pthread_mutex.c revision 1.60.2.1 1 /* $NetBSD: pthread_mutex.c,v 1.60.2.1 2016/07/26 03:24:15 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.60.2.1 2016/07/26 03:24:15 pgoyette Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 #define MUTEX_THREAD ((uintptr_t)~0x0f)
73
74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78
79 #define MUTEX_GET_TYPE(x) \
80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define MUTEX_SET_TYPE(x, t) \
82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define MUTEX_GET_PROTOCOL(x) \
84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define MUTEX_SET_PROTOCOL(x, p) \
86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define MUTEX_GET_CEILING(x) \
88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define MUTEX_SET_CEILING(x, c) \
90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91
92 #if __GNUC_PREREQ__(3, 0)
93 #define NOINLINE __attribute ((noinline))
94 #else
95 #define NOINLINE /* nothing */
96 #endif
97
98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 const struct timespec *);
101 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void pthread__mutex_pause(void);
103
104 int _pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 uintptr_t type, proto, val, ceil;
124
125 if (__predict_false(__uselibcstub))
126 return __libc_mutex_init_stub(ptm, attr);
127
128 if (attr == NULL) {
129 type = PTHREAD_MUTEX_NORMAL;
130 proto = PTHREAD_PRIO_NONE;
131 ceil = 0;
132 } else {
133 val = (uintptr_t)attr->ptma_private;
134
135 type = MUTEX_GET_TYPE(val);
136 proto = MUTEX_GET_PROTOCOL(val);
137 ceil = MUTEX_GET_CEILING(val);
138 }
139 switch (type) {
140 case PTHREAD_MUTEX_ERRORCHECK:
141 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 ptm->ptm_owner = NULL;
143 break;
144 case PTHREAD_MUTEX_RECURSIVE:
145 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 break;
148 default:
149 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 ptm->ptm_owner = NULL;
151 break;
152 }
153 switch (proto) {
154 case PTHREAD_PRIO_PROTECT:
155 val = (uintptr_t)ptm->ptm_owner;
156 val |= MUTEX_PROTECT_BIT;
157 ptm->ptm_owner = (void *)val;
158 break;
159
160 }
161 ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 ptm->ptm_waiters = NULL;
163 ptm->ptm_recursed = 0;
164 ptm->ptm_ceiling = (unsigned char)ceil;
165
166 return 0;
167 }
168
169 int
170 pthread_mutex_destroy(pthread_mutex_t *ptm)
171 {
172
173 if (__predict_false(__uselibcstub))
174 return __libc_mutex_destroy_stub(ptm);
175
176 pthread__error(EINVAL, "Invalid mutex",
177 ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 pthread__error(EBUSY, "Destroying locked mutex",
179 MUTEX_OWNER(ptm->ptm_owner) == 0);
180
181 ptm->ptm_magic = _PT_MUTEX_DEAD;
182 return 0;
183 }
184
185 int
186 pthread_mutex_lock(pthread_mutex_t *ptm)
187 {
188 pthread_t self;
189 void *val;
190
191 if (__predict_false(__uselibcstub))
192 return __libc_mutex_lock_stub(ptm);
193
194 self = pthread__self();
195 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 if (__predict_true(val == NULL)) {
197 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 membar_enter();
199 #endif
200 return 0;
201 }
202 return pthread__mutex_lock_slow(ptm, NULL);
203 }
204
205 int
206 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 {
208 pthread_t self;
209 void *val;
210
211 self = pthread__self();
212 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 if (__predict_true(val == NULL)) {
214 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 membar_enter();
216 #endif
217 return 0;
218 }
219 return pthread__mutex_lock_slow(ptm, ts);
220 }
221
222 /* We want function call overhead. */
223 NOINLINE static void
224 pthread__mutex_pause(void)
225 {
226
227 pthread__smt_pause();
228 }
229
230 /*
231 * Spin while the holder is running. 'lwpctl' gives us the true
232 * status of the thread. pt_blocking is set by libpthread in order
233 * to cut out system call and kernel spinlock overhead on remote CPUs
234 * (could represent many thousands of clock cycles). pt_blocking also
235 * makes this thread yield if the target is calling sched_yield().
236 */
237 NOINLINE static void *
238 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 {
240 pthread_t thread;
241 unsigned int count, i;
242
243 for (count = 2;; owner = ptm->ptm_owner) {
244 thread = (pthread_t)MUTEX_OWNER(owner);
245 if (thread == NULL)
246 break;
247 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 thread->pt_blocking)
249 break;
250 if (count < 128)
251 count += count;
252 for (i = count; i != 0; i--)
253 pthread__mutex_pause();
254 }
255
256 return owner;
257 }
258
259 NOINLINE static void
260 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 {
262 void *new, *owner;
263
264 /*
265 * Note that the mutex can become unlocked before we set
266 * the waiters bit. If that happens it's not safe to sleep
267 * as we may never be awoken: we must remove the current
268 * thread from the waiters list and try again.
269 *
270 * Because we are doing this atomically, we can't remove
271 * one waiter: we must remove all waiters and awken them,
272 * then sleep in _lwp_park() until we have been awoken.
273 *
274 * Issue a memory barrier to ensure that we are reading
275 * the value of ptm_owner/pt_mutexwait after we have entered
276 * the waiters list (the CAS itself must be atomic).
277 */
278 again:
279 membar_consumer();
280 owner = ptm->ptm_owner;
281
282 if (MUTEX_OWNER(owner) == 0) {
283 pthread__mutex_wakeup(self, ptm);
284 return;
285 }
286 if (!MUTEX_HAS_WAITERS(owner)) {
287 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 goto again;
290 }
291 }
292
293 /*
294 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 * We cannot know if the presence of the waiters bit is stable
296 * while the holding thread is running. There are many assumptions;
297 * see sys/kern/kern_mutex.c for details. In short, we must spin if
298 * we see that the holder is running again.
299 */
300 membar_sync();
301 pthread__mutex_spin(ptm, owner);
302
303 if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
304 goto again;
305 }
306 }
307
308 NOINLINE static int
309 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
310 {
311 void *waiters, *new, *owner, *next;
312 pthread_t self;
313 int serrno;
314 int error;
315
316 pthread__error(EINVAL, "Invalid mutex",
317 ptm->ptm_magic == _PT_MUTEX_MAGIC);
318
319 owner = ptm->ptm_owner;
320 self = pthread__self();
321
322 /* Recursive or errorcheck? */
323 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
324 if (MUTEX_RECURSIVE(owner)) {
325 if (ptm->ptm_recursed == INT_MAX)
326 return EAGAIN;
327 ptm->ptm_recursed++;
328 return 0;
329 }
330 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
331 return EDEADLK;
332 }
333
334 /* priority protect */
335 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
336 return errno;
337 }
338 serrno = errno;
339 for (;; owner = ptm->ptm_owner) {
340 /* Spin while the owner is running. */
341 owner = pthread__mutex_spin(ptm, owner);
342
343 /* If it has become free, try to acquire it again. */
344 if (MUTEX_OWNER(owner) == 0) {
345 do {
346 new = (void *)
347 ((uintptr_t)self | (uintptr_t)owner);
348 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
349 new);
350 if (next == owner) {
351 errno = serrno;
352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 membar_enter();
354 #endif
355 return 0;
356 }
357 owner = next;
358 } while (MUTEX_OWNER(owner) == 0);
359 /*
360 * We have lost the race to acquire the mutex.
361 * The new owner could be running on another
362 * CPU, in which case we should spin and avoid
363 * the overhead of blocking.
364 */
365 continue;
366 }
367
368 /*
369 * Nope, still held. Add thread to the list of waiters.
370 * Issue a memory barrier to ensure mutexwait/mutexnext
371 * are visible before we enter the waiters list.
372 */
373 self->pt_mutexwait = 1;
374 for (waiters = ptm->ptm_waiters;; waiters = next) {
375 self->pt_mutexnext = waiters;
376 membar_producer();
377 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
378 if (next == waiters)
379 break;
380 }
381
382 /* Set the waiters bit and block. */
383 pthread__mutex_setwaiters(self, ptm);
384
385 /*
386 * We may have been awoken by the current thread above,
387 * or will be awoken by the current holder of the mutex.
388 * The key requirement is that we must not proceed until
389 * told that we are no longer waiting (via pt_mutexwait
390 * being set to zero). Otherwise it is unsafe to re-enter
391 * the thread onto the waiters list.
392 */
393 while (self->pt_mutexwait) {
394 self->pt_blocking++;
395 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, ts,
396 self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
397 __UNVOLATILE(&ptm->ptm_waiters));
398 self->pt_unpark = 0;
399 self->pt_blocking--;
400 membar_sync();
401 if (__predict_true(error != -1)) {
402 continue;
403 }
404 if (errno == ETIMEDOUT && self->pt_mutexwait) {
405 /*Remove self from waiters list*/
406 pthread__mutex_wakeup(self, ptm);
407 /*priority protect*/
408 if (MUTEX_PROTECT(owner))
409 (void)_sched_protect(-1);
410 return ETIMEDOUT;
411 }
412 }
413 }
414 }
415
416 int
417 pthread_mutex_trylock(pthread_mutex_t *ptm)
418 {
419 pthread_t self;
420 void *val, *new, *next;
421
422 if (__predict_false(__uselibcstub))
423 return __libc_mutex_trylock_stub(ptm);
424
425 self = pthread__self();
426 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
427 if (__predict_true(val == NULL)) {
428 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
429 membar_enter();
430 #endif
431 return 0;
432 }
433
434 if (MUTEX_RECURSIVE(val)) {
435 if (MUTEX_OWNER(val) == 0) {
436 new = (void *)((uintptr_t)self | (uintptr_t)val);
437 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
438 if (__predict_true(next == val)) {
439 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
440 membar_enter();
441 #endif
442 return 0;
443 }
444 }
445 if (MUTEX_OWNER(val) == (uintptr_t)self) {
446 if (ptm->ptm_recursed == INT_MAX)
447 return EAGAIN;
448 ptm->ptm_recursed++;
449 return 0;
450 }
451 }
452
453 return EBUSY;
454 }
455
456 int
457 pthread_mutex_unlock(pthread_mutex_t *ptm)
458 {
459 pthread_t self;
460 void *value;
461
462 if (__predict_false(__uselibcstub))
463 return __libc_mutex_unlock_stub(ptm);
464
465 /*
466 * Note this may be a non-interlocked CAS. See lock_slow()
467 * above and sys/kern/kern_mutex.c for details.
468 */
469 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
470 membar_exit();
471 #endif
472 self = pthread__self();
473 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
474 if (__predict_true(value == self)) {
475 pthread__smt_wake();
476 return 0;
477 }
478 return pthread__mutex_unlock_slow(ptm);
479 }
480
481 NOINLINE static int
482 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
483 {
484 pthread_t self, owner, new;
485 int weown, error, deferred;
486
487 pthread__error(EINVAL, "Invalid mutex",
488 ptm->ptm_magic == _PT_MUTEX_MAGIC);
489
490 self = pthread__self();
491 owner = ptm->ptm_owner;
492 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
493 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
494 error = 0;
495
496 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
497 if (!weown) {
498 error = EPERM;
499 new = owner;
500 } else {
501 new = NULL;
502 }
503 } else if (MUTEX_RECURSIVE(owner)) {
504 if (!weown) {
505 error = EPERM;
506 new = owner;
507 } else if (ptm->ptm_recursed) {
508 ptm->ptm_recursed--;
509 new = owner;
510 } else {
511 new = (pthread_t)MUTEX_RECURSIVE_BIT;
512 }
513 } else {
514 pthread__error(EPERM,
515 "Unlocking unlocked mutex", (owner != NULL));
516 pthread__error(EPERM,
517 "Unlocking mutex owned by another thread", weown);
518 new = NULL;
519 }
520
521 /*
522 * Release the mutex. If there appear to be waiters, then
523 * wake them up.
524 */
525 if (new != owner) {
526 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
527 if (__predict_false(MUTEX_PROTECT(owner))) {
528 /* restore elevated priority */
529 (void)_sched_protect(-1);
530 }
531 if (MUTEX_HAS_WAITERS(owner) != 0) {
532 pthread__mutex_wakeup(self, ptm);
533 return 0;
534 }
535 }
536
537 /*
538 * There were no waiters, but we may have deferred waking
539 * other threads until mutex unlock - we must wake them now.
540 */
541 if (!deferred)
542 return error;
543
544 if (self->pt_nwaiters == 1) {
545 /*
546 * If the calling thread is about to block, defer
547 * unparking the target until _lwp_park() is called.
548 */
549 if (self->pt_willpark && self->pt_unpark == 0) {
550 self->pt_unpark = self->pt_waiters[0];
551 } else {
552 (void)_lwp_unpark(self->pt_waiters[0],
553 __UNVOLATILE(&ptm->ptm_waiters));
554 }
555 } else {
556 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
557 __UNVOLATILE(&ptm->ptm_waiters));
558 }
559 self->pt_nwaiters = 0;
560
561 return error;
562 }
563
564 /*
565 * pthread__mutex_wakeup: unpark threads waiting for us
566 *
567 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
568 */
569
570 static void
571 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
572 {
573 pthread_t thread, next;
574 ssize_t n, rv;
575
576 /*
577 * Take ownership of the current set of waiters. No
578 * need for a memory barrier following this, all loads
579 * are dependent upon 'thread'.
580 */
581 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
582 pthread__smt_wake();
583
584 for (;;) {
585 /*
586 * Pull waiters from the queue and add to our list.
587 * Use a memory barrier to ensure that we safely
588 * read the value of pt_mutexnext before 'thread'
589 * sees pt_mutexwait being cleared.
590 */
591 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
592 n < pthread__unpark_max && thread != NULL;
593 thread = next) {
594 next = thread->pt_mutexnext;
595 if (thread != self) {
596 self->pt_waiters[n++] = thread->pt_lid;
597 membar_sync();
598 }
599 thread->pt_mutexwait = 0;
600 /* No longer safe to touch 'thread' */
601 }
602
603 switch (n) {
604 case 0:
605 return;
606 case 1:
607 /*
608 * If the calling thread is about to block,
609 * defer unparking the target until _lwp_park()
610 * is called.
611 */
612 if (self->pt_willpark && self->pt_unpark == 0) {
613 self->pt_unpark = self->pt_waiters[0];
614 return;
615 }
616 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
617 __UNVOLATILE(&ptm->ptm_waiters));
618 if (rv != 0 && errno != EALREADY && errno != EINTR &&
619 errno != ESRCH) {
620 pthread__errorfunc(__FILE__, __LINE__,
621 __func__, "_lwp_unpark failed");
622 }
623 return;
624 default:
625 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
626 __UNVOLATILE(&ptm->ptm_waiters));
627 if (rv != 0 && errno != EINTR) {
628 pthread__errorfunc(__FILE__, __LINE__,
629 __func__, "_lwp_unpark_all failed");
630 }
631 break;
632 }
633 }
634 }
635
636 int
637 pthread_mutexattr_init(pthread_mutexattr_t *attr)
638 {
639 if (__predict_false(__uselibcstub))
640 return __libc_mutexattr_init_stub(attr);
641
642 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
643 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
644 return 0;
645 }
646
647 int
648 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
649 {
650 if (__predict_false(__uselibcstub))
651 return __libc_mutexattr_destroy_stub(attr);
652
653 pthread__error(EINVAL, "Invalid mutex attribute",
654 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
655
656 return 0;
657 }
658
659 int
660 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
661 {
662
663 pthread__error(EINVAL, "Invalid mutex attribute",
664 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
665
666 *typep = MUTEX_GET_TYPE(attr->ptma_private);
667 return 0;
668 }
669
670 int
671 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
672 {
673
674 if (__predict_false(__uselibcstub))
675 return __libc_mutexattr_settype_stub(attr, type);
676
677 pthread__error(EINVAL, "Invalid mutex attribute",
678 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
679
680 switch (type) {
681 case PTHREAD_MUTEX_NORMAL:
682 case PTHREAD_MUTEX_ERRORCHECK:
683 case PTHREAD_MUTEX_RECURSIVE:
684 MUTEX_SET_TYPE(attr->ptma_private, type);
685 return 0;
686 default:
687 return EINVAL;
688 }
689 }
690
691 int
692 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
693 {
694
695 pthread__error(EINVAL, "Invalid mutex attribute",
696 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
697
698 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
699 return 0;
700 }
701
702 int
703 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
704 {
705
706 pthread__error(EINVAL, "Invalid mutex attribute",
707 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
708
709 switch (proto) {
710 case PTHREAD_PRIO_NONE:
711 case PTHREAD_PRIO_PROTECT:
712 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
713 return 0;
714 case PTHREAD_PRIO_INHERIT:
715 return ENOTSUP;
716 default:
717 return EINVAL;
718 }
719 }
720
721 int
722 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
723 {
724
725 pthread__error(EINVAL, "Invalid mutex attribute",
726 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
727
728 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
729 return 0;
730 }
731
732 int
733 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
734 {
735
736 pthread__error(EINVAL, "Invalid mutex attribute",
737 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
738
739 if (ceil & ~0xff)
740 return EINVAL;
741
742 MUTEX_SET_CEILING(attr->ptma_private, ceil);
743 return 0;
744 }
745
746 #ifdef _PTHREAD_PSHARED
747 int
748 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
749 int * __restrict pshared)
750 {
751
752 *pshared = PTHREAD_PROCESS_PRIVATE;
753 return 0;
754 }
755
756 int
757 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
758 {
759
760 switch(pshared) {
761 case PTHREAD_PROCESS_PRIVATE:
762 return 0;
763 case PTHREAD_PROCESS_SHARED:
764 return ENOSYS;
765 }
766 return EINVAL;
767 }
768 #endif
769
770 /*
771 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
772 *
773 * In order to avoid unnecessary contention on the interlocking mutex,
774 * we defer waking up threads until we unlock the mutex. The threads will
775 * be woken up when the calling thread (self) releases the first mutex with
776 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
777 * even if it isn't.
778 */
779
780 void
781 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
782 {
783
784 if (__predict_false(ptm == NULL ||
785 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
786 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
787 __UNVOLATILE(&ptm->ptm_waiters));
788 self->pt_nwaiters = 0;
789 } else {
790 atomic_or_ulong((volatile unsigned long *)
791 (uintptr_t)&ptm->ptm_owner,
792 (unsigned long)MUTEX_DEFERRED_BIT);
793 }
794 }
795
796 int
797 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
798 {
799 *ceil = ptm->ptm_ceiling;
800 return 0;
801 }
802
803 int
804 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
805 {
806 int error;
807
808 error = pthread_mutex_lock(ptm);
809 if (error == 0) {
810 *old_ceil = ptm->ptm_ceiling;
811 /*check range*/
812 ptm->ptm_ceiling = ceil;
813 pthread_mutex_unlock(ptm);
814 }
815 return error;
816 }
817
818 int
819 _pthread_mutex_held_np(pthread_mutex_t *ptm)
820 {
821
822 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
823 }
824
825 pthread_t
826 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
827 {
828
829 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
830 }
831