pthread_mutex.c revision 1.70 1 /* $NetBSD: pthread_mutex.c,v 1.70 2020/01/29 21:11:24 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.70 2020/01/29 21:11:24 kamil Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 #define MUTEX_THREAD ((uintptr_t)~0x0f)
73
74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78
79 #define MUTEX_GET_TYPE(x) \
80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define MUTEX_SET_TYPE(x, t) \
82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define MUTEX_GET_PROTOCOL(x) \
84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define MUTEX_SET_PROTOCOL(x, p) \
86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define MUTEX_GET_CEILING(x) \
88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define MUTEX_SET_CEILING(x, c) \
90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91
92 #if __GNUC_PREREQ__(3, 0)
93 #define NOINLINE __attribute ((noinline))
94 #else
95 #define NOINLINE /* nothing */
96 #endif
97
98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 const struct timespec *);
101 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void pthread__mutex_pause(void);
103
104 int _pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 uintptr_t type, proto, val, ceil;
124
125 #if 0
126 /*
127 * Always initialize the mutex structure, maybe be used later
128 * and the cost should be minimal.
129 */
130 if (__predict_false(__uselibcstub))
131 return __libc_mutex_init_stub(ptm, attr);
132 #endif
133
134 if (attr == NULL) {
135 type = PTHREAD_MUTEX_NORMAL;
136 proto = PTHREAD_PRIO_NONE;
137 ceil = 0;
138 } else {
139 val = (uintptr_t)attr->ptma_private;
140
141 type = MUTEX_GET_TYPE(val);
142 proto = MUTEX_GET_PROTOCOL(val);
143 ceil = MUTEX_GET_CEILING(val);
144 }
145 switch (type) {
146 case PTHREAD_MUTEX_ERRORCHECK:
147 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
148 ptm->ptm_owner = NULL;
149 break;
150 case PTHREAD_MUTEX_RECURSIVE:
151 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
152 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
153 break;
154 default:
155 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
156 ptm->ptm_owner = NULL;
157 break;
158 }
159 switch (proto) {
160 case PTHREAD_PRIO_PROTECT:
161 val = (uintptr_t)ptm->ptm_owner;
162 val |= MUTEX_PROTECT_BIT;
163 ptm->ptm_owner = (void *)val;
164 break;
165
166 }
167 ptm->ptm_magic = _PT_MUTEX_MAGIC;
168 ptm->ptm_waiters = NULL;
169 ptm->ptm_recursed = 0;
170 ptm->ptm_ceiling = (unsigned char)ceil;
171
172 return 0;
173 }
174
175 int
176 pthread_mutex_destroy(pthread_mutex_t *ptm)
177 {
178
179 if (__predict_false(__uselibcstub))
180 return __libc_mutex_destroy_stub(ptm);
181
182 pthread__error(EINVAL, "Invalid mutex",
183 ptm->ptm_magic == _PT_MUTEX_MAGIC);
184 pthread__error(EBUSY, "Destroying locked mutex",
185 MUTEX_OWNER(ptm->ptm_owner) == 0);
186
187 ptm->ptm_magic = _PT_MUTEX_DEAD;
188 return 0;
189 }
190
191 int
192 pthread_mutex_lock(pthread_mutex_t *ptm)
193 {
194 pthread_t self;
195 void *val;
196
197 if (__predict_false(__uselibcstub))
198 return __libc_mutex_lock_stub(ptm);
199
200 pthread__error(EINVAL, "Invalid mutex",
201 ptm->ptm_magic == _PT_MUTEX_MAGIC);
202
203 self = pthread__self();
204 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
205 if (__predict_true(val == NULL)) {
206 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
207 membar_enter();
208 #endif
209 return 0;
210 }
211 return pthread__mutex_lock_slow(ptm, NULL);
212 }
213
214 int
215 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
216 {
217 pthread_t self;
218 void *val;
219
220 pthread__error(EINVAL, "Invalid mutex",
221 ptm->ptm_magic == _PT_MUTEX_MAGIC);
222
223 self = pthread__self();
224 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
225 if (__predict_true(val == NULL)) {
226 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
227 membar_enter();
228 #endif
229 return 0;
230 }
231 return pthread__mutex_lock_slow(ptm, ts);
232 }
233
234 /* We want function call overhead. */
235 NOINLINE static void
236 pthread__mutex_pause(void)
237 {
238
239 pthread__smt_pause();
240 }
241
242 /*
243 * Spin while the holder is running. 'lwpctl' gives us the true
244 * status of the thread.
245 */
246 NOINLINE static void *
247 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
248 {
249 pthread_t thread;
250 unsigned int count, i;
251
252 for (count = 2;; owner = ptm->ptm_owner) {
253 thread = (pthread_t)MUTEX_OWNER(owner);
254 if (thread == NULL)
255 break;
256 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
257 break;
258 if (count < 128)
259 count += count;
260 for (i = count; i != 0; i--)
261 pthread__mutex_pause();
262 }
263
264 return owner;
265 }
266
267 NOINLINE static bool
268 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
269 {
270 void *owner, *next;
271
272 /*
273 * Note that the mutex can become unlocked before we set
274 * the waiters bit. If that happens it's not safe to sleep
275 * as we may never be awoken: we must remove the current
276 * thread from the waiters list and try again.
277 *
278 * Because we are doing this atomically, we can't remove
279 * one waiter: we must remove all waiters and awken them,
280 * then sleep in _lwp_park() until we have been awoken.
281 *
282 * Issue a memory barrier to ensure that we are reading
283 * the value of ptm_owner/pt_mutexwait after we have entered
284 * the waiters list (the CAS itself must be atomic).
285 */
286 for (owner = ptm->ptm_owner;; owner = next) {
287 if (MUTEX_OWNER(owner) == 0) {
288 pthread__mutex_wakeup(self, ptm);
289 return true;
290 }
291 if (MUTEX_HAS_WAITERS(owner)) {
292 return false;
293 }
294 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
295 (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
296 }
297 }
298
299 NOINLINE static int
300 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
301 {
302 void *waiters, *new, *owner, *next;
303 pthread_t self;
304 int serrno;
305 int error;
306
307 owner = ptm->ptm_owner;
308 self = pthread__self();
309
310 /* Recursive or errorcheck? */
311 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
312 if (MUTEX_RECURSIVE(owner)) {
313 if (ptm->ptm_recursed == INT_MAX)
314 return EAGAIN;
315 ptm->ptm_recursed++;
316 return 0;
317 }
318 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
319 return EDEADLK;
320 }
321
322 /* priority protect */
323 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
324 return errno;
325 }
326 serrno = errno;
327 for (;; owner = ptm->ptm_owner) {
328 /* Spin while the owner is running. */
329 if (MUTEX_OWNER(owner) != (uintptr_t)self)
330 owner = pthread__mutex_spin(ptm, owner);
331
332 /* If it has become free, try to acquire it again. */
333 if (MUTEX_OWNER(owner) == 0) {
334 do {
335 new = (void *)
336 ((uintptr_t)self | (uintptr_t)owner);
337 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
338 new);
339 if (next == owner) {
340 errno = serrno;
341 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 membar_enter();
343 #endif
344 return 0;
345 }
346 owner = next;
347 } while (MUTEX_OWNER(owner) == 0);
348 /*
349 * We have lost the race to acquire the mutex.
350 * The new owner could be running on another
351 * CPU, in which case we should spin and avoid
352 * the overhead of blocking.
353 */
354 continue;
355 }
356
357 /*
358 * Nope, still held. Add thread to the list of waiters.
359 * Issue a memory barrier to ensure mutexwait/mutexnext
360 * are visible before we enter the waiters list.
361 */
362 self->pt_mutexwait = 1;
363 for (waiters = ptm->ptm_waiters;; waiters = next) {
364 self->pt_mutexnext = waiters;
365 membar_producer();
366 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
367 if (next == waiters)
368 break;
369 }
370
371 /* Set the waiters bit and block. */
372 membar_sync();
373 if (pthread__mutex_setwaiters(self, ptm)) {
374 continue;
375 }
376
377 /*
378 * We may have been awoken by the current thread above,
379 * or will be awoken by the current holder of the mutex.
380 * The key requirement is that we must not proceed until
381 * told that we are no longer waiting (via pt_mutexwait
382 * being set to zero). Otherwise it is unsafe to re-enter
383 * the thread onto the waiters list.
384 */
385 membar_sync();
386 while (self->pt_mutexwait) {
387 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
388 __UNCONST(ts), self->pt_unpark,
389 __UNVOLATILE(&ptm->ptm_waiters),
390 __UNVOLATILE(&ptm->ptm_waiters));
391 self->pt_unpark = 0;
392 if (__predict_true(error != -1)) {
393 continue;
394 }
395 if (errno == ETIMEDOUT && self->pt_mutexwait) {
396 /*Remove self from waiters list*/
397 pthread__mutex_wakeup(self, ptm);
398 /*priority protect*/
399 if (MUTEX_PROTECT(owner))
400 (void)_sched_protect(-1);
401 return ETIMEDOUT;
402 }
403 }
404 }
405 }
406
407 int
408 pthread_mutex_trylock(pthread_mutex_t *ptm)
409 {
410 pthread_t self;
411 void *val, *new, *next;
412
413 if (__predict_false(__uselibcstub))
414 return __libc_mutex_trylock_stub(ptm);
415
416 pthread__error(EINVAL, "Invalid mutex",
417 ptm->ptm_magic == _PT_MUTEX_MAGIC);
418
419 self = pthread__self();
420 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
421 if (__predict_true(val == NULL)) {
422 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
423 membar_enter();
424 #endif
425 return 0;
426 }
427
428 if (MUTEX_RECURSIVE(val)) {
429 if (MUTEX_OWNER(val) == 0) {
430 new = (void *)((uintptr_t)self | (uintptr_t)val);
431 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
432 if (__predict_true(next == val)) {
433 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
434 membar_enter();
435 #endif
436 return 0;
437 }
438 }
439 if (MUTEX_OWNER(val) == (uintptr_t)self) {
440 if (ptm->ptm_recursed == INT_MAX)
441 return EAGAIN;
442 ptm->ptm_recursed++;
443 return 0;
444 }
445 }
446
447 return EBUSY;
448 }
449
450 int
451 pthread_mutex_unlock(pthread_mutex_t *ptm)
452 {
453 pthread_t self;
454 void *value;
455
456 if (__predict_false(__uselibcstub))
457 return __libc_mutex_unlock_stub(ptm);
458
459 pthread__error(EINVAL, "Invalid mutex",
460 ptm->ptm_magic == _PT_MUTEX_MAGIC);
461
462 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
463 membar_exit();
464 #endif
465 self = pthread__self();
466 value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
467 if (__predict_true(value == self)) {
468 pthread__smt_wake();
469 return 0;
470 }
471 return pthread__mutex_unlock_slow(ptm);
472 }
473
474 NOINLINE static int
475 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
476 {
477 pthread_t self, owner, new;
478 int weown, error;
479
480 self = pthread__self();
481 owner = ptm->ptm_owner;
482 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
483 error = 0;
484
485 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
486 if (!weown) {
487 error = EPERM;
488 new = owner;
489 } else {
490 new = NULL;
491 }
492 } else if (MUTEX_RECURSIVE(owner)) {
493 if (!weown) {
494 error = EPERM;
495 new = owner;
496 } else if (ptm->ptm_recursed) {
497 ptm->ptm_recursed--;
498 new = owner;
499 } else {
500 new = (pthread_t)MUTEX_RECURSIVE_BIT;
501 }
502 } else {
503 pthread__error(EPERM,
504 "Unlocking unlocked mutex", (owner != NULL));
505 pthread__error(EPERM,
506 "Unlocking mutex owned by another thread", weown);
507 new = NULL;
508 }
509
510 /*
511 * Release the mutex. If there appear to be waiters, then
512 * wake them up.
513 */
514 if (new != owner) {
515 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
516 if (__predict_false(MUTEX_PROTECT(owner))) {
517 /* restore elevated priority */
518 (void)_sched_protect(-1);
519 }
520 if (MUTEX_HAS_WAITERS(owner) != 0) {
521 pthread__mutex_wakeup(self, ptm);
522 return 0;
523 }
524 error = 0;
525 }
526
527 if (self->pt_nwaiters == 1) {
528 /*
529 * If the calling thread is about to block, defer
530 * unparking the target until _lwp_park() is called.
531 */
532 if (self->pt_willpark && self->pt_unpark == 0) {
533 self->pt_unpark = self->pt_waiters[0];
534 } else {
535 (void)_lwp_unpark(self->pt_waiters[0],
536 __UNVOLATILE(&ptm->ptm_waiters));
537 }
538 } else if (self->pt_nwaiters > 0) {
539 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
540 __UNVOLATILE(&ptm->ptm_waiters));
541 }
542 self->pt_nwaiters = 0;
543
544 return error;
545 }
546
547 /*
548 * pthread__mutex_wakeup: unpark threads waiting for us
549 *
550 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
551 */
552
553 static void
554 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
555 {
556 pthread_t thread, next;
557 ssize_t n, rv;
558
559 /* Take ownership of the current set of waiters. */
560 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
561 membar_datadep_consumer(); /* for alpha */
562 pthread__smt_wake();
563
564 for (;;) {
565 /*
566 * Pull waiters from the queue and add to our list.
567 * Use a memory barrier to ensure that we safely
568 * read the value of pt_mutexnext before 'thread'
569 * sees pt_mutexwait being cleared.
570 */
571 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
572 n < pthread__unpark_max && thread != NULL;
573 thread = next) {
574 next = thread->pt_mutexnext;
575 if (thread != self) {
576 self->pt_waiters[n++] = thread->pt_lid;
577 membar_sync();
578 }
579 thread->pt_mutexwait = 0;
580 /* No longer safe to touch 'thread' */
581 }
582
583 switch (n) {
584 case 0:
585 return;
586 case 1:
587 /*
588 * If the calling thread is about to block,
589 * defer unparking the target until _lwp_park()
590 * is called.
591 */
592 if (self->pt_willpark && self->pt_unpark == 0) {
593 self->pt_unpark = self->pt_waiters[0];
594 return;
595 }
596 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
597 __UNVOLATILE(&ptm->ptm_waiters));
598 if (rv != 0 && errno != EALREADY && errno != EINTR &&
599 errno != ESRCH) {
600 pthread__errorfunc(__FILE__, __LINE__,
601 __func__, "_lwp_unpark failed");
602 }
603 return;
604 default:
605 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
606 __UNVOLATILE(&ptm->ptm_waiters));
607 if (rv != 0 && errno != EINTR) {
608 pthread__errorfunc(__FILE__, __LINE__,
609 __func__, "_lwp_unpark_all failed");
610 }
611 break;
612 }
613 }
614 }
615
616 int
617 pthread_mutexattr_init(pthread_mutexattr_t *attr)
618 {
619 if (__predict_false(__uselibcstub))
620 return __libc_mutexattr_init_stub(attr);
621
622 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
623 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
624 return 0;
625 }
626
627 int
628 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
629 {
630 if (__predict_false(__uselibcstub))
631 return __libc_mutexattr_destroy_stub(attr);
632
633 pthread__error(EINVAL, "Invalid mutex attribute",
634 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
635
636 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
637
638 return 0;
639 }
640
641 int
642 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
643 {
644
645 pthread__error(EINVAL, "Invalid mutex attribute",
646 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
647
648 *typep = MUTEX_GET_TYPE(attr->ptma_private);
649 return 0;
650 }
651
652 int
653 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
654 {
655
656 if (__predict_false(__uselibcstub))
657 return __libc_mutexattr_settype_stub(attr, type);
658
659 pthread__error(EINVAL, "Invalid mutex attribute",
660 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
661
662 switch (type) {
663 case PTHREAD_MUTEX_NORMAL:
664 case PTHREAD_MUTEX_ERRORCHECK:
665 case PTHREAD_MUTEX_RECURSIVE:
666 MUTEX_SET_TYPE(attr->ptma_private, type);
667 return 0;
668 default:
669 return EINVAL;
670 }
671 }
672
673 int
674 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
675 {
676
677 pthread__error(EINVAL, "Invalid mutex attribute",
678 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
679
680 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
681 return 0;
682 }
683
684 int
685 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
686 {
687
688 pthread__error(EINVAL, "Invalid mutex attribute",
689 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
690
691 switch (proto) {
692 case PTHREAD_PRIO_NONE:
693 case PTHREAD_PRIO_PROTECT:
694 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
695 return 0;
696 case PTHREAD_PRIO_INHERIT:
697 return ENOTSUP;
698 default:
699 return EINVAL;
700 }
701 }
702
703 int
704 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
705 {
706
707 pthread__error(EINVAL, "Invalid mutex attribute",
708 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
709
710 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
711 return 0;
712 }
713
714 int
715 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
716 {
717
718 pthread__error(EINVAL, "Invalid mutex attribute",
719 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
720
721 if (ceil & ~0xff)
722 return EINVAL;
723
724 MUTEX_SET_CEILING(attr->ptma_private, ceil);
725 return 0;
726 }
727
728 #ifdef _PTHREAD_PSHARED
729 int
730 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
731 int * __restrict pshared)
732 {
733
734 pthread__error(EINVAL, "Invalid mutex attribute",
735 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
736
737 *pshared = PTHREAD_PROCESS_PRIVATE;
738 return 0;
739 }
740
741 int
742 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
743 {
744
745 pthread__error(EINVAL, "Invalid mutex attribute",
746 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
747
748 switch(pshared) {
749 case PTHREAD_PROCESS_PRIVATE:
750 return 0;
751 case PTHREAD_PROCESS_SHARED:
752 return ENOSYS;
753 }
754 return EINVAL;
755 }
756 #endif
757
758 /*
759 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
760 *
761 * In order to avoid unnecessary contention on the interlocking mutex,
762 * we defer waking up threads until we unlock the mutex. The threads will
763 * be woken up when the calling thread (self) releases the first mutex with
764 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
765 * even if it isn't.
766 */
767
768 void
769 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
770 {
771
772 if (__predict_false(ptm == NULL ||
773 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
774 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
775 __UNVOLATILE(&ptm->ptm_waiters));
776 self->pt_nwaiters = 0;
777 } else {
778 atomic_or_ulong((volatile unsigned long *)
779 (uintptr_t)&ptm->ptm_owner,
780 (unsigned long)MUTEX_DEFERRED_BIT);
781 }
782 }
783
784 int
785 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
786 {
787
788 pthread__error(EINVAL, "Invalid mutex",
789 ptm->ptm_magic == _PT_MUTEX_MAGIC);
790
791 *ceil = ptm->ptm_ceiling;
792 return 0;
793 }
794
795 int
796 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
797 {
798 int error;
799
800 pthread__error(EINVAL, "Invalid mutex",
801 ptm->ptm_magic == _PT_MUTEX_MAGIC);
802
803 error = pthread_mutex_lock(ptm);
804 if (error == 0) {
805 *old_ceil = ptm->ptm_ceiling;
806 /*check range*/
807 ptm->ptm_ceiling = ceil;
808 pthread_mutex_unlock(ptm);
809 }
810 return error;
811 }
812
813 int
814 _pthread_mutex_held_np(pthread_mutex_t *ptm)
815 {
816
817 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
818 }
819
820 pthread_t
821 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
822 {
823
824 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
825 }
826