pthread_mutex.c revision 1.7 1 /* $NetBSD: pthread_mutex.c,v 1.7 2003/01/27 21:01:00 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include <assert.h>
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdlib.h>
44 #include <string.h>
45
46 #include "pthread.h"
47 #include "pthread_int.h"
48
49 static int pthread_mutex_lock_slow(pthread_mutex_t *);
50
51 __strong_alias(__libc_mutex_init,pthread_mutex_init)
52 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
53 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
54 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
55 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
56
57 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
58 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
59 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
60
61 __strong_alias(__libc_thr_once,pthread_once)
62
63 struct mutex_private {
64 int type;
65 int recursecount;
66 };
67
68 static const struct mutex_private mutex_private_default = {
69 PTHREAD_MUTEX_DEFAULT,
70 0,
71 };
72
73 struct mutexattr_private {
74 int type;
75 };
76
77 static const struct mutexattr_private mutexattr_private_default = {
78 PTHREAD_MUTEX_DEFAULT,
79 };
80
81 /*
82 * If the mutex does not already have private data (i.e. was statically
83 * initialized), then give it the default.
84 */
85 #define GET_MUTEX_PRIVATE(mutex, mp) \
86 do { \
87 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
88 /* LINTED cast away const */ \
89 mp = ((mutex)->ptm_private = \
90 (void *)&mutex_private_default); \
91 } \
92 } while (/*CONSTCOND*/0)
93
94 int
95 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
96 {
97 struct mutexattr_private *map;
98 struct mutex_private *mp;
99
100 #ifdef ERRORCHECK
101 if ((mutex == NULL) ||
102 (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
103 return EINVAL;
104 #endif
105
106 if (attr != NULL && (map = attr->ptma_private) != NULL &&
107 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
108 mp = malloc(sizeof(*mp));
109 if (mp == NULL)
110 return ENOMEM;
111
112 mp->type = map->type;
113 mp->recursecount = 0;
114 } else {
115 /* LINTED cast away const */
116 mp = (struct mutex_private *) &mutex_private_default;
117 }
118
119 mutex->ptm_magic = _PT_MUTEX_MAGIC;
120 mutex->ptm_owner = NULL;
121 pthread_lockinit(&mutex->ptm_lock);
122 pthread_lockinit(&mutex->ptm_interlock);
123 PTQ_INIT(&mutex->ptm_blocked);
124 mutex->ptm_private = mp;
125
126 return 0;
127 }
128
129
130 int
131 pthread_mutex_destroy(pthread_mutex_t *mutex)
132 {
133
134 #ifdef ERRORCHECK
135 if ((mutex == NULL) ||
136 (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
137 (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
138 return EINVAL;
139 #endif
140
141 mutex->ptm_magic = _PT_MUTEX_DEAD;
142 if (mutex->ptm_private != NULL &&
143 mutex->ptm_private != (const void *)&mutex_private_default)
144 free(mutex->ptm_private);
145
146 return 0;
147 }
148
149
150 /*
151 * Note regarding memory visibility: Pthreads has rules about memory
152 * visibility and mutexes. Very roughly: Memory a thread can see when
153 * it unlocks a mutex can be seen by another thread that locks the
154 * same mutex.
155 *
156 * A memory barrier after a lock and before an unlock will provide
157 * this behavior. This code relies on pthread__simple_lock_try() to issue
158 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
159 * issue a barrier before releasing a lock.
160 */
161
162 int
163 pthread_mutex_lock(pthread_mutex_t *mutex)
164 {
165 int error;
166
167 #ifdef ERRORCHECK
168 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
169 return EINVAL;
170 #endif
171
172 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
173 /*
174 * Note that if we get the lock, we don't have to deal with any
175 * non-default lock type handling.
176 */
177 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
178 error = pthread_mutex_lock_slow(mutex);
179 if (error)
180 return error;
181 }
182
183 /* We have the lock! */
184 mutex->ptm_owner = pthread__self();
185
186 return 0;
187 }
188
189
190 static int
191 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
192 {
193 pthread_t self;
194
195 self = pthread__self();
196
197 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
198 while (/*CONSTCOND*/1) {
199 if (pthread__simple_lock_try(&mutex->ptm_lock))
200 break; /* got it! */
201
202 /* Okay, didn't look free. Get the interlock... */
203 pthread_spinlock(self, &mutex->ptm_interlock);
204 /*
205 * The mutex_unlock routine will get the interlock
206 * before looking at the list of sleepers, so if the
207 * lock is held we can safely put ourselves on the
208 * sleep queue. If it's not held, we can try taking it
209 * again.
210 */
211 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
212 struct mutex_private *mp;
213
214 GET_MUTEX_PRIVATE(mutex, mp);
215
216 if (mutex->ptm_owner == self) {
217 switch (mp->type) {
218 case PTHREAD_MUTEX_ERRORCHECK:
219 pthread_spinunlock(self,
220 &mutex->ptm_interlock);
221 return EDEADLK;
222
223 case PTHREAD_MUTEX_RECURSIVE:
224 /*
225 * It's safe to do this without
226 * holding the interlock, because
227 * we only modify it if we know we
228 * own the mutex.
229 */
230 pthread_spinunlock(self,
231 &mutex->ptm_interlock);
232 if (mp->recursecount == INT_MAX)
233 return EAGAIN;
234 mp->recursecount++;
235 return 0;
236 }
237 }
238
239 PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
240 /*
241 * Locking a mutex is not a cancellation
242 * point, so we don't need to do the
243 * test-cancellation dance. We may get woken
244 * up spuriously by pthread_cancel, though,
245 * but it's okay since we're just going to
246 * retry.
247 */
248 pthread_spinlock(self, &self->pt_statelock);
249 self->pt_state = PT_STATE_BLOCKED_QUEUE;
250 self->pt_sleepobj = mutex;
251 self->pt_sleepq = &mutex->ptm_blocked;
252 self->pt_sleeplock = &mutex->ptm_interlock;
253 pthread_spinunlock(self, &self->pt_statelock);
254
255 pthread__block(self, &mutex->ptm_interlock);
256 /* interlock is not held when we return */
257 } else {
258 pthread_spinunlock(self, &mutex->ptm_interlock);
259 }
260 /* Go around for another try. */
261 }
262
263 return 0;
264 }
265
266
267 int
268 pthread_mutex_trylock(pthread_mutex_t *mutex)
269 {
270 pthread_t self = pthread__self();
271
272 #ifdef ERRORCHECK
273 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
274 return EINVAL;
275 #endif
276
277 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
278 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
279 struct mutex_private *mp;
280
281 GET_MUTEX_PRIVATE(mutex, mp);
282
283 /*
284 * These tests can be performed without holding the
285 * interlock because these fields are only modified
286 * if we know we own the mutex.
287 */
288 if (mutex->ptm_owner == self) {
289 switch (mp->type) {
290 case PTHREAD_MUTEX_ERRORCHECK:
291 return EDEADLK;
292
293 case PTHREAD_MUTEX_RECURSIVE:
294 if (mp->recursecount == INT_MAX)
295 return EAGAIN;
296 mp->recursecount++;
297 return 0;
298 }
299 }
300
301 return EBUSY;
302 }
303
304 mutex->ptm_owner = self;
305
306 return 0;
307 }
308
309
310 int
311 pthread_mutex_unlock(pthread_mutex_t *mutex)
312 {
313 struct mutex_private *mp;
314 pthread_t self, blocked;
315
316 self = pthread__self();
317
318 #ifdef ERRORCHECK
319 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
320 return EINVAL;
321
322 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
323 return EPERM; /* Not exactly the right error. */
324 #endif
325 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
326
327 GET_MUTEX_PRIVATE(mutex, mp);
328
329 /*
330 * These tests can be performed without holding the
331 * interlock because these fields are only modified
332 * if we know we own the mutex.
333 */
334 switch (mp->type) {
335 case PTHREAD_MUTEX_ERRORCHECK:
336 if (mutex->ptm_owner != self)
337 return EPERM;
338 break;
339
340 case PTHREAD_MUTEX_RECURSIVE:
341 if (mutex->ptm_owner != self)
342 return EPERM;
343 if (mp->recursecount != 0) {
344 mp->recursecount--;
345 return 0;
346 }
347 break;
348 }
349
350 pthread_spinlock(self, &mutex->ptm_interlock);
351 blocked = PTQ_FIRST(&mutex->ptm_blocked);
352 if (blocked)
353 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
354 mutex->ptm_owner = NULL;
355 pthread__simple_unlock(&mutex->ptm_lock);
356 pthread_spinunlock(self, &mutex->ptm_interlock);
357
358 /* Give the head of the blocked queue another try. */
359 if (blocked) {
360 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
361 pthread__sched(self, blocked);
362 }
363 return 0;
364 }
365
366 int
367 pthread_mutexattr_init(pthread_mutexattr_t *attr)
368 {
369 struct mutexattr_private *map;
370
371 #ifdef ERRORCHECK
372 if (attr == NULL)
373 return EINVAL;
374 #endif
375
376 map = malloc(sizeof(*map));
377 if (map == NULL)
378 return ENOMEM;
379
380 *map = mutexattr_private_default;
381
382 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
383 attr->ptma_private = map;
384
385 return 0;
386 }
387
388
389 int
390 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
391 {
392
393 #ifdef ERRORCHECK
394 if ((attr == NULL) ||
395 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
396 return EINVAL;
397 #endif
398
399 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
400 if (attr->ptma_private != NULL)
401 free(attr->ptma_private);
402
403 return 0;
404 }
405
406
407 int
408 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
409 {
410 struct mutexattr_private *map;
411
412 #ifdef ERRORCHECK
413 if ((attr == NULL) ||
414 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
415 (typep == NULL))
416 return EINVAL;
417 #endif
418
419 map = attr->ptma_private;
420
421 *typep = map->type;
422
423 return 0;
424 }
425
426
427 int
428 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
429 {
430 struct mutexattr_private *map;
431
432 #ifdef ERRORCHECK
433 if ((attr == NULL) ||
434 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
435 return EINVAL;
436 #endif
437 map = attr->ptma_private;
438
439 switch (type) {
440 case PTHREAD_MUTEX_NORMAL:
441 case PTHREAD_MUTEX_ERRORCHECK:
442 case PTHREAD_MUTEX_RECURSIVE:
443 map->type = type;
444 break;
445
446 default:
447 return EINVAL;
448 }
449
450 return 0;
451 }
452
453
454 int
455 pthread_once(pthread_once_t *once_control, void (*routine)(void))
456 {
457
458 if (once_control->pto_done == 0) {
459 pthread_mutex_lock(&once_control->pto_mutex);
460 if (once_control->pto_done == 0) {
461 routine();
462 once_control->pto_done = 1;
463 }
464 pthread_mutex_unlock(&once_control->pto_mutex);
465 }
466
467 return 0;
468 }
469