pthread_mutex.c revision 1.66 1 /* $NetBSD: pthread_mutex.c,v 1.66 2020/01/13 18:22:56 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.66 2020/01/13 18:22:56 ad Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 #define MUTEX_THREAD ((uintptr_t)~0x0f)
73
74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78
79 #define MUTEX_GET_TYPE(x) \
80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define MUTEX_SET_TYPE(x, t) \
82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define MUTEX_GET_PROTOCOL(x) \
84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define MUTEX_SET_PROTOCOL(x, p) \
86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define MUTEX_GET_CEILING(x) \
88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define MUTEX_SET_CEILING(x, c) \
90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91
92 #if __GNUC_PREREQ__(3, 0)
93 #define NOINLINE __attribute ((noinline))
94 #else
95 #define NOINLINE /* nothing */
96 #endif
97
98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 const struct timespec *);
101 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void pthread__mutex_pause(void);
103
104 int _pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 uintptr_t type, proto, val, ceil;
124
125 #if 0
126 /*
127 * Always initialize the mutex structure, maybe be used later
128 * and the cost should be minimal.
129 */
130 if (__predict_false(__uselibcstub))
131 return __libc_mutex_init_stub(ptm, attr);
132 #endif
133
134 if (attr == NULL) {
135 type = PTHREAD_MUTEX_NORMAL;
136 proto = PTHREAD_PRIO_NONE;
137 ceil = 0;
138 } else {
139 val = (uintptr_t)attr->ptma_private;
140
141 type = MUTEX_GET_TYPE(val);
142 proto = MUTEX_GET_PROTOCOL(val);
143 ceil = MUTEX_GET_CEILING(val);
144 }
145 switch (type) {
146 case PTHREAD_MUTEX_ERRORCHECK:
147 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
148 ptm->ptm_owner = NULL;
149 break;
150 case PTHREAD_MUTEX_RECURSIVE:
151 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
152 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
153 break;
154 default:
155 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
156 ptm->ptm_owner = NULL;
157 break;
158 }
159 switch (proto) {
160 case PTHREAD_PRIO_PROTECT:
161 val = (uintptr_t)ptm->ptm_owner;
162 val |= MUTEX_PROTECT_BIT;
163 ptm->ptm_owner = (void *)val;
164 break;
165
166 }
167 ptm->ptm_magic = _PT_MUTEX_MAGIC;
168 ptm->ptm_waiters = NULL;
169 ptm->ptm_recursed = 0;
170 ptm->ptm_ceiling = (unsigned char)ceil;
171
172 return 0;
173 }
174
175 int
176 pthread_mutex_destroy(pthread_mutex_t *ptm)
177 {
178
179 if (__predict_false(__uselibcstub))
180 return __libc_mutex_destroy_stub(ptm);
181
182 pthread__error(EINVAL, "Invalid mutex",
183 ptm->ptm_magic == _PT_MUTEX_MAGIC);
184 pthread__error(EBUSY, "Destroying locked mutex",
185 MUTEX_OWNER(ptm->ptm_owner) == 0);
186
187 ptm->ptm_magic = _PT_MUTEX_DEAD;
188 return 0;
189 }
190
191 int
192 pthread_mutex_lock(pthread_mutex_t *ptm)
193 {
194 pthread_t self;
195 void *val;
196
197 if (__predict_false(__uselibcstub))
198 return __libc_mutex_lock_stub(ptm);
199
200 self = pthread__self();
201 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
202 if (__predict_true(val == NULL)) {
203 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
204 membar_enter();
205 #endif
206 return 0;
207 }
208 return pthread__mutex_lock_slow(ptm, NULL);
209 }
210
211 int
212 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
213 {
214 pthread_t self;
215 void *val;
216
217 self = pthread__self();
218 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
219 if (__predict_true(val == NULL)) {
220 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
221 membar_enter();
222 #endif
223 return 0;
224 }
225 return pthread__mutex_lock_slow(ptm, ts);
226 }
227
228 /* We want function call overhead. */
229 NOINLINE static void
230 pthread__mutex_pause(void)
231 {
232
233 pthread__smt_pause();
234 }
235
236 /*
237 * Spin while the holder is running. 'lwpctl' gives us the true
238 * status of the thread.
239 */
240 NOINLINE static void *
241 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
242 {
243 pthread_t thread;
244 unsigned int count, i;
245
246 for (count = 2;; owner = ptm->ptm_owner) {
247 thread = (pthread_t)MUTEX_OWNER(owner);
248 if (thread == NULL)
249 break;
250 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
251 break;
252 if (count < 128)
253 count += count;
254 for (i = count; i != 0; i--)
255 pthread__mutex_pause();
256 }
257
258 return owner;
259 }
260
261 NOINLINE static bool
262 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
263 {
264 void *owner, *next;
265
266 /*
267 * Note that the mutex can become unlocked before we set
268 * the waiters bit. If that happens it's not safe to sleep
269 * as we may never be awoken: we must remove the current
270 * thread from the waiters list and try again.
271 *
272 * Because we are doing this atomically, we can't remove
273 * one waiter: we must remove all waiters and awken them,
274 * then sleep in _lwp_park() until we have been awoken.
275 *
276 * Issue a memory barrier to ensure that we are reading
277 * the value of ptm_owner/pt_mutexwait after we have entered
278 * the waiters list (the CAS itself must be atomic).
279 */
280 for (owner = ptm->ptm_owner;; owner = next) {
281 if (MUTEX_OWNER(owner) == 0) {
282 pthread__mutex_wakeup(self, ptm);
283 return true;
284 }
285 if (MUTEX_HAS_WAITERS(owner)) {
286 return false;
287 }
288 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
289 (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
290 }
291 }
292
293 NOINLINE static int
294 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
295 {
296 void *waiters, *new, *owner, *next;
297 pthread_t self;
298 int serrno;
299 int error;
300
301 pthread__error(EINVAL, "Invalid mutex",
302 ptm->ptm_magic == _PT_MUTEX_MAGIC);
303
304 owner = ptm->ptm_owner;
305 self = pthread__self();
306
307 /* Recursive or errorcheck? */
308 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
309 if (MUTEX_RECURSIVE(owner)) {
310 if (ptm->ptm_recursed == INT_MAX)
311 return EAGAIN;
312 ptm->ptm_recursed++;
313 return 0;
314 }
315 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
316 return EDEADLK;
317 }
318
319 /* priority protect */
320 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
321 return errno;
322 }
323 serrno = errno;
324 for (;; owner = ptm->ptm_owner) {
325 /* Spin while the owner is running. */
326 if (MUTEX_OWNER(owner) != (uintptr_t)self)
327 owner = pthread__mutex_spin(ptm, owner);
328
329 /* If it has become free, try to acquire it again. */
330 if (MUTEX_OWNER(owner) == 0) {
331 do {
332 new = (void *)
333 ((uintptr_t)self | (uintptr_t)owner);
334 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
335 new);
336 if (next == owner) {
337 errno = serrno;
338 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
339 membar_enter();
340 #endif
341 return 0;
342 }
343 owner = next;
344 } while (MUTEX_OWNER(owner) == 0);
345 /*
346 * We have lost the race to acquire the mutex.
347 * The new owner could be running on another
348 * CPU, in which case we should spin and avoid
349 * the overhead of blocking.
350 */
351 continue;
352 }
353
354 /*
355 * Nope, still held. Add thread to the list of waiters.
356 * Issue a memory barrier to ensure mutexwait/mutexnext
357 * are visible before we enter the waiters list.
358 */
359 self->pt_mutexwait = 1;
360 for (waiters = ptm->ptm_waiters;; waiters = next) {
361 self->pt_mutexnext = waiters;
362 membar_producer();
363 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
364 if (next == waiters)
365 break;
366 }
367
368 /* Set the waiters bit and block. */
369 membar_sync();
370 if (pthread__mutex_setwaiters(self, ptm)) {
371 continue;
372 }
373
374 /*
375 * We may have been awoken by the current thread above,
376 * or will be awoken by the current holder of the mutex.
377 * The key requirement is that we must not proceed until
378 * told that we are no longer waiting (via pt_mutexwait
379 * being set to zero). Otherwise it is unsafe to re-enter
380 * the thread onto the waiters list.
381 */
382 membar_sync();
383 while (self->pt_mutexwait) {
384 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
385 __UNCONST(ts), self->pt_unpark,
386 __UNVOLATILE(&ptm->ptm_waiters),
387 __UNVOLATILE(&ptm->ptm_waiters));
388 self->pt_unpark = 0;
389 if (__predict_true(error != -1)) {
390 continue;
391 }
392 if (errno == ETIMEDOUT && self->pt_mutexwait) {
393 /*Remove self from waiters list*/
394 pthread__mutex_wakeup(self, ptm);
395 /*priority protect*/
396 if (MUTEX_PROTECT(owner))
397 (void)_sched_protect(-1);
398 return ETIMEDOUT;
399 }
400 }
401 }
402 }
403
404 int
405 pthread_mutex_trylock(pthread_mutex_t *ptm)
406 {
407 pthread_t self;
408 void *val, *new, *next;
409
410 if (__predict_false(__uselibcstub))
411 return __libc_mutex_trylock_stub(ptm);
412
413 self = pthread__self();
414 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
415 if (__predict_true(val == NULL)) {
416 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
417 membar_enter();
418 #endif
419 return 0;
420 }
421
422 if (MUTEX_RECURSIVE(val)) {
423 if (MUTEX_OWNER(val) == 0) {
424 new = (void *)((uintptr_t)self | (uintptr_t)val);
425 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
426 if (__predict_true(next == val)) {
427 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
428 membar_enter();
429 #endif
430 return 0;
431 }
432 }
433 if (MUTEX_OWNER(val) == (uintptr_t)self) {
434 if (ptm->ptm_recursed == INT_MAX)
435 return EAGAIN;
436 ptm->ptm_recursed++;
437 return 0;
438 }
439 }
440
441 return EBUSY;
442 }
443
444 int
445 pthread_mutex_unlock(pthread_mutex_t *ptm)
446 {
447 pthread_t self;
448 void *value;
449
450 if (__predict_false(__uselibcstub))
451 return __libc_mutex_unlock_stub(ptm);
452
453 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
454 membar_exit();
455 #endif
456 self = pthread__self();
457 value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
458 if (__predict_true(value == self)) {
459 pthread__smt_wake();
460 return 0;
461 }
462 return pthread__mutex_unlock_slow(ptm);
463 }
464
465 NOINLINE static int
466 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
467 {
468 pthread_t self, owner, new;
469 int weown, error, deferred;
470
471 pthread__error(EINVAL, "Invalid mutex",
472 ptm->ptm_magic == _PT_MUTEX_MAGIC);
473
474 self = pthread__self();
475 owner = ptm->ptm_owner;
476 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
477 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
478 error = 0;
479
480 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
481 if (!weown) {
482 error = EPERM;
483 new = owner;
484 } else {
485 new = NULL;
486 }
487 } else if (MUTEX_RECURSIVE(owner)) {
488 if (!weown) {
489 error = EPERM;
490 new = owner;
491 } else if (ptm->ptm_recursed) {
492 ptm->ptm_recursed--;
493 new = owner;
494 } else {
495 new = (pthread_t)MUTEX_RECURSIVE_BIT;
496 }
497 } else {
498 pthread__error(EPERM,
499 "Unlocking unlocked mutex", (owner != NULL));
500 pthread__error(EPERM,
501 "Unlocking mutex owned by another thread", weown);
502 new = NULL;
503 }
504
505 /*
506 * Release the mutex. If there appear to be waiters, then
507 * wake them up.
508 */
509 if (new != owner) {
510 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
511 if (__predict_false(MUTEX_PROTECT(owner))) {
512 /* restore elevated priority */
513 (void)_sched_protect(-1);
514 }
515 if (MUTEX_HAS_WAITERS(owner) != 0) {
516 pthread__mutex_wakeup(self, ptm);
517 return 0;
518 }
519 }
520
521 /*
522 * There were no waiters, but we may have deferred waking
523 * other threads until mutex unlock - we must wake them now.
524 */
525 if (!deferred)
526 return error;
527
528 if (self->pt_nwaiters == 1) {
529 /*
530 * If the calling thread is about to block, defer
531 * unparking the target until _lwp_park() is called.
532 */
533 if (self->pt_willpark && self->pt_unpark == 0) {
534 self->pt_unpark = self->pt_waiters[0];
535 } else {
536 (void)_lwp_unpark(self->pt_waiters[0],
537 __UNVOLATILE(&ptm->ptm_waiters));
538 }
539 } else {
540 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
541 __UNVOLATILE(&ptm->ptm_waiters));
542 }
543 self->pt_nwaiters = 0;
544
545 return error;
546 }
547
548 /*
549 * pthread__mutex_wakeup: unpark threads waiting for us
550 *
551 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
552 */
553
554 static void
555 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
556 {
557 pthread_t thread, next;
558 ssize_t n, rv;
559
560 /* Take ownership of the current set of waiters. */
561 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
562 membar_datadep_consumer(); /* for alpha */
563 pthread__smt_wake();
564
565 for (;;) {
566 /*
567 * Pull waiters from the queue and add to our list.
568 * Use a memory barrier to ensure that we safely
569 * read the value of pt_mutexnext before 'thread'
570 * sees pt_mutexwait being cleared.
571 */
572 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
573 n < pthread__unpark_max && thread != NULL;
574 thread = next) {
575 next = thread->pt_mutexnext;
576 if (thread != self) {
577 self->pt_waiters[n++] = thread->pt_lid;
578 membar_sync();
579 }
580 thread->pt_mutexwait = 0;
581 /* No longer safe to touch 'thread' */
582 }
583
584 switch (n) {
585 case 0:
586 return;
587 case 1:
588 /*
589 * If the calling thread is about to block,
590 * defer unparking the target until _lwp_park()
591 * is called.
592 */
593 if (self->pt_willpark && self->pt_unpark == 0) {
594 self->pt_unpark = self->pt_waiters[0];
595 return;
596 }
597 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
598 __UNVOLATILE(&ptm->ptm_waiters));
599 if (rv != 0 && errno != EALREADY && errno != EINTR &&
600 errno != ESRCH) {
601 pthread__errorfunc(__FILE__, __LINE__,
602 __func__, "_lwp_unpark failed");
603 }
604 return;
605 default:
606 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
607 __UNVOLATILE(&ptm->ptm_waiters));
608 if (rv != 0 && errno != EINTR) {
609 pthread__errorfunc(__FILE__, __LINE__,
610 __func__, "_lwp_unpark_all failed");
611 }
612 break;
613 }
614 }
615 }
616
617 int
618 pthread_mutexattr_init(pthread_mutexattr_t *attr)
619 {
620 if (__predict_false(__uselibcstub))
621 return __libc_mutexattr_init_stub(attr);
622
623 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
624 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
625 return 0;
626 }
627
628 int
629 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
630 {
631 if (__predict_false(__uselibcstub))
632 return __libc_mutexattr_destroy_stub(attr);
633
634 pthread__error(EINVAL, "Invalid mutex attribute",
635 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
636
637 return 0;
638 }
639
640 int
641 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
642 {
643
644 pthread__error(EINVAL, "Invalid mutex attribute",
645 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
646
647 *typep = MUTEX_GET_TYPE(attr->ptma_private);
648 return 0;
649 }
650
651 int
652 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
653 {
654
655 if (__predict_false(__uselibcstub))
656 return __libc_mutexattr_settype_stub(attr, type);
657
658 pthread__error(EINVAL, "Invalid mutex attribute",
659 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
660
661 switch (type) {
662 case PTHREAD_MUTEX_NORMAL:
663 case PTHREAD_MUTEX_ERRORCHECK:
664 case PTHREAD_MUTEX_RECURSIVE:
665 MUTEX_SET_TYPE(attr->ptma_private, type);
666 return 0;
667 default:
668 return EINVAL;
669 }
670 }
671
672 int
673 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
674 {
675
676 pthread__error(EINVAL, "Invalid mutex attribute",
677 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
678
679 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
680 return 0;
681 }
682
683 int
684 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
685 {
686
687 pthread__error(EINVAL, "Invalid mutex attribute",
688 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
689
690 switch (proto) {
691 case PTHREAD_PRIO_NONE:
692 case PTHREAD_PRIO_PROTECT:
693 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
694 return 0;
695 case PTHREAD_PRIO_INHERIT:
696 return ENOTSUP;
697 default:
698 return EINVAL;
699 }
700 }
701
702 int
703 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
704 {
705
706 pthread__error(EINVAL, "Invalid mutex attribute",
707 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
708
709 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
710 return 0;
711 }
712
713 int
714 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
715 {
716
717 pthread__error(EINVAL, "Invalid mutex attribute",
718 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
719
720 if (ceil & ~0xff)
721 return EINVAL;
722
723 MUTEX_SET_CEILING(attr->ptma_private, ceil);
724 return 0;
725 }
726
727 #ifdef _PTHREAD_PSHARED
728 int
729 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
730 int * __restrict pshared)
731 {
732
733 *pshared = PTHREAD_PROCESS_PRIVATE;
734 return 0;
735 }
736
737 int
738 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
739 {
740
741 switch(pshared) {
742 case PTHREAD_PROCESS_PRIVATE:
743 return 0;
744 case PTHREAD_PROCESS_SHARED:
745 return ENOSYS;
746 }
747 return EINVAL;
748 }
749 #endif
750
751 /*
752 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
753 *
754 * In order to avoid unnecessary contention on the interlocking mutex,
755 * we defer waking up threads until we unlock the mutex. The threads will
756 * be woken up when the calling thread (self) releases the first mutex with
757 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
758 * even if it isn't.
759 */
760
761 void
762 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
763 {
764
765 if (__predict_false(ptm == NULL ||
766 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
767 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
768 __UNVOLATILE(&ptm->ptm_waiters));
769 self->pt_nwaiters = 0;
770 } else {
771 atomic_or_ulong((volatile unsigned long *)
772 (uintptr_t)&ptm->ptm_owner,
773 (unsigned long)MUTEX_DEFERRED_BIT);
774 }
775 }
776
777 int
778 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
779 {
780 *ceil = ptm->ptm_ceiling;
781 return 0;
782 }
783
784 int
785 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
786 {
787 int error;
788
789 error = pthread_mutex_lock(ptm);
790 if (error == 0) {
791 *old_ceil = ptm->ptm_ceiling;
792 /*check range*/
793 ptm->ptm_ceiling = ceil;
794 pthread_mutex_unlock(ptm);
795 }
796 return error;
797 }
798
799 int
800 _pthread_mutex_held_np(pthread_mutex_t *ptm)
801 {
802
803 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
804 }
805
806 pthread_t
807 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
808 {
809
810 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
811 }
812