pthread_mutex.c revision 1.64 1 /* $NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 #define MUTEX_THREAD ((uintptr_t)~0x0f)
73
74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78
79 #define MUTEX_GET_TYPE(x) \
80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define MUTEX_SET_TYPE(x, t) \
82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define MUTEX_GET_PROTOCOL(x) \
84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define MUTEX_SET_PROTOCOL(x, p) \
86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define MUTEX_GET_CEILING(x) \
88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define MUTEX_SET_CEILING(x, c) \
90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91
92 #if __GNUC_PREREQ__(3, 0)
93 #define NOINLINE __attribute ((noinline))
94 #else
95 #define NOINLINE /* nothing */
96 #endif
97
98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 const struct timespec *);
101 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void pthread__mutex_pause(void);
103
104 int _pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 uintptr_t type, proto, val, ceil;
124
125 if (__predict_false(__uselibcstub))
126 return __libc_mutex_init_stub(ptm, attr);
127
128 if (attr == NULL) {
129 type = PTHREAD_MUTEX_NORMAL;
130 proto = PTHREAD_PRIO_NONE;
131 ceil = 0;
132 } else {
133 val = (uintptr_t)attr->ptma_private;
134
135 type = MUTEX_GET_TYPE(val);
136 proto = MUTEX_GET_PROTOCOL(val);
137 ceil = MUTEX_GET_CEILING(val);
138 }
139 switch (type) {
140 case PTHREAD_MUTEX_ERRORCHECK:
141 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 ptm->ptm_owner = NULL;
143 break;
144 case PTHREAD_MUTEX_RECURSIVE:
145 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 break;
148 default:
149 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 ptm->ptm_owner = NULL;
151 break;
152 }
153 switch (proto) {
154 case PTHREAD_PRIO_PROTECT:
155 val = (uintptr_t)ptm->ptm_owner;
156 val |= MUTEX_PROTECT_BIT;
157 ptm->ptm_owner = (void *)val;
158 break;
159
160 }
161 ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 ptm->ptm_waiters = NULL;
163 ptm->ptm_recursed = 0;
164 ptm->ptm_ceiling = (unsigned char)ceil;
165
166 return 0;
167 }
168
169 int
170 pthread_mutex_destroy(pthread_mutex_t *ptm)
171 {
172
173 if (__predict_false(__uselibcstub))
174 return __libc_mutex_destroy_stub(ptm);
175
176 pthread__error(EINVAL, "Invalid mutex",
177 ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 pthread__error(EBUSY, "Destroying locked mutex",
179 MUTEX_OWNER(ptm->ptm_owner) == 0);
180
181 ptm->ptm_magic = _PT_MUTEX_DEAD;
182 return 0;
183 }
184
185 int
186 pthread_mutex_lock(pthread_mutex_t *ptm)
187 {
188 pthread_t self;
189 void *val;
190
191 if (__predict_false(__uselibcstub))
192 return __libc_mutex_lock_stub(ptm);
193
194 self = pthread__self();
195 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 if (__predict_true(val == NULL)) {
197 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 membar_enter();
199 #endif
200 return 0;
201 }
202 return pthread__mutex_lock_slow(ptm, NULL);
203 }
204
205 int
206 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 {
208 pthread_t self;
209 void *val;
210
211 self = pthread__self();
212 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 if (__predict_true(val == NULL)) {
214 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 membar_enter();
216 #endif
217 return 0;
218 }
219 return pthread__mutex_lock_slow(ptm, ts);
220 }
221
222 /* We want function call overhead. */
223 NOINLINE static void
224 pthread__mutex_pause(void)
225 {
226
227 pthread__smt_pause();
228 }
229
230 /*
231 * Spin while the holder is running. 'lwpctl' gives us the true
232 * status of the thread. pt_blocking is set by libpthread in order
233 * to cut out system call and kernel spinlock overhead on remote CPUs
234 * (could represent many thousands of clock cycles). pt_blocking also
235 * makes this thread yield if the target is calling sched_yield().
236 */
237 NOINLINE static void *
238 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 {
240 pthread_t thread;
241 unsigned int count, i;
242
243 for (count = 2;; owner = ptm->ptm_owner) {
244 thread = (pthread_t)MUTEX_OWNER(owner);
245 if (thread == NULL)
246 break;
247 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 thread->pt_blocking)
249 break;
250 if (count < 128)
251 count += count;
252 for (i = count; i != 0; i--)
253 pthread__mutex_pause();
254 }
255
256 return owner;
257 }
258
259 NOINLINE static void
260 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 {
262 void *new, *owner;
263
264 /*
265 * Note that the mutex can become unlocked before we set
266 * the waiters bit. If that happens it's not safe to sleep
267 * as we may never be awoken: we must remove the current
268 * thread from the waiters list and try again.
269 *
270 * Because we are doing this atomically, we can't remove
271 * one waiter: we must remove all waiters and awken them,
272 * then sleep in _lwp_park() until we have been awoken.
273 *
274 * Issue a memory barrier to ensure that we are reading
275 * the value of ptm_owner/pt_mutexwait after we have entered
276 * the waiters list (the CAS itself must be atomic).
277 */
278 again:
279 membar_consumer();
280 owner = ptm->ptm_owner;
281
282 if (MUTEX_OWNER(owner) == 0) {
283 pthread__mutex_wakeup(self, ptm);
284 return;
285 }
286 if (!MUTEX_HAS_WAITERS(owner)) {
287 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 goto again;
290 }
291 }
292
293 /*
294 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 * We cannot know if the presence of the waiters bit is stable
296 * while the holding thread is running. There are many assumptions;
297 * see sys/kern/kern_mutex.c for details. In short, we must spin if
298 * we see that the holder is running again.
299 */
300 membar_sync();
301 if (MUTEX_OWNER(owner) != (uintptr_t)self)
302 pthread__mutex_spin(ptm, owner);
303
304 if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
305 goto again;
306 }
307 }
308
309 NOINLINE static int
310 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
311 {
312 void *waiters, *new, *owner, *next;
313 pthread_t self;
314 int serrno;
315 int error;
316
317 pthread__error(EINVAL, "Invalid mutex",
318 ptm->ptm_magic == _PT_MUTEX_MAGIC);
319
320 owner = ptm->ptm_owner;
321 self = pthread__self();
322
323 /* Recursive or errorcheck? */
324 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
325 if (MUTEX_RECURSIVE(owner)) {
326 if (ptm->ptm_recursed == INT_MAX)
327 return EAGAIN;
328 ptm->ptm_recursed++;
329 return 0;
330 }
331 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
332 return EDEADLK;
333 }
334
335 /* priority protect */
336 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
337 return errno;
338 }
339 serrno = errno;
340 for (;; owner = ptm->ptm_owner) {
341 /* Spin while the owner is running. */
342 if (MUTEX_OWNER(owner) != (uintptr_t)self)
343 owner = pthread__mutex_spin(ptm, owner);
344
345 /* If it has become free, try to acquire it again. */
346 if (MUTEX_OWNER(owner) == 0) {
347 do {
348 new = (void *)
349 ((uintptr_t)self | (uintptr_t)owner);
350 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
351 new);
352 if (next == owner) {
353 errno = serrno;
354 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
355 membar_enter();
356 #endif
357 return 0;
358 }
359 owner = next;
360 } while (MUTEX_OWNER(owner) == 0);
361 /*
362 * We have lost the race to acquire the mutex.
363 * The new owner could be running on another
364 * CPU, in which case we should spin and avoid
365 * the overhead of blocking.
366 */
367 continue;
368 }
369
370 /*
371 * Nope, still held. Add thread to the list of waiters.
372 * Issue a memory barrier to ensure mutexwait/mutexnext
373 * are visible before we enter the waiters list.
374 */
375 self->pt_mutexwait = 1;
376 for (waiters = ptm->ptm_waiters;; waiters = next) {
377 self->pt_mutexnext = waiters;
378 membar_producer();
379 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
380 if (next == waiters)
381 break;
382 }
383
384 /* Set the waiters bit and block. */
385 pthread__mutex_setwaiters(self, ptm);
386
387 /*
388 * We may have been awoken by the current thread above,
389 * or will be awoken by the current holder of the mutex.
390 * The key requirement is that we must not proceed until
391 * told that we are no longer waiting (via pt_mutexwait
392 * being set to zero). Otherwise it is unsafe to re-enter
393 * the thread onto the waiters list.
394 */
395 while (self->pt_mutexwait) {
396 self->pt_blocking++;
397 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
398 __UNCONST(ts), self->pt_unpark,
399 __UNVOLATILE(&ptm->ptm_waiters),
400 __UNVOLATILE(&ptm->ptm_waiters));
401 self->pt_unpark = 0;
402 self->pt_blocking--;
403 membar_sync();
404 if (__predict_true(error != -1)) {
405 continue;
406 }
407 if (errno == ETIMEDOUT && self->pt_mutexwait) {
408 /*Remove self from waiters list*/
409 pthread__mutex_wakeup(self, ptm);
410 /*priority protect*/
411 if (MUTEX_PROTECT(owner))
412 (void)_sched_protect(-1);
413 return ETIMEDOUT;
414 }
415 }
416 }
417 }
418
419 int
420 pthread_mutex_trylock(pthread_mutex_t *ptm)
421 {
422 pthread_t self;
423 void *val, *new, *next;
424
425 if (__predict_false(__uselibcstub))
426 return __libc_mutex_trylock_stub(ptm);
427
428 self = pthread__self();
429 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
430 if (__predict_true(val == NULL)) {
431 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
432 membar_enter();
433 #endif
434 return 0;
435 }
436
437 if (MUTEX_RECURSIVE(val)) {
438 if (MUTEX_OWNER(val) == 0) {
439 new = (void *)((uintptr_t)self | (uintptr_t)val);
440 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
441 if (__predict_true(next == val)) {
442 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
443 membar_enter();
444 #endif
445 return 0;
446 }
447 }
448 if (MUTEX_OWNER(val) == (uintptr_t)self) {
449 if (ptm->ptm_recursed == INT_MAX)
450 return EAGAIN;
451 ptm->ptm_recursed++;
452 return 0;
453 }
454 }
455
456 return EBUSY;
457 }
458
459 int
460 pthread_mutex_unlock(pthread_mutex_t *ptm)
461 {
462 pthread_t self;
463 void *value;
464
465 if (__predict_false(__uselibcstub))
466 return __libc_mutex_unlock_stub(ptm);
467
468 /*
469 * Note this may be a non-interlocked CAS. See lock_slow()
470 * above and sys/kern/kern_mutex.c for details.
471 */
472 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
473 membar_exit();
474 #endif
475 self = pthread__self();
476 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
477 if (__predict_true(value == self)) {
478 pthread__smt_wake();
479 return 0;
480 }
481 return pthread__mutex_unlock_slow(ptm);
482 }
483
484 NOINLINE static int
485 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
486 {
487 pthread_t self, owner, new;
488 int weown, error, deferred;
489
490 pthread__error(EINVAL, "Invalid mutex",
491 ptm->ptm_magic == _PT_MUTEX_MAGIC);
492
493 self = pthread__self();
494 owner = ptm->ptm_owner;
495 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
496 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
497 error = 0;
498
499 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
500 if (!weown) {
501 error = EPERM;
502 new = owner;
503 } else {
504 new = NULL;
505 }
506 } else if (MUTEX_RECURSIVE(owner)) {
507 if (!weown) {
508 error = EPERM;
509 new = owner;
510 } else if (ptm->ptm_recursed) {
511 ptm->ptm_recursed--;
512 new = owner;
513 } else {
514 new = (pthread_t)MUTEX_RECURSIVE_BIT;
515 }
516 } else {
517 pthread__error(EPERM,
518 "Unlocking unlocked mutex", (owner != NULL));
519 pthread__error(EPERM,
520 "Unlocking mutex owned by another thread", weown);
521 new = NULL;
522 }
523
524 /*
525 * Release the mutex. If there appear to be waiters, then
526 * wake them up.
527 */
528 if (new != owner) {
529 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
530 if (__predict_false(MUTEX_PROTECT(owner))) {
531 /* restore elevated priority */
532 (void)_sched_protect(-1);
533 }
534 if (MUTEX_HAS_WAITERS(owner) != 0) {
535 pthread__mutex_wakeup(self, ptm);
536 return 0;
537 }
538 }
539
540 /*
541 * There were no waiters, but we may have deferred waking
542 * other threads until mutex unlock - we must wake them now.
543 */
544 if (!deferred)
545 return error;
546
547 if (self->pt_nwaiters == 1) {
548 /*
549 * If the calling thread is about to block, defer
550 * unparking the target until _lwp_park() is called.
551 */
552 if (self->pt_willpark && self->pt_unpark == 0) {
553 self->pt_unpark = self->pt_waiters[0];
554 } else {
555 (void)_lwp_unpark(self->pt_waiters[0],
556 __UNVOLATILE(&ptm->ptm_waiters));
557 }
558 } else {
559 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
560 __UNVOLATILE(&ptm->ptm_waiters));
561 }
562 self->pt_nwaiters = 0;
563
564 return error;
565 }
566
567 /*
568 * pthread__mutex_wakeup: unpark threads waiting for us
569 *
570 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
571 */
572
573 static void
574 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
575 {
576 pthread_t thread, next;
577 ssize_t n, rv;
578
579 /*
580 * Take ownership of the current set of waiters. No
581 * need for a memory barrier following this, all loads
582 * are dependent upon 'thread'.
583 */
584 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
585 pthread__smt_wake();
586
587 for (;;) {
588 /*
589 * Pull waiters from the queue and add to our list.
590 * Use a memory barrier to ensure that we safely
591 * read the value of pt_mutexnext before 'thread'
592 * sees pt_mutexwait being cleared.
593 */
594 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
595 n < pthread__unpark_max && thread != NULL;
596 thread = next) {
597 next = thread->pt_mutexnext;
598 if (thread != self) {
599 self->pt_waiters[n++] = thread->pt_lid;
600 membar_sync();
601 }
602 thread->pt_mutexwait = 0;
603 /* No longer safe to touch 'thread' */
604 }
605
606 switch (n) {
607 case 0:
608 return;
609 case 1:
610 /*
611 * If the calling thread is about to block,
612 * defer unparking the target until _lwp_park()
613 * is called.
614 */
615 if (self->pt_willpark && self->pt_unpark == 0) {
616 self->pt_unpark = self->pt_waiters[0];
617 return;
618 }
619 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
620 __UNVOLATILE(&ptm->ptm_waiters));
621 if (rv != 0 && errno != EALREADY && errno != EINTR &&
622 errno != ESRCH) {
623 pthread__errorfunc(__FILE__, __LINE__,
624 __func__, "_lwp_unpark failed");
625 }
626 return;
627 default:
628 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
629 __UNVOLATILE(&ptm->ptm_waiters));
630 if (rv != 0 && errno != EINTR) {
631 pthread__errorfunc(__FILE__, __LINE__,
632 __func__, "_lwp_unpark_all failed");
633 }
634 break;
635 }
636 }
637 }
638
639 int
640 pthread_mutexattr_init(pthread_mutexattr_t *attr)
641 {
642 if (__predict_false(__uselibcstub))
643 return __libc_mutexattr_init_stub(attr);
644
645 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
646 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
647 return 0;
648 }
649
650 int
651 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
652 {
653 if (__predict_false(__uselibcstub))
654 return __libc_mutexattr_destroy_stub(attr);
655
656 pthread__error(EINVAL, "Invalid mutex attribute",
657 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
658
659 return 0;
660 }
661
662 int
663 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
664 {
665
666 pthread__error(EINVAL, "Invalid mutex attribute",
667 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
668
669 *typep = MUTEX_GET_TYPE(attr->ptma_private);
670 return 0;
671 }
672
673 int
674 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
675 {
676
677 if (__predict_false(__uselibcstub))
678 return __libc_mutexattr_settype_stub(attr, type);
679
680 pthread__error(EINVAL, "Invalid mutex attribute",
681 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
682
683 switch (type) {
684 case PTHREAD_MUTEX_NORMAL:
685 case PTHREAD_MUTEX_ERRORCHECK:
686 case PTHREAD_MUTEX_RECURSIVE:
687 MUTEX_SET_TYPE(attr->ptma_private, type);
688 return 0;
689 default:
690 return EINVAL;
691 }
692 }
693
694 int
695 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
696 {
697
698 pthread__error(EINVAL, "Invalid mutex attribute",
699 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
700
701 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
702 return 0;
703 }
704
705 int
706 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
707 {
708
709 pthread__error(EINVAL, "Invalid mutex attribute",
710 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
711
712 switch (proto) {
713 case PTHREAD_PRIO_NONE:
714 case PTHREAD_PRIO_PROTECT:
715 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
716 return 0;
717 case PTHREAD_PRIO_INHERIT:
718 return ENOTSUP;
719 default:
720 return EINVAL;
721 }
722 }
723
724 int
725 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
726 {
727
728 pthread__error(EINVAL, "Invalid mutex attribute",
729 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
730
731 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
732 return 0;
733 }
734
735 int
736 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
737 {
738
739 pthread__error(EINVAL, "Invalid mutex attribute",
740 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
741
742 if (ceil & ~0xff)
743 return EINVAL;
744
745 MUTEX_SET_CEILING(attr->ptma_private, ceil);
746 return 0;
747 }
748
749 #ifdef _PTHREAD_PSHARED
750 int
751 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
752 int * __restrict pshared)
753 {
754
755 *pshared = PTHREAD_PROCESS_PRIVATE;
756 return 0;
757 }
758
759 int
760 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
761 {
762
763 switch(pshared) {
764 case PTHREAD_PROCESS_PRIVATE:
765 return 0;
766 case PTHREAD_PROCESS_SHARED:
767 return ENOSYS;
768 }
769 return EINVAL;
770 }
771 #endif
772
773 /*
774 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
775 *
776 * In order to avoid unnecessary contention on the interlocking mutex,
777 * we defer waking up threads until we unlock the mutex. The threads will
778 * be woken up when the calling thread (self) releases the first mutex with
779 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
780 * even if it isn't.
781 */
782
783 void
784 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
785 {
786
787 if (__predict_false(ptm == NULL ||
788 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
789 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
790 __UNVOLATILE(&ptm->ptm_waiters));
791 self->pt_nwaiters = 0;
792 } else {
793 atomic_or_ulong((volatile unsigned long *)
794 (uintptr_t)&ptm->ptm_owner,
795 (unsigned long)MUTEX_DEFERRED_BIT);
796 }
797 }
798
799 int
800 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
801 {
802 *ceil = ptm->ptm_ceiling;
803 return 0;
804 }
805
806 int
807 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
808 {
809 int error;
810
811 error = pthread_mutex_lock(ptm);
812 if (error == 0) {
813 *old_ceil = ptm->ptm_ceiling;
814 /*check range*/
815 ptm->ptm_ceiling = ceil;
816 pthread_mutex_unlock(ptm);
817 }
818 return error;
819 }
820
821 int
822 _pthread_mutex_held_np(pthread_mutex_t *ptm)
823 {
824
825 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
826 }
827
828 pthread_t
829 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
830 {
831
832 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
833 }
834