Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.80
      1 /*	$NetBSD: pthread_mutex.c,v 1.80 2020/06/10 22:45:15 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.80 2020/06/10 22:45:15 ad Exp $");
     51 
     52 #include <sys/types.h>
     53 #include <sys/lwpctl.h>
     54 #include <sys/sched.h>
     55 #include <sys/lock.h>
     56 
     57 #include <errno.h>
     58 #include <limits.h>
     59 #include <stdlib.h>
     60 #include <time.h>
     61 #include <string.h>
     62 #include <stdio.h>
     63 
     64 #include "pthread.h"
     65 #include "pthread_int.h"
     66 #include "reentrant.h"
     67 
     68 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69 #define	MUTEX_PROTECT_BIT		((uintptr_t)0x08)
     70 #define	MUTEX_THREAD			((uintptr_t)~0x0f)
     71 
     72 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     73 #define	MUTEX_PROTECT(x)		((uintptr_t)(x) & MUTEX_PROTECT_BIT)
     74 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75 
     76 #define	MUTEX_GET_TYPE(x)		\
     77     ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
     78 #define	MUTEX_SET_TYPE(x, t) 		\
     79     (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
     80 #define	MUTEX_GET_PROTOCOL(x)		\
     81     ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
     82 #define	MUTEX_SET_PROTOCOL(x, p)	\
     83     (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
     84 #define	MUTEX_GET_CEILING(x)		\
     85     ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
     86 #define	MUTEX_SET_CEILING(x, c)	\
     87     (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
     88 
     89 #if __GNUC_PREREQ__(3, 0)
     90 #define	NOINLINE		__attribute ((noinline))
     91 #else
     92 #define	NOINLINE		/* nothing */
     93 #endif
     94 
     95 struct waiter {
     96 	struct waiter	*volatile next;
     97 	lwpid_t		volatile lid;
     98 };
     99 
    100 static void	pthread__mutex_wakeup(pthread_t, struct pthread__waiter *);
    101 static int	pthread__mutex_lock_slow(pthread_mutex_t *,
    102     const struct timespec *);
    103 static void	pthread__mutex_pause(void);
    104 
    105 int		_pthread_mutex_held_np(pthread_mutex_t *);
    106 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
    107 
    108 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
    109 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
    110 
    111 __strong_alias(__libc_mutex_init,pthread_mutex_init)
    112 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
    113 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
    114 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
    115 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
    116 
    117 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    118 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    119 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    120 
    121 int
    122 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    123 {
    124 	uintptr_t type, proto, val, ceil;
    125 
    126 #if 0
    127 	/*
    128 	 * Always initialize the mutex structure, maybe be used later
    129 	 * and the cost should be minimal.
    130 	 */
    131 	if (__predict_false(__uselibcstub))
    132 		return __libc_mutex_init_stub(ptm, attr);
    133 #endif
    134 
    135 	pthread__error(EINVAL, "Invalid mutes attribute",
    136 	    attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    137 
    138 	if (attr == NULL) {
    139 		type = PTHREAD_MUTEX_NORMAL;
    140 		proto = PTHREAD_PRIO_NONE;
    141 		ceil = 0;
    142 	} else {
    143 		val = (uintptr_t)attr->ptma_private;
    144 
    145 		type = MUTEX_GET_TYPE(val);
    146 		proto = MUTEX_GET_PROTOCOL(val);
    147 		ceil = MUTEX_GET_CEILING(val);
    148 	}
    149 	switch (type) {
    150 	case PTHREAD_MUTEX_ERRORCHECK:
    151 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    152 		ptm->ptm_owner = NULL;
    153 		break;
    154 	case PTHREAD_MUTEX_RECURSIVE:
    155 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    156 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    157 		break;
    158 	default:
    159 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    160 		ptm->ptm_owner = NULL;
    161 		break;
    162 	}
    163 	switch (proto) {
    164 	case PTHREAD_PRIO_PROTECT:
    165 		val = (uintptr_t)ptm->ptm_owner;
    166 		val |= MUTEX_PROTECT_BIT;
    167 		ptm->ptm_owner = (void *)val;
    168 		break;
    169 
    170 	}
    171 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    172 	ptm->ptm_waiters = NULL;
    173 	ptm->ptm_recursed = 0;
    174 	ptm->ptm_ceiling = (unsigned char)ceil;
    175 
    176 	return 0;
    177 }
    178 
    179 int
    180 pthread_mutex_destroy(pthread_mutex_t *ptm)
    181 {
    182 
    183 	if (__predict_false(__uselibcstub))
    184 		return __libc_mutex_destroy_stub(ptm);
    185 
    186 	pthread__error(EINVAL, "Invalid mutex",
    187 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    188 	pthread__error(EBUSY, "Destroying locked mutex",
    189 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    190 
    191 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    192 	return 0;
    193 }
    194 
    195 int
    196 pthread_mutex_lock(pthread_mutex_t *ptm)
    197 {
    198 	pthread_t self;
    199 	void *val;
    200 
    201 	if (__predict_false(__uselibcstub))
    202 		return __libc_mutex_lock_stub(ptm);
    203 
    204 	pthread__error(EINVAL, "Invalid mutex",
    205 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    206 
    207 	self = pthread__self();
    208 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    209 	if (__predict_true(val == NULL)) {
    210 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    211 		membar_enter();
    212 #endif
    213 		return 0;
    214 	}
    215 	return pthread__mutex_lock_slow(ptm, NULL);
    216 }
    217 
    218 int
    219 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
    220 {
    221 	pthread_t self;
    222 	void *val;
    223 
    224 	pthread__error(EINVAL, "Invalid mutex",
    225 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    226 
    227 	self = pthread__self();
    228 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    229 	if (__predict_true(val == NULL)) {
    230 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    231 		membar_enter();
    232 #endif
    233 		return 0;
    234 	}
    235 	return pthread__mutex_lock_slow(ptm, ts);
    236 }
    237 
    238 /* We want function call overhead. */
    239 NOINLINE static void
    240 pthread__mutex_pause(void)
    241 {
    242 
    243 	pthread__smt_pause();
    244 }
    245 
    246 /*
    247  * Spin while the holder is running.  'lwpctl' gives us the true
    248  * status of the thread.
    249  */
    250 NOINLINE static void *
    251 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    252 {
    253 	pthread_t thread;
    254 	unsigned int count, i;
    255 
    256 	for (count = 2;; owner = ptm->ptm_owner) {
    257 		thread = (pthread_t)MUTEX_OWNER(owner);
    258 		if (thread == NULL)
    259 			break;
    260 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
    261 			break;
    262 		if (count < 128)
    263 			count += count;
    264 		for (i = count; i != 0; i--)
    265 			pthread__mutex_pause();
    266 	}
    267 
    268 	return owner;
    269 }
    270 
    271 NOINLINE static int
    272 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
    273 {
    274 	void *newval, *owner, *next;
    275 	struct waiter waiter;
    276 	pthread_t self;
    277 	int serrno;
    278 	int error;
    279 
    280 	owner = ptm->ptm_owner;
    281 	self = pthread__self();
    282 	serrno = errno;
    283 
    284 	pthread__assert(self->pt_lid != 0);
    285 
    286 	/* Recursive or errorcheck? */
    287 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    288 		if (MUTEX_RECURSIVE(owner)) {
    289 			if (ptm->ptm_recursed == INT_MAX)
    290 				return EAGAIN;
    291 			ptm->ptm_recursed++;
    292 			return 0;
    293 		}
    294 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    295 			return EDEADLK;
    296 	}
    297 
    298 	/* priority protect */
    299 	if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
    300 		error = errno;
    301 		errno = serrno;
    302 		return error;
    303 	}
    304 
    305 	for (;;) {
    306 		/* If it has become free, try to acquire it again. */
    307 		if (MUTEX_OWNER(owner) == 0) {
    308 			newval = (void *)((uintptr_t)self | (uintptr_t)owner);
    309 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
    310 			if (__predict_false(next != owner)) {
    311 				owner = next;
    312 				continue;
    313 			}
    314 			errno = serrno;
    315 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    316 			membar_enter();
    317 #endif
    318 			return 0;
    319 		} else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
    320 			/* Spin while the owner is running. */
    321 			owner = pthread__mutex_spin(ptm, owner);
    322 			if (MUTEX_OWNER(owner) == 0) {
    323 				continue;
    324 			}
    325 		}
    326 
    327 		/*
    328 		 * Nope, still held.  Add thread to the list of waiters.
    329 		 * Issue a memory barrier to ensure stores to 'waiter'
    330 		 * are visible before we enter the list.
    331 		 */
    332 		waiter.next = ptm->ptm_waiters;
    333 		waiter.lid = self->pt_lid;
    334 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    335 		membar_producer();
    336 #endif
    337 		next = atomic_cas_ptr(&ptm->ptm_waiters, waiter.next, &waiter);
    338 		if (next != waiter.next) {
    339 			owner = ptm->ptm_owner;
    340 			continue;
    341 		}
    342 
    343 		/*
    344 		 * If the mutex has become free since entering self onto the
    345 		 * waiters list, need to wake everybody up (including self)
    346 		 * and retry.  It's possible to race with an unlocking
    347 		 * thread, so self may have already been awoken.
    348 		 */
    349 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    350 		membar_enter();
    351 #endif
    352 		if (MUTEX_OWNER(ptm->ptm_owner) == 0) {
    353 			pthread__mutex_wakeup(self,
    354 			    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    355 		}
    356 
    357 		/*
    358 		 * We must not proceed until told that we are no longer
    359 		 * waiting (via waiter.lid being set to zero).  Otherwise
    360 		 * it's unsafe to re-enter "waiter" onto the waiters list.
    361 		 */
    362 		while (waiter.lid != 0) {
    363 			error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
    364 			    __UNCONST(ts), 0, NULL, NULL);
    365 			if (error < 0 && errno == ETIMEDOUT) {
    366 				/* Remove self from waiters list */
    367 				pthread__mutex_wakeup(self,
    368 				    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    369 
    370 				/*
    371 				 * Might have raced with another thread to
    372 				 * do the wakeup.  In any case there will be
    373 				 * a wakeup for sure.  Eat it and wait for
    374 				 * waiter.lid to clear.
    375 				 */
    376 				while (waiter.lid != 0) {
    377 					(void)_lwp_park(CLOCK_MONOTONIC, 0,
    378 					    NULL, 0, NULL, NULL);
    379 				}
    380 
    381 				/* Priority protect */
    382 				if (MUTEX_PROTECT(owner))
    383 					(void)_sched_protect(-1);
    384 				errno = serrno;
    385 				return ETIMEDOUT;
    386 			}
    387 		}
    388 		owner = ptm->ptm_owner;
    389 	}
    390 }
    391 
    392 int
    393 pthread_mutex_trylock(pthread_mutex_t *ptm)
    394 {
    395 	pthread_t self;
    396 	void *val, *new, *next;
    397 
    398 	if (__predict_false(__uselibcstub))
    399 		return __libc_mutex_trylock_stub(ptm);
    400 
    401 	pthread__error(EINVAL, "Invalid mutex",
    402 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    403 
    404 	self = pthread__self();
    405 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    406 	if (__predict_true(val == NULL)) {
    407 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    408 		membar_enter();
    409 #endif
    410 		return 0;
    411 	}
    412 
    413 	if (MUTEX_RECURSIVE(val)) {
    414 		if (MUTEX_OWNER(val) == 0) {
    415 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    416 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    417 			if (__predict_true(next == val)) {
    418 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    419 				membar_enter();
    420 #endif
    421 				return 0;
    422 			}
    423 		}
    424 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    425 			if (ptm->ptm_recursed == INT_MAX)
    426 				return EAGAIN;
    427 			ptm->ptm_recursed++;
    428 			return 0;
    429 		}
    430 	}
    431 
    432 	return EBUSY;
    433 }
    434 
    435 int
    436 pthread_mutex_unlock(pthread_mutex_t *ptm)
    437 {
    438 	pthread_t self;
    439 	void *val, *newval;
    440 	int error;
    441 
    442 	if (__predict_false(__uselibcstub))
    443 		return __libc_mutex_unlock_stub(ptm);
    444 
    445 	pthread__error(EINVAL, "Invalid mutex",
    446 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    447 
    448 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    449 	membar_exit();
    450 #endif
    451 	error = 0;
    452 	self = pthread__self();
    453 	newval = NULL;
    454 
    455 	val = atomic_cas_ptr(&ptm->ptm_owner, self, newval);
    456 	if (__predict_false(val != self)) {
    457 		bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
    458 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    459 			if (!weown) {
    460 				error = EPERM;
    461 				newval = val;
    462 			} else {
    463 				newval = NULL;
    464 			}
    465 		} else if (MUTEX_RECURSIVE(val)) {
    466 			if (!weown) {
    467 				error = EPERM;
    468 				newval = val;
    469 			} else if (ptm->ptm_recursed) {
    470 				ptm->ptm_recursed--;
    471 				newval = val;
    472 			} else {
    473 				newval = (pthread_t)MUTEX_RECURSIVE_BIT;
    474 			}
    475 		} else {
    476 			pthread__error(EPERM,
    477 			    "Unlocking unlocked mutex", (val != NULL));
    478 			pthread__error(EPERM,
    479 			    "Unlocking mutex owned by another thread", weown);
    480 			newval = NULL;
    481 		}
    482 
    483 		/*
    484 		 * Release the mutex.  If there appear to be waiters, then
    485 		 * wake them up.
    486 		 */
    487 		if (newval != val) {
    488 			val = atomic_swap_ptr(&ptm->ptm_owner, newval);
    489 			if (__predict_false(MUTEX_PROTECT(val))) {
    490 				/* restore elevated priority */
    491 				(void)_sched_protect(-1);
    492 			}
    493 		}
    494 	}
    495 
    496 	/*
    497 	 * Finally, wake any waiters and return.
    498 	 */
    499 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    500 	membar_enter();
    501 #endif
    502 	if (MUTEX_OWNER(newval) == 0 && ptm->ptm_waiters != NULL) {
    503 		pthread__mutex_wakeup(self,
    504 		    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    505 	}
    506 	return error;
    507 }
    508 
    509 /*
    510  * pthread__mutex_wakeup: unpark threads waiting for us
    511  */
    512 
    513 static void
    514 pthread__mutex_wakeup(pthread_t self, struct pthread__waiter *cur)
    515 {
    516 	lwpid_t lids[PTHREAD__UNPARK_MAX];
    517 	const size_t mlid = pthread__unpark_max;
    518 	struct pthread__waiter *next;
    519 	size_t nlid;
    520 
    521 	/*
    522 	 * Pull waiters from the queue and add to our list.  Use a memory
    523 	 * barrier to ensure that we safely read the value of waiter->next
    524 	 * before the awoken thread sees waiter->lid being cleared.
    525 	 */
    526 	membar_datadep_consumer(); /* for alpha */
    527 	for (nlid = 0; cur != NULL; cur = next) {
    528 		if (nlid == mlid) {
    529 			(void)_lwp_unpark_all(lids, nlid, NULL);
    530 			nlid = 0;
    531 		}
    532 		next = cur->next;
    533 		pthread__assert(cur->lid != 0);
    534 		lids[nlid++] = cur->lid;
    535 		membar_sync();
    536 		cur->lid = 0;
    537 		/* No longer safe to touch 'cur' */
    538 	}
    539 	if (nlid == 1) {
    540 		(void)_lwp_unpark(lids[0], NULL);
    541 	} else if (nlid > 1) {
    542 		(void)_lwp_unpark_all(lids, nlid, NULL);
    543 	}
    544 }
    545 
    546 int
    547 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    548 {
    549 #if 0
    550 	if (__predict_false(__uselibcstub))
    551 		return __libc_mutexattr_init_stub(attr);
    552 #endif
    553 
    554 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    555 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    556 	return 0;
    557 }
    558 
    559 int
    560 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    561 {
    562 	if (__predict_false(__uselibcstub))
    563 		return __libc_mutexattr_destroy_stub(attr);
    564 
    565 	pthread__error(EINVAL, "Invalid mutex attribute",
    566 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    567 
    568 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    569 
    570 	return 0;
    571 }
    572 
    573 int
    574 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    575 {
    576 
    577 	pthread__error(EINVAL, "Invalid mutex attribute",
    578 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    579 
    580 	*typep = MUTEX_GET_TYPE(attr->ptma_private);
    581 	return 0;
    582 }
    583 
    584 int
    585 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    586 {
    587 
    588 	if (__predict_false(__uselibcstub))
    589 		return __libc_mutexattr_settype_stub(attr, type);
    590 
    591 	pthread__error(EINVAL, "Invalid mutex attribute",
    592 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    593 
    594 	switch (type) {
    595 	case PTHREAD_MUTEX_NORMAL:
    596 	case PTHREAD_MUTEX_ERRORCHECK:
    597 	case PTHREAD_MUTEX_RECURSIVE:
    598 		MUTEX_SET_TYPE(attr->ptma_private, type);
    599 		return 0;
    600 	default:
    601 		return EINVAL;
    602 	}
    603 }
    604 
    605 int
    606 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
    607 {
    608 
    609 	pthread__error(EINVAL, "Invalid mutex attribute",
    610 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    611 
    612 	*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
    613 	return 0;
    614 }
    615 
    616 int
    617 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
    618 {
    619 
    620 	pthread__error(EINVAL, "Invalid mutex attribute",
    621 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    622 
    623 	switch (proto) {
    624 	case PTHREAD_PRIO_NONE:
    625 	case PTHREAD_PRIO_PROTECT:
    626 		MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
    627 		return 0;
    628 	case PTHREAD_PRIO_INHERIT:
    629 		return ENOTSUP;
    630 	default:
    631 		return EINVAL;
    632 	}
    633 }
    634 
    635 int
    636 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
    637 {
    638 
    639 	pthread__error(EINVAL, "Invalid mutex attribute",
    640 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    641 
    642 	*ceil = MUTEX_GET_CEILING(attr->ptma_private);
    643 	return 0;
    644 }
    645 
    646 int
    647 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
    648 {
    649 
    650 	pthread__error(EINVAL, "Invalid mutex attribute",
    651 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    652 
    653 	if (ceil & ~0xff)
    654 		return EINVAL;
    655 
    656 	MUTEX_SET_CEILING(attr->ptma_private, ceil);
    657 	return 0;
    658 }
    659 
    660 #ifdef _PTHREAD_PSHARED
    661 int
    662 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
    663     int * __restrict pshared)
    664 {
    665 
    666 	pthread__error(EINVAL, "Invalid mutex attribute",
    667 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    668 
    669 	*pshared = PTHREAD_PROCESS_PRIVATE;
    670 	return 0;
    671 }
    672 
    673 int
    674 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
    675 {
    676 
    677 	pthread__error(EINVAL, "Invalid mutex attribute",
    678 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    679 
    680 	switch(pshared) {
    681 	case PTHREAD_PROCESS_PRIVATE:
    682 		return 0;
    683 	case PTHREAD_PROCESS_SHARED:
    684 		return ENOSYS;
    685 	}
    686 	return EINVAL;
    687 }
    688 #endif
    689 
    690 /*
    691  * In order to avoid unnecessary contention on interlocking mutexes, we try
    692  * to defer waking up threads until we unlock the mutex.  The threads will
    693  * be woken up when the calling thread (self) releases the mutex.
    694  */
    695 void
    696 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm,
    697     struct pthread__waiter *head)
    698 {
    699 	struct pthread__waiter *tail, *n, *o;
    700 
    701 	pthread__assert(head != NULL);
    702 
    703 	if (__predict_false(ptm == NULL ||
    704 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    705 	    	pthread__mutex_wakeup(self, head);
    706 	    	return;
    707 	}
    708 
    709 	/* This is easy if no existing waiters on mutex. */
    710 	if (atomic_cas_ptr(&ptm->ptm_waiters, NULL, head) == NULL) {
    711 		return;
    712 	}
    713 
    714 	/* Oops need to append.  Find the tail of the new queue. */
    715 	for (tail = head; tail->next != NULL; tail = tail->next) {
    716 		/* nothing */
    717 	}
    718 
    719 	/* Append atomically. */
    720 	for (o = ptm->ptm_waiters;; o = n) {
    721 		tail->next = o;
    722 		n = atomic_cas_ptr(&ptm->ptm_waiters, o, head);
    723 		if (__predict_true(n == o)) {
    724 			break;
    725 		}
    726 	}
    727 }
    728 
    729 int
    730 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
    731 {
    732 
    733 	pthread__error(EINVAL, "Invalid mutex",
    734 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    735 
    736 	*ceil = ptm->ptm_ceiling;
    737 	return 0;
    738 }
    739 
    740 int
    741 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
    742 {
    743 	int error;
    744 
    745 	pthread__error(EINVAL, "Invalid mutex",
    746 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    747 
    748 	error = pthread_mutex_lock(ptm);
    749 	if (error == 0) {
    750 		*old_ceil = ptm->ptm_ceiling;
    751 		/*check range*/
    752 		ptm->ptm_ceiling = ceil;
    753 		pthread_mutex_unlock(ptm);
    754 	}
    755 	return error;
    756 }
    757 
    758 int
    759 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    760 {
    761 
    762 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    763 }
    764 
    765 pthread_t
    766 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    767 {
    768 
    769 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    770 }
    771