Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.9
      1 /*	$NetBSD: pthread_mutex.c,v 1.9 2003/02/15 00:52:18 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #include <errno.h>
     41 #include <limits.h>
     42 #include <stdlib.h>
     43 #include <string.h>
     44 
     45 #include "pthread.h"
     46 #include "pthread_int.h"
     47 
     48 static int pthread_mutex_lock_slow(pthread_mutex_t *);
     49 
     50 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     51 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     52 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     53 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     54 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     55 
     56 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     57 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     58 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     59 
     60 __strong_alias(__libc_thr_once,pthread_once)
     61 
     62 struct mutex_private {
     63 	int	type;
     64 	int	recursecount;
     65 };
     66 
     67 static const struct mutex_private mutex_private_default = {
     68 	PTHREAD_MUTEX_DEFAULT,
     69 	0,
     70 };
     71 
     72 struct mutexattr_private {
     73 	int	type;
     74 };
     75 
     76 static const struct mutexattr_private mutexattr_private_default = {
     77 	PTHREAD_MUTEX_DEFAULT,
     78 };
     79 
     80 /*
     81  * If the mutex does not already have private data (i.e. was statically
     82  * initialized), then give it the default.
     83  */
     84 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
     85 do {									\
     86 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
     87 		/* LINTED cast away const */				\
     88 		mp = ((mutex)->ptm_private =				\
     89 		    (void *)&mutex_private_default);			\
     90 	}								\
     91 } while (/*CONSTCOND*/0)
     92 
     93 int
     94 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
     95 {
     96 	struct mutexattr_private *map;
     97 	struct mutex_private *mp;
     98 
     99 #ifdef ERRORCHECK
    100 	if ((mutex == NULL) ||
    101 	    (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
    102 		return EINVAL;
    103 #endif
    104 
    105 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
    106 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
    107 		mp = malloc(sizeof(*mp));
    108 		if (mp == NULL)
    109 			return ENOMEM;
    110 
    111 		mp->type = map->type;
    112 		mp->recursecount = 0;
    113 	} else {
    114 		/* LINTED cast away const */
    115 		mp = (struct mutex_private *) &mutex_private_default;
    116 	}
    117 
    118 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
    119 	mutex->ptm_owner = NULL;
    120 	pthread_lockinit(&mutex->ptm_lock);
    121 	pthread_lockinit(&mutex->ptm_interlock);
    122 	PTQ_INIT(&mutex->ptm_blocked);
    123 	mutex->ptm_private = mp;
    124 
    125 	return 0;
    126 }
    127 
    128 
    129 int
    130 pthread_mutex_destroy(pthread_mutex_t *mutex)
    131 {
    132 
    133 #ifdef ERRORCHECK
    134 	if ((mutex == NULL) ||
    135 	    (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
    136 	    (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
    137 		return EINVAL;
    138 #endif
    139 
    140 	mutex->ptm_magic = _PT_MUTEX_DEAD;
    141 	if (mutex->ptm_private != NULL &&
    142 	    mutex->ptm_private != (const void *)&mutex_private_default)
    143 		free(mutex->ptm_private);
    144 
    145 	return 0;
    146 }
    147 
    148 
    149 /*
    150  * Note regarding memory visibility: Pthreads has rules about memory
    151  * visibility and mutexes. Very roughly: Memory a thread can see when
    152  * it unlocks a mutex can be seen by another thread that locks the
    153  * same mutex.
    154  *
    155  * A memory barrier after a lock and before an unlock will provide
    156  * this behavior. This code relies on pthread__simple_lock_try() to issue
    157  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
    158  * issue a barrier before releasing a lock.
    159  */
    160 
    161 int
    162 pthread_mutex_lock(pthread_mutex_t *mutex)
    163 {
    164 	int error;
    165 
    166 #ifdef ERRORCHECK
    167 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    168 		return EINVAL;
    169 #endif
    170 
    171 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
    172 	/*
    173 	 * Note that if we get the lock, we don't have to deal with any
    174 	 * non-default lock type handling.
    175 	 */
    176 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
    177 		error = pthread_mutex_lock_slow(mutex);
    178 		if (error)
    179 			return error;
    180 	}
    181 
    182 	/* We have the lock! */
    183 	/*
    184 	 * Identifying ourselves may be slow, and this assignment is
    185 	 * only needed for (a) debugging identity of the owning thread
    186 	 * and (b) handling errorcheck and recursive mutexes. It's
    187 	 * better to just stash our stack pointer here and let those
    188 	 * slow exception cases compute the stack->thread mapping.
    189 	 */
    190 	mutex->ptm_owner = (pthread_t)pthread__sp();
    191 
    192 	return 0;
    193 }
    194 
    195 
    196 static int
    197 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
    198 {
    199 	pthread_t self;
    200 
    201 	self = pthread__self();
    202 
    203 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
    204 	while (/*CONSTCOND*/1) {
    205 		if (pthread__simple_lock_try(&mutex->ptm_lock))
    206 			break; /* got it! */
    207 
    208 		/* Okay, didn't look free. Get the interlock... */
    209 		pthread_spinlock(self, &mutex->ptm_interlock);
    210 		/*
    211 		 * The mutex_unlock routine will get the interlock
    212 		 * before looking at the list of sleepers, so if the
    213 		 * lock is held we can safely put ourselves on the
    214 		 * sleep queue. If it's not held, we can try taking it
    215 		 * again.
    216 		 */
    217 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
    218 			struct mutex_private *mp;
    219 
    220 			GET_MUTEX_PRIVATE(mutex, mp);
    221 
    222 			if (pthread__id(mutex->ptm_owner) == self) {
    223 				switch (mp->type) {
    224 				case PTHREAD_MUTEX_ERRORCHECK:
    225 					pthread_spinunlock(self,
    226 					    &mutex->ptm_interlock);
    227 					return EDEADLK;
    228 
    229 				case PTHREAD_MUTEX_RECURSIVE:
    230 					/*
    231 					 * It's safe to do this without
    232 					 * holding the interlock, because
    233 					 * we only modify it if we know we
    234 					 * own the mutex.
    235 					 */
    236 					pthread_spinunlock(self,
    237 					    &mutex->ptm_interlock);
    238 					if (mp->recursecount == INT_MAX)
    239 						return EAGAIN;
    240 					mp->recursecount++;
    241 					return 0;
    242 				}
    243 			}
    244 
    245 			PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
    246 			/*
    247 			 * Locking a mutex is not a cancellation
    248 			 * point, so we don't need to do the
    249 			 * test-cancellation dance. We may get woken
    250 			 * up spuriously by pthread_cancel or signals,
    251 			 * but it's okay since we're just going to
    252 			 * retry.
    253 			 */
    254 			pthread_spinlock(self, &self->pt_statelock);
    255 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
    256 			self->pt_sleepobj = mutex;
    257 			self->pt_sleepq = &mutex->ptm_blocked;
    258 			self->pt_sleeplock = &mutex->ptm_interlock;
    259 			pthread_spinunlock(self, &self->pt_statelock);
    260 
    261 			pthread__block(self, &mutex->ptm_interlock);
    262 			/* interlock is not held when we return */
    263 		} else {
    264 			pthread_spinunlock(self, &mutex->ptm_interlock);
    265 		}
    266 		/* Go around for another try. */
    267 	}
    268 
    269 	return 0;
    270 }
    271 
    272 
    273 int
    274 pthread_mutex_trylock(pthread_mutex_t *mutex)
    275 {
    276 
    277 #ifdef ERRORCHECK
    278 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    279 		return EINVAL;
    280 #endif
    281 
    282 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
    283 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
    284 		pthread_t self;
    285 		struct mutex_private *mp;
    286 
    287 		GET_MUTEX_PRIVATE(mutex, mp);
    288 
    289 		/*
    290 		 * These tests can be performed without holding the
    291 		 * interlock because these fields are only modified
    292 		 * if we know we own the mutex.
    293 		 */
    294 		self = pthread__self();
    295 		if (pthread__id(mutex->ptm_owner) == self) {
    296 			switch (mp->type) {
    297 			case PTHREAD_MUTEX_ERRORCHECK:
    298 				return EDEADLK;
    299 
    300 			case PTHREAD_MUTEX_RECURSIVE:
    301 				if (mp->recursecount == INT_MAX)
    302 					return EAGAIN;
    303 				mp->recursecount++;
    304 				return 0;
    305 			}
    306 		}
    307 
    308 		return EBUSY;
    309 	}
    310 
    311 	/* see comment at the end of pthread_mutex_lock() */
    312 	mutex->ptm_owner = (pthread_t)pthread__sp();
    313 
    314 	return 0;
    315 }
    316 
    317 
    318 int
    319 pthread_mutex_unlock(pthread_mutex_t *mutex)
    320 {
    321 	struct mutex_private *mp;
    322 	pthread_t self, blocked;
    323 
    324 #ifdef ERRORCHECK
    325 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    326 		return EINVAL;
    327 
    328 	if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
    329 		return EPERM; /* Not exactly the right error. */
    330 #endif
    331 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
    332 
    333 	GET_MUTEX_PRIVATE(mutex, mp);
    334 
    335 	/*
    336 	 * These tests can be performed without holding the
    337 	 * interlock because these fields are only modified
    338 	 * if we know we own the mutex.
    339 	 */
    340 	switch (mp->type) {
    341 	case PTHREAD_MUTEX_ERRORCHECK:
    342 		if (pthread__id(mutex->ptm_owner) != pthread__self())
    343 			return EPERM;
    344 		break;
    345 
    346 	case PTHREAD_MUTEX_RECURSIVE:
    347 		if (pthread__id(mutex->ptm_owner) != pthread__self())
    348 			return EPERM;
    349 		if (mp->recursecount != 0) {
    350 			mp->recursecount--;
    351 			return 0;
    352 		}
    353 		break;
    354 	}
    355 
    356 	mutex->ptm_owner = NULL;
    357 	pthread__simple_unlock(&mutex->ptm_lock);
    358 	/*
    359 	 * Do a double-checked locking dance to see if there are any
    360 	 * waiters.  If we don't see any waiters, we can exit, because
    361 	 * we've already released the lock. If we do see waiters, they
    362 	 * were probably waiting on us... there's a slight chance that
    363 	 * they are waiting on a different thread's ownership of the
    364 	 * lock that happened between the unlock above and this
    365 	 * examination of the queue; if so, no harm is done, as the
    366 	 * waiter will loop and see that the mutex is still locked.
    367 	 */
    368 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
    369 		self = pthread__self();
    370 		pthread_spinlock(self, &mutex->ptm_interlock);
    371 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
    372 		if (blocked)
    373 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
    374 		pthread_spinunlock(self, &mutex->ptm_interlock);
    375 
    376 		/* Give the head of the blocked queue another try. */
    377 		if (blocked) {
    378 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
    379 			pthread__sched(self, blocked);
    380 		}
    381 	}
    382 	return 0;
    383 }
    384 
    385 int
    386 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    387 {
    388 	struct mutexattr_private *map;
    389 
    390 #ifdef ERRORCHECK
    391 	if (attr == NULL)
    392 		return EINVAL;
    393 #endif
    394 
    395 	map = malloc(sizeof(*map));
    396 	if (map == NULL)
    397 		return ENOMEM;
    398 
    399 	*map = mutexattr_private_default;
    400 
    401 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    402 	attr->ptma_private = map;
    403 
    404 	return 0;
    405 }
    406 
    407 
    408 int
    409 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    410 {
    411 
    412 #ifdef ERRORCHECK
    413 	if ((attr == NULL) ||
    414 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
    415 		return EINVAL;
    416 #endif
    417 
    418 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    419 	if (attr->ptma_private != NULL)
    420 		free(attr->ptma_private);
    421 
    422 	return 0;
    423 }
    424 
    425 
    426 int
    427 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    428 {
    429 	struct mutexattr_private *map;
    430 
    431 #ifdef ERRORCHECK
    432 	if ((attr == NULL) ||
    433 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
    434 	    (typep == NULL))
    435 		return EINVAL;
    436 #endif
    437 
    438 	map = attr->ptma_private;
    439 
    440 	*typep = map->type;
    441 
    442 	return 0;
    443 }
    444 
    445 
    446 int
    447 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    448 {
    449 	struct mutexattr_private *map;
    450 
    451 #ifdef ERRORCHECK
    452 	if ((attr == NULL) ||
    453 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
    454 		return EINVAL;
    455 #endif
    456 	map = attr->ptma_private;
    457 
    458 	switch (type) {
    459 	case PTHREAD_MUTEX_NORMAL:
    460 	case PTHREAD_MUTEX_ERRORCHECK:
    461 	case PTHREAD_MUTEX_RECURSIVE:
    462 		map->type = type;
    463 		break;
    464 
    465 	default:
    466 		return EINVAL;
    467 	}
    468 
    469 	return 0;
    470 }
    471 
    472 
    473 int
    474 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    475 {
    476 
    477 	if (once_control->pto_done == 0) {
    478 		pthread_mutex_lock(&once_control->pto_mutex);
    479 		if (once_control->pto_done == 0) {
    480 			routine();
    481 			once_control->pto_done = 1;
    482 		}
    483 		pthread_mutex_unlock(&once_control->pto_mutex);
    484 	}
    485 
    486 	return 0;
    487 }
    488