pthread_mutex.c revision 1.6 1 /* $NetBSD: pthread_mutex.c,v 1.6 2003/01/22 13:49:14 scw Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include <assert.h>
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdlib.h>
44 #include <string.h>
45
46 #include "pthread.h"
47 #include "pthread_int.h"
48
49 static int pthread_mutex_lock_slow(pthread_mutex_t *);
50
51 __strong_alias(__libc_mutex_init,pthread_mutex_init)
52 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
53 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
54 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
55 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
56
57 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
58 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
59 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
60
61 __strong_alias(__libc_thr_once,pthread_once)
62
63 struct mutex_private {
64 int type;
65 int recursecount;
66 };
67
68 static const struct mutex_private mutex_private_default = {
69 PTHREAD_MUTEX_DEFAULT,
70 0,
71 };
72
73 struct mutexattr_private {
74 int type;
75 };
76
77 static const struct mutexattr_private mutexattr_private_default = {
78 PTHREAD_MUTEX_DEFAULT,
79 };
80
81 /*
82 * If the mutex does not already have private data (i.e. was statically
83 * initialized), then give it the default.
84 */
85 #define GET_MUTEX_PRIVATE(mutex, mp) \
86 do { \
87 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
88 /* LINTED cast away const */ \
89 mp = ((mutex)->ptm_private = \
90 (void *)&mutex_private_default); \
91 } \
92 } while (/*CONSTCOND*/0)
93
94 int
95 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
96 {
97 struct mutexattr_private *map;
98 struct mutex_private *mp;
99
100 #ifdef ERRORCHECK
101 if ((mutex == NULL) ||
102 (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
103 return EINVAL;
104 #endif
105
106 if (attr != NULL && (map = attr->ptma_private) != NULL &&
107 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
108 mp = malloc(sizeof(*mp));
109 if (mp == NULL)
110 return ENOMEM;
111
112 mp->type = map->type;
113 mp->recursecount = 0;
114 } else {
115 /* LINTED cast away const */
116 mp = (struct mutex_private *) &mutex_private_default;
117 }
118
119 mutex->ptm_magic = _PT_MUTEX_MAGIC;
120 mutex->ptm_owner = NULL;
121 pthread_lockinit(&mutex->ptm_lock);
122 pthread_lockinit(&mutex->ptm_interlock);
123 PTQ_INIT(&mutex->ptm_blocked);
124 mutex->ptm_private = mp;
125
126 return 0;
127 }
128
129
130 int
131 pthread_mutex_destroy(pthread_mutex_t *mutex)
132 {
133
134 #ifdef ERRORCHECK
135 if ((mutex == NULL) ||
136 (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
137 (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
138 return EINVAL;
139 #endif
140
141 mutex->ptm_magic = _PT_MUTEX_DEAD;
142 if (mutex->ptm_private != NULL &&
143 mutex->ptm_private != (const void *)&mutex_private_default)
144 free(mutex->ptm_private);
145
146 return 0;
147 }
148
149
150 /*
151 * Note regarding memory visibility: Pthreads has rules about memory
152 * visibility and mutexes. Very roughly: Memory a thread can see when
153 * it unlocks a mutex can be seen by another thread that locks the
154 * same mutex.
155 *
156 * A memory barrier after a lock and before an unlock will provide
157 * this behavior. This code relies on pthread__simple_lock_try() to issue
158 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
159 * issue a barrier before releasing a lock.
160 */
161
162 int
163 pthread_mutex_lock(pthread_mutex_t *mutex)
164 {
165 int error;
166
167 #ifdef ERRORCHECK
168 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
169 return EINVAL;
170 #endif
171
172 /*
173 * Note that if we get the lock, we don't have to deal with any
174 * non-default lock type handling.
175 */
176 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
177 error = pthread_mutex_lock_slow(mutex);
178 if (error)
179 return error;
180 }
181
182 /* We have the lock! */
183 mutex->ptm_owner = pthread__self();
184
185 return 0;
186 }
187
188
189 static int
190 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
191 {
192 pthread_t self;
193
194 self = pthread__self();
195
196 while (/*CONSTCOND*/1) {
197 if (pthread__simple_lock_try(&mutex->ptm_lock))
198 break; /* got it! */
199
200 /* Okay, didn't look free. Get the interlock... */
201 pthread_spinlock(self, &mutex->ptm_interlock);
202 /*
203 * The mutex_unlock routine will get the interlock
204 * before looking at the list of sleepers, so if the
205 * lock is held we can safely put ourselves on the
206 * sleep queue. If it's not held, we can try taking it
207 * again.
208 */
209 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
210 struct mutex_private *mp;
211
212 GET_MUTEX_PRIVATE(mutex, mp);
213
214 if (mutex->ptm_owner == self) {
215 switch (mp->type) {
216 case PTHREAD_MUTEX_ERRORCHECK:
217 pthread_spinunlock(self,
218 &mutex->ptm_interlock);
219 return EDEADLK;
220
221 case PTHREAD_MUTEX_RECURSIVE:
222 /*
223 * It's safe to do this without
224 * holding the interlock, because
225 * we only modify it if we know we
226 * own the mutex.
227 */
228 pthread_spinunlock(self,
229 &mutex->ptm_interlock);
230 if (mp->recursecount == INT_MAX)
231 return EAGAIN;
232 mp->recursecount++;
233 return 0;
234 }
235 }
236
237 PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
238 /*
239 * Locking a mutex is not a cancellation
240 * point, so we don't need to do the
241 * test-cancellation dance. We may get woken
242 * up spuriously by pthread_cancel, though,
243 * but it's okay since we're just going to
244 * retry.
245 */
246 pthread_spinlock(self, &self->pt_statelock);
247 self->pt_state = PT_STATE_BLOCKED_QUEUE;
248 self->pt_sleepobj = mutex;
249 self->pt_sleepq = &mutex->ptm_blocked;
250 self->pt_sleeplock = &mutex->ptm_interlock;
251 pthread_spinunlock(self, &self->pt_statelock);
252
253 pthread__block(self, &mutex->ptm_interlock);
254 /* interlock is not held when we return */
255 } else {
256 pthread_spinunlock(self, &mutex->ptm_interlock);
257 }
258 /* Go around for another try. */
259 }
260
261 return 0;
262 }
263
264
265 int
266 pthread_mutex_trylock(pthread_mutex_t *mutex)
267 {
268 pthread_t self = pthread__self();
269
270 #ifdef ERRORCHECK
271 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
272 return EINVAL;
273 #endif
274
275 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
276 struct mutex_private *mp;
277
278 GET_MUTEX_PRIVATE(mutex, mp);
279
280 /*
281 * These tests can be performed without holding the
282 * interlock because these fields are only modified
283 * if we know we own the mutex.
284 */
285 if (mutex->ptm_owner == self) {
286 switch (mp->type) {
287 case PTHREAD_MUTEX_ERRORCHECK:
288 return EDEADLK;
289
290 case PTHREAD_MUTEX_RECURSIVE:
291 if (mp->recursecount == INT_MAX)
292 return EAGAIN;
293 mp->recursecount++;
294 return 0;
295 }
296 }
297
298 return EBUSY;
299 }
300
301 mutex->ptm_owner = self;
302
303 return 0;
304 }
305
306
307 int
308 pthread_mutex_unlock(pthread_mutex_t *mutex)
309 {
310 struct mutex_private *mp;
311 pthread_t self, blocked;
312
313 self = pthread__self();
314
315 #ifdef ERRORCHECK
316 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
317 return EINVAL;
318
319 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
320 return EPERM; /* Not exactly the right error. */
321 #endif
322
323 GET_MUTEX_PRIVATE(mutex, mp);
324
325 /*
326 * These tests can be performed without holding the
327 * interlock because these fields are only modified
328 * if we know we own the mutex.
329 */
330 switch (mp->type) {
331 case PTHREAD_MUTEX_ERRORCHECK:
332 if (mutex->ptm_owner != self)
333 return EPERM;
334 break;
335
336 case PTHREAD_MUTEX_RECURSIVE:
337 if (mutex->ptm_owner != self)
338 return EPERM;
339 if (mp->recursecount != 0) {
340 mp->recursecount--;
341 return 0;
342 }
343 break;
344 }
345
346 pthread_spinlock(self, &mutex->ptm_interlock);
347 blocked = PTQ_FIRST(&mutex->ptm_blocked);
348 if (blocked)
349 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
350 mutex->ptm_owner = NULL;
351 pthread__simple_unlock(&mutex->ptm_lock);
352 pthread_spinunlock(self, &mutex->ptm_interlock);
353
354 /* Give the head of the blocked queue another try. */
355 if (blocked)
356 pthread__sched(self, blocked);
357
358 return 0;
359 }
360
361 int
362 pthread_mutexattr_init(pthread_mutexattr_t *attr)
363 {
364 struct mutexattr_private *map;
365
366 #ifdef ERRORCHECK
367 if (attr == NULL)
368 return EINVAL;
369 #endif
370
371 map = malloc(sizeof(*map));
372 if (map == NULL)
373 return ENOMEM;
374
375 *map = mutexattr_private_default;
376
377 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
378 attr->ptma_private = map;
379
380 return 0;
381 }
382
383
384 int
385 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
386 {
387
388 #ifdef ERRORCHECK
389 if ((attr == NULL) ||
390 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
391 return EINVAL;
392 #endif
393
394 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
395 if (attr->ptma_private != NULL)
396 free(attr->ptma_private);
397
398 return 0;
399 }
400
401
402 int
403 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
404 {
405 struct mutexattr_private *map;
406
407 #ifdef ERRORCHECK
408 if ((attr == NULL) ||
409 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
410 (typep == NULL))
411 return EINVAL;
412 #endif
413
414 map = attr->ptma_private;
415
416 *typep = map->type;
417
418 return 0;
419 }
420
421
422 int
423 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
424 {
425 struct mutexattr_private *map;
426
427 #ifdef ERRORCHECK
428 if ((attr == NULL) ||
429 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
430 return EINVAL;
431 #endif
432 map = attr->ptma_private;
433
434 switch (type) {
435 case PTHREAD_MUTEX_NORMAL:
436 case PTHREAD_MUTEX_ERRORCHECK:
437 case PTHREAD_MUTEX_RECURSIVE:
438 map->type = type;
439 break;
440
441 default:
442 return EINVAL;
443 }
444
445 return 0;
446 }
447
448
449 int
450 pthread_once(pthread_once_t *once_control, void (*routine)(void))
451 {
452
453 if (once_control->pto_done == 0) {
454 pthread_mutex_lock(&once_control->pto_mutex);
455 if (once_control->pto_done == 0) {
456 routine();
457 once_control->pto_done = 1;
458 }
459 pthread_mutex_unlock(&once_control->pto_mutex);
460 }
461
462 return 0;
463 }
464