pthread_mutex.c revision 1.79 1 /* $NetBSD: pthread_mutex.c,v 1.79 2020/06/03 22:10:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
35 *
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
40 *
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
47 */
48
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.79 2020/06/03 22:10:24 ad Exp $");
51
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/sched.h>
55 #include <sys/lock.h>
56
57 #include <errno.h>
58 #include <limits.h>
59 #include <stdlib.h>
60 #include <time.h>
61 #include <string.h>
62 #include <stdio.h>
63
64 #include "pthread.h"
65 #include "pthread_int.h"
66 #include "reentrant.h"
67
68 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
71 #define MUTEX_THREAD ((uintptr_t)~0x0f)
72
73 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
74 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
75 #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
76 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
77
78 #define MUTEX_GET_TYPE(x) \
79 ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
80 #define MUTEX_SET_TYPE(x, t) \
81 (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
82 #define MUTEX_GET_PROTOCOL(x) \
83 ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
84 #define MUTEX_SET_PROTOCOL(x, p) \
85 (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
86 #define MUTEX_GET_CEILING(x) \
87 ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
88 #define MUTEX_SET_CEILING(x, c) \
89 (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
90
91 #if __GNUC_PREREQ__(3, 0)
92 #define NOINLINE __attribute ((noinline))
93 #else
94 #define NOINLINE /* nothing */
95 #endif
96
97 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
98 static int pthread__mutex_lock_slow(pthread_mutex_t *,
99 const struct timespec *);
100 static void pthread__mutex_pause(void);
101
102 int _pthread_mutex_held_np(pthread_mutex_t *);
103 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
104
105 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
106 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
107
108 __strong_alias(__libc_mutex_init,pthread_mutex_init)
109 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
110 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
111 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
112 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
113
114 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
115 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
116 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
117
118 int
119 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
120 {
121 uintptr_t type, proto, val, ceil;
122
123 #if 0
124 /*
125 * Always initialize the mutex structure, maybe be used later
126 * and the cost should be minimal.
127 */
128 if (__predict_false(__uselibcstub))
129 return __libc_mutex_init_stub(ptm, attr);
130 #endif
131
132 pthread__error(EINVAL, "Invalid mutes attribute",
133 attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
134
135 if (attr == NULL) {
136 type = PTHREAD_MUTEX_NORMAL;
137 proto = PTHREAD_PRIO_NONE;
138 ceil = 0;
139 } else {
140 val = (uintptr_t)attr->ptma_private;
141
142 type = MUTEX_GET_TYPE(val);
143 proto = MUTEX_GET_PROTOCOL(val);
144 ceil = MUTEX_GET_CEILING(val);
145 }
146 switch (type) {
147 case PTHREAD_MUTEX_ERRORCHECK:
148 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
149 ptm->ptm_owner = NULL;
150 break;
151 case PTHREAD_MUTEX_RECURSIVE:
152 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
153 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
154 break;
155 default:
156 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
157 ptm->ptm_owner = NULL;
158 break;
159 }
160 switch (proto) {
161 case PTHREAD_PRIO_PROTECT:
162 val = (uintptr_t)ptm->ptm_owner;
163 val |= MUTEX_PROTECT_BIT;
164 ptm->ptm_owner = (void *)val;
165 break;
166
167 }
168 ptm->ptm_magic = _PT_MUTEX_MAGIC;
169 ptm->ptm_waiters = NULL;
170 ptm->ptm_recursed = 0;
171 ptm->ptm_ceiling = (unsigned char)ceil;
172
173 return 0;
174 }
175
176 int
177 pthread_mutex_destroy(pthread_mutex_t *ptm)
178 {
179
180 if (__predict_false(__uselibcstub))
181 return __libc_mutex_destroy_stub(ptm);
182
183 pthread__error(EINVAL, "Invalid mutex",
184 ptm->ptm_magic == _PT_MUTEX_MAGIC);
185 pthread__error(EBUSY, "Destroying locked mutex",
186 MUTEX_OWNER(ptm->ptm_owner) == 0);
187
188 ptm->ptm_magic = _PT_MUTEX_DEAD;
189 return 0;
190 }
191
192 int
193 pthread_mutex_lock(pthread_mutex_t *ptm)
194 {
195 pthread_t self;
196 void *val;
197
198 if (__predict_false(__uselibcstub))
199 return __libc_mutex_lock_stub(ptm);
200
201 pthread__error(EINVAL, "Invalid mutex",
202 ptm->ptm_magic == _PT_MUTEX_MAGIC);
203
204 self = pthread__self();
205 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
206 if (__predict_true(val == NULL)) {
207 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
208 membar_enter();
209 #endif
210 return 0;
211 }
212 return pthread__mutex_lock_slow(ptm, NULL);
213 }
214
215 int
216 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
217 {
218 pthread_t self;
219 void *val;
220
221 pthread__error(EINVAL, "Invalid mutex",
222 ptm->ptm_magic == _PT_MUTEX_MAGIC);
223
224 self = pthread__self();
225 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
226 if (__predict_true(val == NULL)) {
227 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
228 membar_enter();
229 #endif
230 return 0;
231 }
232 return pthread__mutex_lock_slow(ptm, ts);
233 }
234
235 /* We want function call overhead. */
236 NOINLINE static void
237 pthread__mutex_pause(void)
238 {
239
240 pthread__smt_pause();
241 }
242
243 /*
244 * Spin while the holder is running. 'lwpctl' gives us the true
245 * status of the thread.
246 */
247 NOINLINE static void *
248 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
249 {
250 pthread_t thread;
251 unsigned int count, i;
252
253 for (count = 2;; owner = ptm->ptm_owner) {
254 thread = (pthread_t)MUTEX_OWNER(owner);
255 if (thread == NULL)
256 break;
257 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
258 break;
259 if (count < 128)
260 count += count;
261 for (i = count; i != 0; i--)
262 pthread__mutex_pause();
263 }
264
265 return owner;
266 }
267
268 NOINLINE static int
269 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
270 {
271 void *waiters, *newval, *owner, *next;
272 pthread_t self;
273 int serrno;
274 int error;
275
276 owner = ptm->ptm_owner;
277 self = pthread__self();
278 serrno = errno;
279
280 pthread__assert(!self->pt_willpark);
281 pthread__assert(!self->pt_mutexwait);
282
283 /* Recursive or errorcheck? */
284 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
285 if (MUTEX_RECURSIVE(owner)) {
286 if (ptm->ptm_recursed == INT_MAX)
287 return EAGAIN;
288 ptm->ptm_recursed++;
289 return 0;
290 }
291 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
292 return EDEADLK;
293 }
294
295 /* priority protect */
296 if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
297 error = errno;
298 errno = serrno;
299 return error;
300 }
301
302 for (;;) {
303 /* If it has become free, try to acquire it again. */
304 if (MUTEX_OWNER(owner) == 0) {
305 newval = (void *)((uintptr_t)self | (uintptr_t)owner);
306 next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
307 if (__predict_false(next != owner)) {
308 owner = next;
309 continue;
310 }
311 errno = serrno;
312 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
313 membar_enter();
314 #endif
315 return 0;
316 } else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
317 /* Spin while the owner is running. */
318 owner = pthread__mutex_spin(ptm, owner);
319 if (MUTEX_OWNER(owner) == 0) {
320 continue;
321 }
322 }
323
324 /*
325 * Nope, still held. Add thread to the list of waiters.
326 * Issue a memory barrier to ensure mutexwait/mutexnext
327 * are visible before we enter the waiters list.
328 */
329 self->pt_mutexwait = 1;
330 for (waiters = ptm->ptm_waiters;; waiters = next) {
331 self->pt_mutexnext = waiters;
332 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
333 membar_producer();
334 #endif
335 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
336 if (next == waiters)
337 break;
338 }
339
340 /*
341 * Try to set the waiters bit. If the mutex has become free
342 * since entering self onto the waiters list, need to wake
343 * everybody up (including self) and retry. It's possible
344 * to race with the unlocking thread, so self may have
345 * already been awoken.
346 */
347 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
348 membar_sync();
349 #endif
350 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
351 (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
352 if (next != owner) {
353 pthread__mutex_wakeup(self, ptm);
354 }
355
356 /*
357 * We must not proceed until told that we are no longer
358 * waiting (via pt_mutexwait being set to zero). Otherwise
359 * it is unsafe to re-enter the thread onto the waiters
360 * list.
361 */
362 do {
363 pthread__assert(self->pt_nwaiters <= 1);
364 pthread__assert(self->pt_nwaiters != 0 ||
365 self->pt_waiters[0] == 0);
366 error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
367 __UNCONST(ts), self->pt_waiters[0], NULL, NULL);
368 self->pt_waiters[0] = 0;
369 self->pt_nwaiters = 0;
370 if (error < 0 && errno == ETIMEDOUT) {
371 /* Remove self from waiters list */
372 pthread__mutex_wakeup(self, ptm);
373
374 /*
375 * Might have raced with another thread to
376 * do the wakeup. In any case there will be
377 * a wakeup for sure. Eat it and wait for
378 * pt_mutexwait to clear.
379 */
380 do {
381 (void)_lwp_park(CLOCK_REALTIME,
382 TIMER_ABSTIME, NULL, 0, NULL, NULL);
383 } while (self->pt_mutexwait);
384
385 /* Priority protect */
386 if (MUTEX_PROTECT(owner))
387 (void)_sched_protect(-1);
388 errno = serrno;
389 return ETIMEDOUT;
390 }
391 } while (self->pt_mutexwait);
392 owner = ptm->ptm_owner;
393 }
394 }
395
396 int
397 pthread_mutex_trylock(pthread_mutex_t *ptm)
398 {
399 pthread_t self;
400 void *val, *new, *next;
401
402 if (__predict_false(__uselibcstub))
403 return __libc_mutex_trylock_stub(ptm);
404
405 pthread__error(EINVAL, "Invalid mutex",
406 ptm->ptm_magic == _PT_MUTEX_MAGIC);
407
408 self = pthread__self();
409 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
410 if (__predict_true(val == NULL)) {
411 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
412 membar_enter();
413 #endif
414 return 0;
415 }
416
417 if (MUTEX_RECURSIVE(val)) {
418 if (MUTEX_OWNER(val) == 0) {
419 new = (void *)((uintptr_t)self | (uintptr_t)val);
420 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
421 if (__predict_true(next == val)) {
422 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
423 membar_enter();
424 #endif
425 return 0;
426 }
427 }
428 if (MUTEX_OWNER(val) == (uintptr_t)self) {
429 if (ptm->ptm_recursed == INT_MAX)
430 return EAGAIN;
431 ptm->ptm_recursed++;
432 return 0;
433 }
434 }
435
436 return EBUSY;
437 }
438
439 int
440 pthread_mutex_unlock(pthread_mutex_t *ptm)
441 {
442 pthread_t self;
443 void *val;
444 int error;
445
446 if (__predict_false(__uselibcstub))
447 return __libc_mutex_unlock_stub(ptm);
448
449 pthread__error(EINVAL, "Invalid mutex",
450 ptm->ptm_magic == _PT_MUTEX_MAGIC);
451
452 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
453 membar_exit();
454 #endif
455 error = 0;
456 self = pthread__self();
457
458 val = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
459 if (__predict_false(val != self)) {
460 bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
461 void *newval = val;
462 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
463 if (!weown) {
464 error = EPERM;
465 newval = val;
466 } else {
467 newval = NULL;
468 }
469 } else if (MUTEX_RECURSIVE(val)) {
470 if (!weown) {
471 error = EPERM;
472 newval = val;
473 } else if (ptm->ptm_recursed) {
474 ptm->ptm_recursed--;
475 newval = val;
476 } else {
477 newval = (pthread_t)MUTEX_RECURSIVE_BIT;
478 }
479 } else {
480 pthread__error(EPERM,
481 "Unlocking unlocked mutex", (val != NULL));
482 pthread__error(EPERM,
483 "Unlocking mutex owned by another thread", weown);
484 newval = NULL;
485 }
486
487 /*
488 * Release the mutex. If there appear to be waiters, then
489 * wake them up.
490 */
491 if (newval != val) {
492 val = atomic_swap_ptr(&ptm->ptm_owner, newval);
493 if (__predict_false(MUTEX_PROTECT(val))) {
494 /* restore elevated priority */
495 (void)_sched_protect(-1);
496 }
497 }
498 }
499
500 /*
501 * Finally, wake any waiters and return.
502 */
503 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
504 membar_enter();
505 #endif
506 if (MUTEX_HAS_WAITERS(val)) {
507 pthread__mutex_wakeup(self, ptm);
508 } else if (self->pt_nwaiters > 0) {
509 pthread__clear_waiters(self);
510 }
511 return error;
512 }
513
514 /*
515 * pthread__mutex_wakeup: unpark threads waiting for us
516 *
517 * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
518 */
519
520 static void
521 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
522 {
523 pthread_t thread, next;
524
525 /* Take ownership of the current set of waiters. */
526 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
527 membar_datadep_consumer(); /* for alpha */
528
529 /*
530 * Pull waiters from the queue and add to our list. Use a memory
531 * barrier to ensure that we safely read the value of pt_mutexnext
532 * before 'thread' sees pt_mutexwait being cleared.
533 */
534 while (thread != NULL) {
535 if (self->pt_nwaiters >= pthread__unpark_max) {
536 pthread__clear_waiters(self);
537 }
538 next = thread->pt_mutexnext;
539 self->pt_waiters[self->pt_nwaiters++] = thread->pt_lid;
540 membar_sync();
541 thread->pt_mutexwait = 0;
542 /* No longer safe to touch 'thread' */
543 thread = next;
544 }
545 pthread__clear_waiters(self);
546 }
547
548 int
549 pthread_mutexattr_init(pthread_mutexattr_t *attr)
550 {
551 #if 0
552 if (__predict_false(__uselibcstub))
553 return __libc_mutexattr_init_stub(attr);
554 #endif
555
556 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
557 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
558 return 0;
559 }
560
561 int
562 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
563 {
564 if (__predict_false(__uselibcstub))
565 return __libc_mutexattr_destroy_stub(attr);
566
567 pthread__error(EINVAL, "Invalid mutex attribute",
568 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
569
570 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
571
572 return 0;
573 }
574
575 int
576 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
577 {
578
579 pthread__error(EINVAL, "Invalid mutex attribute",
580 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
581
582 *typep = MUTEX_GET_TYPE(attr->ptma_private);
583 return 0;
584 }
585
586 int
587 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
588 {
589
590 if (__predict_false(__uselibcstub))
591 return __libc_mutexattr_settype_stub(attr, type);
592
593 pthread__error(EINVAL, "Invalid mutex attribute",
594 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
595
596 switch (type) {
597 case PTHREAD_MUTEX_NORMAL:
598 case PTHREAD_MUTEX_ERRORCHECK:
599 case PTHREAD_MUTEX_RECURSIVE:
600 MUTEX_SET_TYPE(attr->ptma_private, type);
601 return 0;
602 default:
603 return EINVAL;
604 }
605 }
606
607 int
608 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
609 {
610
611 pthread__error(EINVAL, "Invalid mutex attribute",
612 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
613
614 *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
615 return 0;
616 }
617
618 int
619 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
620 {
621
622 pthread__error(EINVAL, "Invalid mutex attribute",
623 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
624
625 switch (proto) {
626 case PTHREAD_PRIO_NONE:
627 case PTHREAD_PRIO_PROTECT:
628 MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
629 return 0;
630 case PTHREAD_PRIO_INHERIT:
631 return ENOTSUP;
632 default:
633 return EINVAL;
634 }
635 }
636
637 int
638 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
639 {
640
641 pthread__error(EINVAL, "Invalid mutex attribute",
642 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
643
644 *ceil = MUTEX_GET_CEILING(attr->ptma_private);
645 return 0;
646 }
647
648 int
649 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
650 {
651
652 pthread__error(EINVAL, "Invalid mutex attribute",
653 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
654
655 if (ceil & ~0xff)
656 return EINVAL;
657
658 MUTEX_SET_CEILING(attr->ptma_private, ceil);
659 return 0;
660 }
661
662 #ifdef _PTHREAD_PSHARED
663 int
664 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
665 int * __restrict pshared)
666 {
667
668 pthread__error(EINVAL, "Invalid mutex attribute",
669 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
670
671 *pshared = PTHREAD_PROCESS_PRIVATE;
672 return 0;
673 }
674
675 int
676 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
677 {
678
679 pthread__error(EINVAL, "Invalid mutex attribute",
680 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
681
682 switch(pshared) {
683 case PTHREAD_PROCESS_PRIVATE:
684 return 0;
685 case PTHREAD_PROCESS_SHARED:
686 return ENOSYS;
687 }
688 return EINVAL;
689 }
690 #endif
691
692 /*
693 * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
694 *
695 * In order to avoid unnecessary contention on interlocking mutexes, we try
696 * to defer waking up threads until we unlock the mutex. The threads will
697 * be woken up when the calling thread (self) releases a mutex.
698 */
699 void
700 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
701 {
702
703 if (__predict_false(ptm == NULL ||
704 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
705 pthread__clear_waiters(self);
706 }
707 }
708
709 int
710 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
711 {
712
713 pthread__error(EINVAL, "Invalid mutex",
714 ptm->ptm_magic == _PT_MUTEX_MAGIC);
715
716 *ceil = ptm->ptm_ceiling;
717 return 0;
718 }
719
720 int
721 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
722 {
723 int error;
724
725 pthread__error(EINVAL, "Invalid mutex",
726 ptm->ptm_magic == _PT_MUTEX_MAGIC);
727
728 error = pthread_mutex_lock(ptm);
729 if (error == 0) {
730 *old_ceil = ptm->ptm_ceiling;
731 /*check range*/
732 ptm->ptm_ceiling = ceil;
733 pthread_mutex_unlock(ptm);
734 }
735 return error;
736 }
737
738 int
739 _pthread_mutex_held_np(pthread_mutex_t *ptm)
740 {
741
742 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
743 }
744
745 pthread_t
746 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
747 {
748
749 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
750 }
751