.c revision 1.59 1 /* $NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
55
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <time.h>
60 #include <string.h>
61 #include <stdio.h>
62
63 #include "pthread.h"
64 #include "pthread_int.h"
65 #include "reentrant.h"
66
67 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
68 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
69 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
70 #define MUTEX_THREAD ((uintptr_t)-16L)
71
72 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
75
76 #if __GNUC_PREREQ__(3, 0)
77 #define NOINLINE __attribute ((noinline))
78 #else
79 #define NOINLINE /* nothing */
80 #endif
81
82 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 static int pthread__mutex_lock_slow(pthread_mutex_t *);
84 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
85 static void pthread__mutex_pause(void);
86
87 int _pthread_mutex_held_np(pthread_mutex_t *);
88 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
89
90 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92
93 __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98
99 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102
103 int
104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 {
106 intptr_t type;
107
108 if (__predict_false(__uselibcstub))
109 return __libc_mutex_init_stub(ptm, attr);
110
111 if (attr == NULL)
112 type = PTHREAD_MUTEX_NORMAL;
113 else
114 type = (intptr_t)attr->ptma_private;
115
116 switch (type) {
117 case PTHREAD_MUTEX_ERRORCHECK:
118 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 ptm->ptm_owner = NULL;
120 break;
121 case PTHREAD_MUTEX_RECURSIVE:
122 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 break;
125 default:
126 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 ptm->ptm_owner = NULL;
128 break;
129 }
130
131 ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 ptm->ptm_waiters = NULL;
133 ptm->ptm_recursed = 0;
134
135 return 0;
136 }
137
138 int
139 pthread_mutex_destroy(pthread_mutex_t *ptm)
140 {
141
142 if (__predict_false(__uselibcstub))
143 return __libc_mutex_destroy_stub(ptm);
144
145 pthread__error(EINVAL, "Invalid mutex",
146 ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 pthread__error(EBUSY, "Destroying locked mutex",
148 MUTEX_OWNER(ptm->ptm_owner) == 0);
149
150 ptm->ptm_magic = _PT_MUTEX_DEAD;
151 return 0;
152 }
153
154 int
155 pthread_mutex_lock(pthread_mutex_t *ptm)
156 {
157 pthread_t self;
158 void *val;
159
160 if (__predict_false(__uselibcstub))
161 return __libc_mutex_lock_stub(ptm);
162
163 self = pthread__self();
164 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 if (__predict_true(val == NULL)) {
166 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 membar_enter();
168 #endif
169 return 0;
170 }
171 return pthread__mutex_lock_slow(ptm);
172 }
173
174 /* We want function call overhead. */
175 NOINLINE static void
176 pthread__mutex_pause(void)
177 {
178
179 pthread__smt_pause();
180 }
181
182 /*
183 * Spin while the holder is running. 'lwpctl' gives us the true
184 * status of the thread. pt_blocking is set by libpthread in order
185 * to cut out system call and kernel spinlock overhead on remote CPUs
186 * (could represent many thousands of clock cycles). pt_blocking also
187 * makes this thread yield if the target is calling sched_yield().
188 */
189 NOINLINE static void *
190 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 {
192 pthread_t thread;
193 unsigned int count, i;
194
195 for (count = 2;; owner = ptm->ptm_owner) {
196 thread = (pthread_t)MUTEX_OWNER(owner);
197 if (thread == NULL)
198 break;
199 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 thread->pt_blocking)
201 break;
202 if (count < 128)
203 count += count;
204 for (i = count; i != 0; i--)
205 pthread__mutex_pause();
206 }
207
208 return owner;
209 }
210
211 NOINLINE static void
212 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
213 {
214 void *new, *owner;
215
216 /*
217 * Note that the mutex can become unlocked before we set
218 * the waiters bit. If that happens it's not safe to sleep
219 * as we may never be awoken: we must remove the current
220 * thread from the waiters list and try again.
221 *
222 * Because we are doing this atomically, we can't remove
223 * one waiter: we must remove all waiters and awken them,
224 * then sleep in _lwp_park() until we have been awoken.
225 *
226 * Issue a memory barrier to ensure that we are reading
227 * the value of ptm_owner/pt_mutexwait after we have entered
228 * the waiters list (the CAS itself must be atomic).
229 */
230 again:
231 membar_consumer();
232 owner = ptm->ptm_owner;
233
234 if (MUTEX_OWNER(owner) == 0) {
235 pthread__mutex_wakeup(self, ptm);
236 return;
237 }
238 if (!MUTEX_HAS_WAITERS(owner)) {
239 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
240 if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
241 goto again;
242 }
243 }
244
245 /*
246 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
247 * We cannot know if the presence of the waiters bit is stable
248 * while the holding thread is running. There are many assumptions;
249 * see sys/kern/kern_mutex.c for details. In short, we must spin if
250 * we see that the holder is running again.
251 */
252 membar_sync();
253 pthread__mutex_spin(ptm, owner);
254
255 if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
256 goto again;
257 }
258 }
259
260 NOINLINE static int
261 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
262 {
263 void *waiters, *new, *owner, *next;
264 pthread_t self;
265 int serrno;
266
267 pthread__error(EINVAL, "Invalid mutex",
268 ptm->ptm_magic == _PT_MUTEX_MAGIC);
269
270 owner = ptm->ptm_owner;
271 self = pthread__self();
272
273 /* Recursive or errorcheck? */
274 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
275 if (MUTEX_RECURSIVE(owner)) {
276 if (ptm->ptm_recursed == INT_MAX)
277 return EAGAIN;
278 ptm->ptm_recursed++;
279 return 0;
280 }
281 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
282 return EDEADLK;
283 }
284
285 serrno = errno;
286 for (;; owner = ptm->ptm_owner) {
287 /* Spin while the owner is running. */
288 owner = pthread__mutex_spin(ptm, owner);
289
290 /* If it has become free, try to acquire it again. */
291 if (MUTEX_OWNER(owner) == 0) {
292 do {
293 new = (void *)
294 ((uintptr_t)self | (uintptr_t)owner);
295 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
296 new);
297 if (next == owner) {
298 errno = serrno;
299 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
300 membar_enter();
301 #endif
302 return 0;
303 }
304 owner = next;
305 } while (MUTEX_OWNER(owner) == 0);
306 /*
307 * We have lost the race to acquire the mutex.
308 * The new owner could be running on another
309 * CPU, in which case we should spin and avoid
310 * the overhead of blocking.
311 */
312 continue;
313 }
314
315 /*
316 * Nope, still held. Add thread to the list of waiters.
317 * Issue a memory barrier to ensure mutexwait/mutexnext
318 * are visible before we enter the waiters list.
319 */
320 self->pt_mutexwait = 1;
321 for (waiters = ptm->ptm_waiters;; waiters = next) {
322 self->pt_mutexnext = waiters;
323 membar_producer();
324 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
325 if (next == waiters)
326 break;
327 }
328
329 /* Set the waiters bit and block. */
330 pthread__mutex_setwaiters(self, ptm);
331
332 /*
333 * We may have been awoken by the current thread above,
334 * or will be awoken by the current holder of the mutex.
335 * The key requirement is that we must not proceed until
336 * told that we are no longer waiting (via pt_mutexwait
337 * being set to zero). Otherwise it is unsafe to re-enter
338 * the thread onto the waiters list.
339 */
340 while (self->pt_mutexwait) {
341 self->pt_blocking++;
342 (void)_lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, NULL,
343 self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
344 __UNVOLATILE(&ptm->ptm_waiters));
345 self->pt_unpark = 0;
346 self->pt_blocking--;
347 membar_sync();
348 }
349 }
350 }
351
352 int
353 pthread_mutex_trylock(pthread_mutex_t *ptm)
354 {
355 pthread_t self;
356 void *val, *new, *next;
357
358 if (__predict_false(__uselibcstub))
359 return __libc_mutex_trylock_stub(ptm);
360
361 self = pthread__self();
362 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
363 if (__predict_true(val == NULL)) {
364 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
365 membar_enter();
366 #endif
367 return 0;
368 }
369
370 if (MUTEX_RECURSIVE(val)) {
371 if (MUTEX_OWNER(val) == 0) {
372 new = (void *)((uintptr_t)self | (uintptr_t)val);
373 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
374 if (__predict_true(next == val)) {
375 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
376 membar_enter();
377 #endif
378 return 0;
379 }
380 }
381 if (MUTEX_OWNER(val) == (uintptr_t)self) {
382 if (ptm->ptm_recursed == INT_MAX)
383 return EAGAIN;
384 ptm->ptm_recursed++;
385 return 0;
386 }
387 }
388
389 return EBUSY;
390 }
391
392 int
393 pthread_mutex_unlock(pthread_mutex_t *ptm)
394 {
395 pthread_t self;
396 void *value;
397
398 if (__predict_false(__uselibcstub))
399 return __libc_mutex_unlock_stub(ptm);
400
401 /*
402 * Note this may be a non-interlocked CAS. See lock_slow()
403 * above and sys/kern/kern_mutex.c for details.
404 */
405 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
406 membar_exit();
407 #endif
408 self = pthread__self();
409 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
410 if (__predict_true(value == self)) {
411 pthread__smt_wake();
412 return 0;
413 }
414 return pthread__mutex_unlock_slow(ptm);
415 }
416
417 NOINLINE static int
418 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
419 {
420 pthread_t self, owner, new;
421 int weown, error, deferred;
422
423 pthread__error(EINVAL, "Invalid mutex",
424 ptm->ptm_magic == _PT_MUTEX_MAGIC);
425
426 self = pthread__self();
427 owner = ptm->ptm_owner;
428 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
429 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
430 error = 0;
431
432 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
433 if (!weown) {
434 error = EPERM;
435 new = owner;
436 } else {
437 new = NULL;
438 }
439 } else if (MUTEX_RECURSIVE(owner)) {
440 if (!weown) {
441 error = EPERM;
442 new = owner;
443 } else if (ptm->ptm_recursed) {
444 ptm->ptm_recursed--;
445 new = owner;
446 } else {
447 new = (pthread_t)MUTEX_RECURSIVE_BIT;
448 }
449 } else {
450 pthread__error(EPERM,
451 "Unlocking unlocked mutex", (owner != NULL));
452 pthread__error(EPERM,
453 "Unlocking mutex owned by another thread", weown);
454 new = NULL;
455 }
456
457 /*
458 * Release the mutex. If there appear to be waiters, then
459 * wake them up.
460 */
461 if (new != owner) {
462 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
463 if (MUTEX_HAS_WAITERS(owner) != 0) {
464 pthread__mutex_wakeup(self, ptm);
465 return 0;
466 }
467 }
468
469 /*
470 * There were no waiters, but we may have deferred waking
471 * other threads until mutex unlock - we must wake them now.
472 */
473 if (!deferred)
474 return error;
475
476 if (self->pt_nwaiters == 1) {
477 /*
478 * If the calling thread is about to block, defer
479 * unparking the target until _lwp_park() is called.
480 */
481 if (self->pt_willpark && self->pt_unpark == 0) {
482 self->pt_unpark = self->pt_waiters[0];
483 } else {
484 (void)_lwp_unpark(self->pt_waiters[0],
485 __UNVOLATILE(&ptm->ptm_waiters));
486 }
487 } else {
488 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
489 __UNVOLATILE(&ptm->ptm_waiters));
490 }
491 self->pt_nwaiters = 0;
492
493 return error;
494 }
495
496 /*
497 * pthread__mutex_wakeup: unpark threads waiting for us
498 *
499 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
500 */
501
502 static void
503 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
504 {
505 pthread_t thread, next;
506 ssize_t n, rv;
507
508 /*
509 * Take ownership of the current set of waiters. No
510 * need for a memory barrier following this, all loads
511 * are dependent upon 'thread'.
512 */
513 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
514 pthread__smt_wake();
515
516 for (;;) {
517 /*
518 * Pull waiters from the queue and add to our list.
519 * Use a memory barrier to ensure that we safely
520 * read the value of pt_mutexnext before 'thread'
521 * sees pt_mutexwait being cleared.
522 */
523 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
524 n < pthread__unpark_max && thread != NULL;
525 thread = next) {
526 next = thread->pt_mutexnext;
527 if (thread != self) {
528 self->pt_waiters[n++] = thread->pt_lid;
529 membar_sync();
530 }
531 thread->pt_mutexwait = 0;
532 /* No longer safe to touch 'thread' */
533 }
534
535 switch (n) {
536 case 0:
537 return;
538 case 1:
539 /*
540 * If the calling thread is about to block,
541 * defer unparking the target until _lwp_park()
542 * is called.
543 */
544 if (self->pt_willpark && self->pt_unpark == 0) {
545 self->pt_unpark = self->pt_waiters[0];
546 return;
547 }
548 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
549 __UNVOLATILE(&ptm->ptm_waiters));
550 if (rv != 0 && errno != EALREADY && errno != EINTR &&
551 errno != ESRCH) {
552 pthread__errorfunc(__FILE__, __LINE__,
553 __func__, "_lwp_unpark failed");
554 }
555 return;
556 default:
557 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
558 __UNVOLATILE(&ptm->ptm_waiters));
559 if (rv != 0 && errno != EINTR) {
560 pthread__errorfunc(__FILE__, __LINE__,
561 __func__, "_lwp_unpark_all failed");
562 }
563 break;
564 }
565 }
566 }
567
568 int
569 pthread_mutexattr_init(pthread_mutexattr_t *attr)
570 {
571 if (__predict_false(__uselibcstub))
572 return __libc_mutexattr_init_stub(attr);
573
574 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
575 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
576 return 0;
577 }
578
579 int
580 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
581 {
582 if (__predict_false(__uselibcstub))
583 return __libc_mutexattr_destroy_stub(attr);
584
585 pthread__error(EINVAL, "Invalid mutex attribute",
586 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
587
588 return 0;
589 }
590
591 int
592 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
593 {
594 pthread__error(EINVAL, "Invalid mutex attribute",
595 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
596
597 *typep = (int)(intptr_t)attr->ptma_private;
598 return 0;
599 }
600
601 int
602 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
603 {
604 if (__predict_false(__uselibcstub))
605 return __libc_mutexattr_settype_stub(attr, type);
606
607 pthread__error(EINVAL, "Invalid mutex attribute",
608 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
609
610 switch (type) {
611 case PTHREAD_MUTEX_NORMAL:
612 case PTHREAD_MUTEX_ERRORCHECK:
613 case PTHREAD_MUTEX_RECURSIVE:
614 attr->ptma_private = (void *)(intptr_t)type;
615 return 0;
616 default:
617 return EINVAL;
618 }
619 }
620
621 /*
622 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
623 *
624 * In order to avoid unnecessary contention on the interlocking mutex,
625 * we defer waking up threads until we unlock the mutex. The threads will
626 * be woken up when the calling thread (self) releases the first mutex with
627 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
628 * even if it isn't.
629 */
630
631 void
632 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
633 {
634
635 if (__predict_false(ptm == NULL ||
636 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
637 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
638 __UNVOLATILE(&ptm->ptm_waiters));
639 self->pt_nwaiters = 0;
640 } else {
641 atomic_or_ulong((volatile unsigned long *)
642 (uintptr_t)&ptm->ptm_owner,
643 (unsigned long)MUTEX_DEFERRED_BIT);
644 }
645 }
646
647 int
648 _pthread_mutex_held_np(pthread_mutex_t *ptm)
649 {
650
651 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
652 }
653
654 pthread_t
655 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
656 {
657
658 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
659 }
660