pthread_mutex.c revision 1.73 1 /* $NetBSD: pthread_mutex.c,v 1.73 2020/02/01 15:39:56 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.73 2020/02/01 15:39:56 kamil Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 #define MUTEX_THREAD ((uintptr_t)~0x0f)
73
74 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78
79 #define MUTEX_GET_TYPE(x) \
80 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 #define MUTEX_SET_TYPE(x, t) \
82 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 #define MUTEX_GET_PROTOCOL(x) \
84 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 #define MUTEX_SET_PROTOCOL(x, p) \
86 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 #define MUTEX_GET_CEILING(x) \
88 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 #define MUTEX_SET_CEILING(x, c) \
90 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91
92 #if __GNUC_PREREQ__(3, 0)
93 #define NOINLINE __attribute ((noinline))
94 #else
95 #define NOINLINE /* nothing */
96 #endif
97
98 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 const struct timespec *);
101 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 static void pthread__mutex_pause(void);
103
104 int _pthread_mutex_held_np(pthread_mutex_t *);
105 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106
107 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109
110 __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115
116 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119
120 int
121 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 {
123 uintptr_t type, proto, val, ceil;
124
125 /*
126 * Always initialize the mutex structure, maybe be used later
127 * and the cost should be minimal.
128 */
129 if (__predict_false(__uselibcstub))
130 return __libc_mutex_init_stub(ptm, attr);
131
132 pthread__error(EINVAL, "Invalid mutes attribute",
133 attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
134
135 if (attr == NULL) {
136 type = PTHREAD_MUTEX_NORMAL;
137 proto = PTHREAD_PRIO_NONE;
138 ceil = 0;
139 } else {
140 val = (uintptr_t)attr->ptma_private;
141
142 type = MUTEX_GET_TYPE(val);
143 proto = MUTEX_GET_PROTOCOL(val);
144 ceil = MUTEX_GET_CEILING(val);
145 }
146 switch (type) {
147 case PTHREAD_MUTEX_ERRORCHECK:
148 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
149 ptm->ptm_owner = NULL;
150 break;
151 case PTHREAD_MUTEX_RECURSIVE:
152 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
153 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
154 break;
155 default:
156 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
157 ptm->ptm_owner = NULL;
158 break;
159 }
160 switch (proto) {
161 case PTHREAD_PRIO_PROTECT:
162 val = (uintptr_t)ptm->ptm_owner;
163 val |= MUTEX_PROTECT_BIT;
164 ptm->ptm_owner = (void *)val;
165 break;
166
167 }
168 ptm->ptm_magic = _PT_MUTEX_MAGIC;
169 ptm->ptm_waiters = NULL;
170 ptm->ptm_recursed = 0;
171 ptm->ptm_ceiling = (unsigned char)ceil;
172
173 return 0;
174 }
175
176 int
177 pthread_mutex_destroy(pthread_mutex_t *ptm)
178 {
179
180 if (__predict_false(__uselibcstub))
181 return __libc_mutex_destroy_stub(ptm);
182
183 pthread__error(EINVAL, "Invalid mutex",
184 ptm->ptm_magic == _PT_MUTEX_MAGIC);
185 pthread__error(EBUSY, "Destroying locked mutex",
186 MUTEX_OWNER(ptm->ptm_owner) == 0);
187
188 ptm->ptm_magic = _PT_MUTEX_DEAD;
189 return 0;
190 }
191
192 int
193 pthread_mutex_lock(pthread_mutex_t *ptm)
194 {
195 pthread_t self;
196 void *val;
197
198 if (__predict_false(__uselibcstub))
199 return __libc_mutex_lock_stub(ptm);
200
201 pthread__error(EINVAL, "Invalid mutex",
202 ptm->ptm_magic == _PT_MUTEX_MAGIC);
203
204 self = pthread__self();
205 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
206 if (__predict_true(val == NULL)) {
207 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
208 membar_enter();
209 #endif
210 return 0;
211 }
212 return pthread__mutex_lock_slow(ptm, NULL);
213 }
214
215 int
216 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
217 {
218 pthread_t self;
219 void *val;
220
221 pthread__error(EINVAL, "Invalid mutex",
222 ptm->ptm_magic == _PT_MUTEX_MAGIC);
223
224 self = pthread__self();
225 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
226 if (__predict_true(val == NULL)) {
227 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
228 membar_enter();
229 #endif
230 return 0;
231 }
232 return pthread__mutex_lock_slow(ptm, ts);
233 }
234
235 /* We want function call overhead. */
236 NOINLINE static void
237 pthread__mutex_pause(void)
238 {
239
240 pthread__smt_pause();
241 }
242
243 /*
244 * Spin while the holder is running. 'lwpctl' gives us the true
245 * status of the thread.
246 */
247 NOINLINE static void *
248 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
249 {
250 pthread_t thread;
251 unsigned int count, i;
252
253 for (count = 2;; owner = ptm->ptm_owner) {
254 thread = (pthread_t)MUTEX_OWNER(owner);
255 if (thread == NULL)
256 break;
257 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
258 break;
259 if (count < 128)
260 count += count;
261 for (i = count; i != 0; i--)
262 pthread__mutex_pause();
263 }
264
265 return owner;
266 }
267
268 NOINLINE static bool
269 pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
270 {
271 void *owner, *next;
272
273 /*
274 * Note that the mutex can become unlocked before we set
275 * the waiters bit. If that happens it's not safe to sleep
276 * as we may never be awoken: we must remove the current
277 * thread from the waiters list and try again.
278 *
279 * Because we are doing this atomically, we can't remove
280 * one waiter: we must remove all waiters and awken them,
281 * then sleep in _lwp_park() until we have been awoken.
282 *
283 * Issue a memory barrier to ensure that we are reading
284 * the value of ptm_owner/pt_mutexwait after we have entered
285 * the waiters list (the CAS itself must be atomic).
286 */
287 for (owner = ptm->ptm_owner;; owner = next) {
288 if (MUTEX_OWNER(owner) == 0) {
289 pthread__mutex_wakeup(self, ptm);
290 return true;
291 }
292 if (MUTEX_HAS_WAITERS(owner)) {
293 return false;
294 }
295 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
296 (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
297 }
298 }
299
300 NOINLINE static int
301 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
302 {
303 void *waiters, *new, *owner, *next;
304 pthread_t self;
305 int serrno;
306 int error;
307
308 owner = ptm->ptm_owner;
309 self = pthread__self();
310
311 /* Recursive or errorcheck? */
312 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
313 if (MUTEX_RECURSIVE(owner)) {
314 if (ptm->ptm_recursed == INT_MAX)
315 return EAGAIN;
316 ptm->ptm_recursed++;
317 return 0;
318 }
319 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
320 return EDEADLK;
321 }
322
323 /* priority protect */
324 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
325 return errno;
326 }
327 serrno = errno;
328 for (;; owner = ptm->ptm_owner) {
329 /* Spin while the owner is running. */
330 if (MUTEX_OWNER(owner) != (uintptr_t)self)
331 owner = pthread__mutex_spin(ptm, owner);
332
333 /* If it has become free, try to acquire it again. */
334 if (MUTEX_OWNER(owner) == 0) {
335 do {
336 new = (void *)
337 ((uintptr_t)self | (uintptr_t)owner);
338 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
339 new);
340 if (next == owner) {
341 errno = serrno;
342 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
343 membar_enter();
344 #endif
345 return 0;
346 }
347 owner = next;
348 } while (MUTEX_OWNER(owner) == 0);
349 /*
350 * We have lost the race to acquire the mutex.
351 * The new owner could be running on another
352 * CPU, in which case we should spin and avoid
353 * the overhead of blocking.
354 */
355 continue;
356 }
357
358 /*
359 * Nope, still held. Add thread to the list of waiters.
360 * Issue a memory barrier to ensure mutexwait/mutexnext
361 * are visible before we enter the waiters list.
362 */
363 self->pt_mutexwait = 1;
364 for (waiters = ptm->ptm_waiters;; waiters = next) {
365 self->pt_mutexnext = waiters;
366 membar_producer();
367 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
368 if (next == waiters)
369 break;
370 }
371
372 /* Set the waiters bit and block. */
373 membar_sync();
374 if (pthread__mutex_setwaiters(self, ptm)) {
375 continue;
376 }
377
378 /*
379 * We may have been awoken by the current thread above,
380 * or will be awoken by the current holder of the mutex.
381 * The key requirement is that we must not proceed until
382 * told that we are no longer waiting (via pt_mutexwait
383 * being set to zero). Otherwise it is unsafe to re-enter
384 * the thread onto the waiters list.
385 */
386 membar_sync();
387 while (self->pt_mutexwait) {
388 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
389 __UNCONST(ts), self->pt_unpark,
390 __UNVOLATILE(&ptm->ptm_waiters),
391 __UNVOLATILE(&ptm->ptm_waiters));
392 self->pt_unpark = 0;
393 if (__predict_true(error != -1)) {
394 continue;
395 }
396 if (errno == ETIMEDOUT && self->pt_mutexwait) {
397 /*Remove self from waiters list*/
398 pthread__mutex_wakeup(self, ptm);
399 /*priority protect*/
400 if (MUTEX_PROTECT(owner))
401 (void)_sched_protect(-1);
402 return ETIMEDOUT;
403 }
404 }
405 }
406 }
407
408 int
409 pthread_mutex_trylock(pthread_mutex_t *ptm)
410 {
411 pthread_t self;
412 void *val, *new, *next;
413
414 if (__predict_false(__uselibcstub))
415 return __libc_mutex_trylock_stub(ptm);
416
417 pthread__error(EINVAL, "Invalid mutex",
418 ptm->ptm_magic == _PT_MUTEX_MAGIC);
419
420 self = pthread__self();
421 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
422 if (__predict_true(val == NULL)) {
423 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
424 membar_enter();
425 #endif
426 return 0;
427 }
428
429 if (MUTEX_RECURSIVE(val)) {
430 if (MUTEX_OWNER(val) == 0) {
431 new = (void *)((uintptr_t)self | (uintptr_t)val);
432 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
433 if (__predict_true(next == val)) {
434 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
435 membar_enter();
436 #endif
437 return 0;
438 }
439 }
440 if (MUTEX_OWNER(val) == (uintptr_t)self) {
441 if (ptm->ptm_recursed == INT_MAX)
442 return EAGAIN;
443 ptm->ptm_recursed++;
444 return 0;
445 }
446 }
447
448 return EBUSY;
449 }
450
451 int
452 pthread_mutex_unlock(pthread_mutex_t *ptm)
453 {
454 pthread_t self;
455 void *value;
456
457 if (__predict_false(__uselibcstub))
458 return __libc_mutex_unlock_stub(ptm);
459
460 pthread__error(EINVAL, "Invalid mutex",
461 ptm->ptm_magic == _PT_MUTEX_MAGIC);
462
463 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
464 membar_exit();
465 #endif
466 self = pthread__self();
467 value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
468 if (__predict_true(value == self)) {
469 pthread__smt_wake();
470 return 0;
471 }
472 return pthread__mutex_unlock_slow(ptm);
473 }
474
475 NOINLINE static int
476 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
477 {
478 pthread_t self, owner, new;
479 int weown, error;
480
481 self = pthread__self();
482 owner = ptm->ptm_owner;
483 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
484 error = 0;
485
486 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
487 if (!weown) {
488 error = EPERM;
489 new = owner;
490 } else {
491 new = NULL;
492 }
493 } else if (MUTEX_RECURSIVE(owner)) {
494 if (!weown) {
495 error = EPERM;
496 new = owner;
497 } else if (ptm->ptm_recursed) {
498 ptm->ptm_recursed--;
499 new = owner;
500 } else {
501 new = (pthread_t)MUTEX_RECURSIVE_BIT;
502 }
503 } else {
504 pthread__error(EPERM,
505 "Unlocking unlocked mutex", (owner != NULL));
506 pthread__error(EPERM,
507 "Unlocking mutex owned by another thread", weown);
508 new = NULL;
509 }
510
511 /*
512 * Release the mutex. If there appear to be waiters, then
513 * wake them up.
514 */
515 if (new != owner) {
516 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
517 if (__predict_false(MUTEX_PROTECT(owner))) {
518 /* restore elevated priority */
519 (void)_sched_protect(-1);
520 }
521 if (MUTEX_HAS_WAITERS(owner) != 0) {
522 pthread__mutex_wakeup(self, ptm);
523 return 0;
524 }
525 error = 0;
526 }
527
528 if (self->pt_nwaiters == 1) {
529 /*
530 * If the calling thread is about to block, defer
531 * unparking the target until _lwp_park() is called.
532 */
533 if (self->pt_willpark && self->pt_unpark == 0) {
534 self->pt_unpark = self->pt_waiters[0];
535 } else {
536 (void)_lwp_unpark(self->pt_waiters[0],
537 __UNVOLATILE(&ptm->ptm_waiters));
538 }
539 } else if (self->pt_nwaiters > 0) {
540 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
541 __UNVOLATILE(&ptm->ptm_waiters));
542 }
543 self->pt_nwaiters = 0;
544
545 return error;
546 }
547
548 /*
549 * pthread__mutex_wakeup: unpark threads waiting for us
550 *
551 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
552 */
553
554 static void
555 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
556 {
557 pthread_t thread, next;
558 ssize_t n, rv;
559
560 /* Take ownership of the current set of waiters. */
561 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
562 membar_datadep_consumer(); /* for alpha */
563 pthread__smt_wake();
564
565 for (;;) {
566 /*
567 * Pull waiters from the queue and add to our list.
568 * Use a memory barrier to ensure that we safely
569 * read the value of pt_mutexnext before 'thread'
570 * sees pt_mutexwait being cleared.
571 */
572 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
573 n < pthread__unpark_max && thread != NULL;
574 thread = next) {
575 next = thread->pt_mutexnext;
576 if (thread != self) {
577 self->pt_waiters[n++] = thread->pt_lid;
578 membar_sync();
579 }
580 thread->pt_mutexwait = 0;
581 /* No longer safe to touch 'thread' */
582 }
583
584 switch (n) {
585 case 0:
586 return;
587 case 1:
588 /*
589 * If the calling thread is about to block,
590 * defer unparking the target until _lwp_park()
591 * is called.
592 */
593 if (self->pt_willpark && self->pt_unpark == 0) {
594 self->pt_unpark = self->pt_waiters[0];
595 return;
596 }
597 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
598 __UNVOLATILE(&ptm->ptm_waiters));
599 if (rv != 0 && errno != EALREADY && errno != EINTR &&
600 errno != ESRCH) {
601 pthread__errorfunc(__FILE__, __LINE__,
602 __func__, "_lwp_unpark failed");
603 }
604 return;
605 default:
606 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
607 __UNVOLATILE(&ptm->ptm_waiters));
608 if (rv != 0 && errno != EINTR) {
609 pthread__errorfunc(__FILE__, __LINE__,
610 __func__, "_lwp_unpark_all failed");
611 }
612 break;
613 }
614 }
615 }
616
617 int
618 pthread_mutexattr_init(pthread_mutexattr_t *attr)
619 {
620
621 if (__predict_false(__uselibcstub))
622 return __libc_mutexattr_init_stub(attr);
623
624 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
625 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
626 return 0;
627 }
628
629 int
630 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
631 {
632 if (__predict_false(__uselibcstub))
633 return __libc_mutexattr_destroy_stub(attr);
634
635 pthread__error(EINVAL, "Invalid mutex attribute",
636 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
637
638 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
639
640 return 0;
641 }
642
643 int
644 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
645 {
646
647 pthread__error(EINVAL, "Invalid mutex attribute",
648 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
649
650 *typep = MUTEX_GET_TYPE(attr->ptma_private);
651 return 0;
652 }
653
654 int
655 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
656 {
657
658 if (__predict_false(__uselibcstub))
659 return __libc_mutexattr_settype_stub(attr, type);
660
661 pthread__error(EINVAL, "Invalid mutex attribute",
662 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
663
664 switch (type) {
665 case PTHREAD_MUTEX_NORMAL:
666 case PTHREAD_MUTEX_ERRORCHECK:
667 case PTHREAD_MUTEX_RECURSIVE:
668 MUTEX_SET_TYPE(attr->ptma_private, type);
669 return 0;
670 default:
671 return EINVAL;
672 }
673 }
674
675 int
676 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
677 {
678
679 pthread__error(EINVAL, "Invalid mutex attribute",
680 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
681
682 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
683 return 0;
684 }
685
686 int
687 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
688 {
689
690 pthread__error(EINVAL, "Invalid mutex attribute",
691 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
692
693 switch (proto) {
694 case PTHREAD_PRIO_NONE:
695 case PTHREAD_PRIO_PROTECT:
696 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
697 return 0;
698 case PTHREAD_PRIO_INHERIT:
699 return ENOTSUP;
700 default:
701 return EINVAL;
702 }
703 }
704
705 int
706 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
707 {
708
709 pthread__error(EINVAL, "Invalid mutex attribute",
710 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
711
712 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
713 return 0;
714 }
715
716 int
717 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
718 {
719
720 pthread__error(EINVAL, "Invalid mutex attribute",
721 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
722
723 if (ceil & ~0xff)
724 return EINVAL;
725
726 MUTEX_SET_CEILING(attr->ptma_private, ceil);
727 return 0;
728 }
729
730 #ifdef _PTHREAD_PSHARED
731 int
732 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
733 int * __restrict pshared)
734 {
735
736 pthread__error(EINVAL, "Invalid mutex attribute",
737 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
738
739 *pshared = PTHREAD_PROCESS_PRIVATE;
740 return 0;
741 }
742
743 int
744 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
745 {
746
747 pthread__error(EINVAL, "Invalid mutex attribute",
748 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
749
750 switch(pshared) {
751 case PTHREAD_PROCESS_PRIVATE:
752 return 0;
753 case PTHREAD_PROCESS_SHARED:
754 return ENOSYS;
755 }
756 return EINVAL;
757 }
758 #endif
759
760 /*
761 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
762 *
763 * In order to avoid unnecessary contention on the interlocking mutex,
764 * we defer waking up threads until we unlock the mutex. The threads will
765 * be woken up when the calling thread (self) releases the first mutex with
766 * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
767 * even if it isn't.
768 */
769
770 void
771 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
772 {
773
774 if (__predict_false(ptm == NULL ||
775 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
776 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
777 __UNVOLATILE(&ptm->ptm_waiters));
778 self->pt_nwaiters = 0;
779 } else {
780 atomic_or_ulong((volatile unsigned long *)
781 (uintptr_t)&ptm->ptm_owner,
782 (unsigned long)MUTEX_DEFERRED_BIT);
783 }
784 }
785
786 int
787 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
788 {
789
790 pthread__error(EINVAL, "Invalid mutex",
791 ptm->ptm_magic == _PT_MUTEX_MAGIC);
792
793 *ceil = ptm->ptm_ceiling;
794 return 0;
795 }
796
797 int
798 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
799 {
800 int error;
801
802 pthread__error(EINVAL, "Invalid mutex",
803 ptm->ptm_magic == _PT_MUTEX_MAGIC);
804
805 error = pthread_mutex_lock(ptm);
806 if (error == 0) {
807 *old_ceil = ptm->ptm_ceiling;
808 /*check range*/
809 ptm->ptm_ceiling = ceil;
810 pthread_mutex_unlock(ptm);
811 }
812 return error;
813 }
814
815 int
816 _pthread_mutex_held_np(pthread_mutex_t *ptm)
817 {
818
819 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
820 }
821
822 pthread_t
823 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
824 {
825
826 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
827 }
828