pthread_mutex.c revision 1.77 1 /* $NetBSD: pthread_mutex.c,v 1.77 2020/05/16 22:53:37 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.77 2020/05/16 22:53:37 ad Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
71 #define MUTEX_THREAD ((uintptr_t)~0x0f)
72
73 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
74 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
75 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
76 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
77
78 #define MUTEX_GET_TYPE(x) \
79 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
80 #define MUTEX_SET_TYPE(x, t) \
81 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
82 #define MUTEX_GET_PROTOCOL(x) \
83 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
84 #define MUTEX_SET_PROTOCOL(x, p) \
85 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
86 #define MUTEX_GET_CEILING(x) \
87 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
88 #define MUTEX_SET_CEILING(x, c) \
89 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
90
91 #if __GNUC_PREREQ__(3, 0)
92 #define NOINLINE __attribute ((noinline))
93 #else
94 #define NOINLINE /* nothing */
95 #endif
96
97 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
98 static int pthread__mutex_lock_slow(pthread_mutex_t *,
99 const struct timespec *);
100 static void pthread__mutex_pause(void);
101
102 int _pthread_mutex_held_np(pthread_mutex_t *);
103 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
104
105 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
106 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
107
108 __strong_alias(__libc_mutex_init,pthread_mutex_init)
109 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
110 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
111 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
112 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
113
114 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
115 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
116 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
117
118 int
119 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
120 {
121 uintptr_t type, proto, val, ceil;
122
123 #if 0
124 /*
125 * Always initialize the mutex structure, maybe be used later
126 * and the cost should be minimal.
127 */
128 if (__predict_false(__uselibcstub))
129 return __libc_mutex_init_stub(ptm, attr);
130 #endif
131
132 pthread__error(EINVAL, "Invalid mutes attribute",
133 attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
134
135 if (attr == NULL) {
136 type = PTHREAD_MUTEX_NORMAL;
137 proto = PTHREAD_PRIO_NONE;
138 ceil = 0;
139 } else {
140 val = (uintptr_t)attr->ptma_private;
141
142 type = MUTEX_GET_TYPE(val);
143 proto = MUTEX_GET_PROTOCOL(val);
144 ceil = MUTEX_GET_CEILING(val);
145 }
146 switch (type) {
147 case PTHREAD_MUTEX_ERRORCHECK:
148 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
149 ptm->ptm_owner = NULL;
150 break;
151 case PTHREAD_MUTEX_RECURSIVE:
152 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
153 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
154 break;
155 default:
156 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
157 ptm->ptm_owner = NULL;
158 break;
159 }
160 switch (proto) {
161 case PTHREAD_PRIO_PROTECT:
162 val = (uintptr_t)ptm->ptm_owner;
163 val |= MUTEX_PROTECT_BIT;
164 ptm->ptm_owner = (void *)val;
165 break;
166
167 }
168 ptm->ptm_magic = _PT_MUTEX_MAGIC;
169 ptm->ptm_waiters = NULL;
170 ptm->ptm_recursed = 0;
171 ptm->ptm_ceiling = (unsigned char)ceil;
172
173 return 0;
174 }
175
176 int
177 pthread_mutex_destroy(pthread_mutex_t *ptm)
178 {
179
180 if (__predict_false(__uselibcstub))
181 return __libc_mutex_destroy_stub(ptm);
182
183 pthread__error(EINVAL, "Invalid mutex",
184 ptm->ptm_magic == _PT_MUTEX_MAGIC);
185 pthread__error(EBUSY, "Destroying locked mutex",
186 MUTEX_OWNER(ptm->ptm_owner) == 0);
187
188 ptm->ptm_magic = _PT_MUTEX_DEAD;
189 return 0;
190 }
191
192 int
193 pthread_mutex_lock(pthread_mutex_t *ptm)
194 {
195 pthread_t self;
196 void *val;
197
198 if (__predict_false(__uselibcstub))
199 return __libc_mutex_lock_stub(ptm);
200
201 pthread__error(EINVAL, "Invalid mutex",
202 ptm->ptm_magic == _PT_MUTEX_MAGIC);
203
204 self = pthread__self();
205 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
206 if (__predict_true(val == NULL)) {
207 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
208 membar_enter();
209 #endif
210 return 0;
211 }
212 return pthread__mutex_lock_slow(ptm, NULL);
213 }
214
215 int
216 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
217 {
218 pthread_t self;
219 void *val;
220
221 pthread__error(EINVAL, "Invalid mutex",
222 ptm->ptm_magic == _PT_MUTEX_MAGIC);
223
224 self = pthread__self();
225 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
226 if (__predict_true(val == NULL)) {
227 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
228 membar_enter();
229 #endif
230 return 0;
231 }
232 return pthread__mutex_lock_slow(ptm, ts);
233 }
234
235 /* We want function call overhead. */
236 NOINLINE static void
237 pthread__mutex_pause(void)
238 {
239
240 pthread__smt_pause();
241 }
242
243 /*
244 * Spin while the holder is running. 'lwpctl' gives us the true
245 * status of the thread.
246 */
247 NOINLINE static void *
248 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
249 {
250 pthread_t thread;
251 unsigned int count, i;
252
253 for (count = 2;; owner = ptm->ptm_owner) {
254 thread = (pthread_t)MUTEX_OWNER(owner);
255 if (thread == NULL)
256 break;
257 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
258 break;
259 if (count < 128)
260 count += count;
261 for (i = count; i != 0; i--)
262 pthread__mutex_pause();
263 }
264
265 return owner;
266 }
267
268 NOINLINE static int
269 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
270 {
271 void *waiters, *newval, *owner, *next;
272 pthread_t self;
273 int serrno;
274 int error;
275
276 owner = ptm->ptm_owner;
277 self = pthread__self();
278 serrno = errno;
279
280 pthread__assert(!self->pt_willpark);
281
282 /* Recursive or errorcheck? */
283 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
284 if (MUTEX_RECURSIVE(owner)) {
285 if (ptm->ptm_recursed == INT_MAX)
286 return EAGAIN;
287 ptm->ptm_recursed++;
288 return 0;
289 }
290 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
291 return EDEADLK;
292 }
293
294 /* priority protect */
295 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
296 error = errno;
297 errno = serrno;
298 return error;
299 }
300
301 for (;;) {
302 /* If it has become free, try to acquire it again. */
303 if (MUTEX_OWNER(owner) == 0) {
304 newval = (void *)((uintptr_t)self | (uintptr_t)owner);
305 next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
306 if (__predict_false(next != owner)) {
307 owner = next;
308 continue;
309 }
310 errno = serrno;
311 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
312 membar_enter();
313 #endif
314 return 0;
315 } else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
316 /* Spin while the owner is running. */
317 owner = pthread__mutex_spin(ptm, owner);
318 if (MUTEX_OWNER(owner) == 0) {
319 continue;
320 }
321 }
322
323 /*
324 * Nope, still held. Add thread to the list of waiters.
325 * Issue a memory barrier to ensure mutexwait/mutexnext
326 * are visible before we enter the waiters list.
327 */
328 self->pt_mutexwait = 1;
329 for (waiters = ptm->ptm_waiters;; waiters = next) {
330 self->pt_mutexnext = waiters;
331 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
332 membar_producer();
333 #endif
334 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
335 if (next == waiters)
336 break;
337 }
338
339 /*
340 * Try to set the waiters bit. If the mutex has become free
341 * since entering self onto the waiters list, need to wake
342 * everybody up (including self) and retry. It's possible
343 * to race with the unlocking thread, so self may have
344 * already been awoken.
345 */
346 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
347 membar_sync();
348 #endif
349 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
350 (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
351 if (next != owner) {
352 pthread__mutex_wakeup(self, ptm);
353 }
354
355 /*
356 * We must not proceed until told that we are no longer
357 * waiting (via pt_mutexwait being set to zero). Otherwise
358 * it is unsafe to re-enter the thread onto the waiters
359 * list.
360 */
361 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
362 membar_sync();
363 #endif
364 while (self->pt_mutexwait) {
365 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
366 __UNCONST(ts), self->pt_unpark, NULL, NULL);
367 self->pt_unpark = 0;
368 if (__predict_true(error != -1)) {
369 continue;
370 }
371 if (errno == ETIMEDOUT && self->pt_mutexwait) {
372 /*Remove self from waiters list*/
373 pthread__mutex_wakeup(self, ptm);
374 /*priority protect*/
375 if (MUTEX_PROTECT(owner))
376 (void)_sched_protect(-1);
377 errno = serrno;
378 return ETIMEDOUT;
379 }
380 }
381 owner = ptm->ptm_owner;
382 }
383 }
384
385 int
386 pthread_mutex_trylock(pthread_mutex_t *ptm)
387 {
388 pthread_t self;
389 void *val, *new, *next;
390
391 if (__predict_false(__uselibcstub))
392 return __libc_mutex_trylock_stub(ptm);
393
394 pthread__error(EINVAL, "Invalid mutex",
395 ptm->ptm_magic == _PT_MUTEX_MAGIC);
396
397 self = pthread__self();
398 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
399 if (__predict_true(val == NULL)) {
400 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
401 membar_enter();
402 #endif
403 return 0;
404 }
405
406 if (MUTEX_RECURSIVE(val)) {
407 if (MUTEX_OWNER(val) == 0) {
408 new = (void *)((uintptr_t)self | (uintptr_t)val);
409 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
410 if (__predict_true(next == val)) {
411 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
412 membar_enter();
413 #endif
414 return 0;
415 }
416 }
417 if (MUTEX_OWNER(val) == (uintptr_t)self) {
418 if (ptm->ptm_recursed == INT_MAX)
419 return EAGAIN;
420 ptm->ptm_recursed++;
421 return 0;
422 }
423 }
424
425 return EBUSY;
426 }
427
428 int
429 pthread_mutex_unlock(pthread_mutex_t *ptm)
430 {
431 pthread_t self;
432 void *val;
433 int error;
434
435 if (__predict_false(__uselibcstub))
436 return __libc_mutex_unlock_stub(ptm);
437
438 pthread__error(EINVAL, "Invalid mutex",
439 ptm->ptm_magic == _PT_MUTEX_MAGIC);
440
441 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
442 membar_exit();
443 #endif
444 error = 0;
445 self = pthread__self();
446
447 val = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
448 if (__predict_false(val != self)) {
449 bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
450 void *newval = val;
451 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
452 if (!weown) {
453 error = EPERM;
454 newval = val;
455 } else {
456 newval = NULL;
457 }
458 } else if (MUTEX_RECURSIVE(val)) {
459 if (!weown) {
460 error = EPERM;
461 newval = val;
462 } else if (ptm->ptm_recursed) {
463 ptm->ptm_recursed--;
464 newval = val;
465 } else {
466 newval = (pthread_t)MUTEX_RECURSIVE_BIT;
467 }
468 } else {
469 pthread__error(EPERM,
470 "Unlocking unlocked mutex", (val != NULL));
471 pthread__error(EPERM,
472 "Unlocking mutex owned by another thread", weown);
473 newval = NULL;
474 }
475
476 /*
477 * Release the mutex. If there appear to be waiters, then
478 * wake them up.
479 */
480 if (newval != val) {
481 val = atomic_swap_ptr(&ptm->ptm_owner, newval);
482 if (__predict_false(MUTEX_PROTECT(val))) {
483 /* restore elevated priority */
484 (void)_sched_protect(-1);
485 }
486 }
487 }
488 pthread__smt_wake();
489
490 /*
491 * Finally, wake any waiters and return.
492 */
493 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
494 membar_enter();
495 #endif
496 if (MUTEX_HAS_WAITERS(val)) {
497 pthread__mutex_wakeup(self, ptm);
498 } else if (self->pt_nwaiters > 0) {
499 pthread__clear_waiters(self);
500 }
501 return error;
502 }
503
504 /*
505 * pthread__mutex_wakeup: unpark threads waiting for us
506 *
507 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
508 */
509
510 static void
511 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
512 {
513 pthread_t thread, next;
514
515 /* Take ownership of the current set of waiters. */
516 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
517 membar_datadep_consumer(); /* for alpha */
518 pthread__smt_wake();
519
520 /*
521 * Pull waiters from the queue and add to our list. Use a memory
522 * barrier to ensure that we safely read the value of pt_mutexnext
523 * before 'thread' sees pt_mutexwait being cleared.
524 */
525 while (thread != NULL) {
526 if (self->pt_nwaiters < pthread__unpark_max) {
527 next = thread->pt_mutexnext;
528 if (thread != self) {
529 self->pt_waiters[self->pt_nwaiters++] =
530 thread->pt_lid;
531 membar_sync();
532 }
533 thread->pt_mutexwait = 0;
534 /* No longer safe to touch 'thread' */
535 thread = next;
536 continue;
537 }
538 pthread__clear_waiters(self);
539 }
540 if (self->pt_nwaiters > 0) {
541 pthread__clear_waiters(self);
542 }
543 }
544
545 int
546 pthread_mutexattr_init(pthread_mutexattr_t *attr)
547 {
548 #if 0
549 if (__predict_false(__uselibcstub))
550 return __libc_mutexattr_init_stub(attr);
551 #endif
552
553 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
554 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
555 return 0;
556 }
557
558 int
559 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
560 {
561 if (__predict_false(__uselibcstub))
562 return __libc_mutexattr_destroy_stub(attr);
563
564 pthread__error(EINVAL, "Invalid mutex attribute",
565 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
566
567 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
568
569 return 0;
570 }
571
572 int
573 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
574 {
575
576 pthread__error(EINVAL, "Invalid mutex attribute",
577 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
578
579 *typep = MUTEX_GET_TYPE(attr->ptma_private);
580 return 0;
581 }
582
583 int
584 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
585 {
586
587 if (__predict_false(__uselibcstub))
588 return __libc_mutexattr_settype_stub(attr, type);
589
590 pthread__error(EINVAL, "Invalid mutex attribute",
591 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
592
593 switch (type) {
594 case PTHREAD_MUTEX_NORMAL:
595 case PTHREAD_MUTEX_ERRORCHECK:
596 case PTHREAD_MUTEX_RECURSIVE:
597 MUTEX_SET_TYPE(attr->ptma_private, type);
598 return 0;
599 default:
600 return EINVAL;
601 }
602 }
603
604 int
605 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
606 {
607
608 pthread__error(EINVAL, "Invalid mutex attribute",
609 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
610
611 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
612 return 0;
613 }
614
615 int
616 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
617 {
618
619 pthread__error(EINVAL, "Invalid mutex attribute",
620 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
621
622 switch (proto) {
623 case PTHREAD_PRIO_NONE:
624 case PTHREAD_PRIO_PROTECT:
625 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
626 return 0;
627 case PTHREAD_PRIO_INHERIT:
628 return ENOTSUP;
629 default:
630 return EINVAL;
631 }
632 }
633
634 int
635 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
636 {
637
638 pthread__error(EINVAL, "Invalid mutex attribute",
639 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
640
641 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
642 return 0;
643 }
644
645 int
646 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
647 {
648
649 pthread__error(EINVAL, "Invalid mutex attribute",
650 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
651
652 if (ceil & ~0xff)
653 return EINVAL;
654
655 MUTEX_SET_CEILING(attr->ptma_private, ceil);
656 return 0;
657 }
658
659 #ifdef _PTHREAD_PSHARED
660 int
661 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
662 int * __restrict pshared)
663 {
664
665 pthread__error(EINVAL, "Invalid mutex attribute",
666 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
667
668 *pshared = PTHREAD_PROCESS_PRIVATE;
669 return 0;
670 }
671
672 int
673 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
674 {
675
676 pthread__error(EINVAL, "Invalid mutex attribute",
677 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
678
679 switch(pshared) {
680 case PTHREAD_PROCESS_PRIVATE:
681 return 0;
682 case PTHREAD_PROCESS_SHARED:
683 return ENOSYS;
684 }
685 return EINVAL;
686 }
687 #endif
688
689 /*
690 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
691 *
692 * In order to avoid unnecessary contention on interlocking mutexes, we try
693 * to defer waking up threads until we unlock the mutex. The threads will
694 * be woken up when the calling thread (self) releases a mutex.
695 */
696 void
697 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
698 {
699
700 if (__predict_false(ptm == NULL ||
701 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
702 pthread__clear_waiters(self);
703 }
704 }
705
706 int
707 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
708 {
709
710 pthread__error(EINVAL, "Invalid mutex",
711 ptm->ptm_magic == _PT_MUTEX_MAGIC);
712
713 *ceil = ptm->ptm_ceiling;
714 return 0;
715 }
716
717 int
718 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
719 {
720 int error;
721
722 pthread__error(EINVAL, "Invalid mutex",
723 ptm->ptm_magic == _PT_MUTEX_MAGIC);
724
725 error = pthread_mutex_lock(ptm);
726 if (error == 0) {
727 *old_ceil = ptm->ptm_ceiling;
728 /*check range*/
729 ptm->ptm_ceiling = ceil;
730 pthread_mutex_unlock(ptm);
731 }
732 return error;
733 }
734
735 int
736 _pthread_mutex_held_np(pthread_mutex_t *ptm)
737 {
738
739 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
740 }
741
742 pthread_t
743 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
744 {
745
746 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
747 }
748