pthread_tsd.c revision 1.10 1 1.10 christos /* $NetBSD: pthread_tsd.c,v 1.10 2012/11/22 08:32:36 christos Exp $ */
2 1.1 nathanw
3 1.1 nathanw /*-
4 1.3 ad * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5 1.1 nathanw * All rights reserved.
6 1.1 nathanw *
7 1.1 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.10 christos * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9 1.1 nathanw *
10 1.1 nathanw * Redistribution and use in source and binary forms, with or without
11 1.1 nathanw * modification, are permitted provided that the following conditions
12 1.1 nathanw * are met:
13 1.1 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.1 nathanw * notice, this list of conditions and the following disclaimer.
15 1.1 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.1 nathanw * documentation and/or other materials provided with the distribution.
18 1.1 nathanw *
19 1.1 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 nathanw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 nathanw */
31 1.1 nathanw
32 1.1 nathanw #include <sys/cdefs.h>
33 1.10 christos __RCSID("$NetBSD: pthread_tsd.c,v 1.10 2012/11/22 08:32:36 christos Exp $");
34 1.1 nathanw
35 1.1 nathanw /* Functions and structures dealing with thread-specific data */
36 1.1 nathanw #include <errno.h>
37 1.1 nathanw
38 1.1 nathanw #include "pthread.h"
39 1.1 nathanw #include "pthread_int.h"
40 1.1 nathanw
41 1.9 christos
42 1.1 nathanw static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
43 1.1 nathanw static int nextkey;
44 1.9 christos
45 1.9 christos PTQ_HEAD(pthread__tsd_list, pt_specific)
46 1.9 christos pthread__tsd_list[PTHREAD_KEYS_MAX];
47 1.1 nathanw void (*pthread__tsd_destructors[PTHREAD_KEYS_MAX])(void *);
48 1.1 nathanw
49 1.1 nathanw __strong_alias(__libc_thr_keycreate,pthread_key_create)
50 1.1 nathanw __strong_alias(__libc_thr_keydelete,pthread_key_delete)
51 1.1 nathanw
52 1.9 christos static void
53 1.9 christos /*ARGSUSED*/
54 1.9 christos null_destructor(void *p)
55 1.9 christos {
56 1.9 christos }
57 1.9 christos
58 1.1 nathanw int
59 1.1 nathanw pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
60 1.1 nathanw {
61 1.1 nathanw int i;
62 1.1 nathanw
63 1.1 nathanw /* Get a lock on the allocation list */
64 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
65 1.1 nathanw
66 1.9 christos /* Find an available slot:
67 1.9 christos * The condition for an available slot is one with the destructor
68 1.9 christos * not being NULL. If the desired destructor is NULL we set it to
69 1.9 christos * our own internal destructor to satisfy the non NULL condition.
70 1.9 christos */
71 1.1 nathanw /* 1. Search from "nextkey" to the end of the list. */
72 1.1 nathanw for (i = nextkey; i < PTHREAD_KEYS_MAX; i++)
73 1.9 christos if (pthread__tsd_destructors[i] == NULL)
74 1.1 nathanw break;
75 1.1 nathanw
76 1.1 nathanw if (i == PTHREAD_KEYS_MAX) {
77 1.1 nathanw /* 2. If that didn't work, search from the start
78 1.1 nathanw * of the list back to "nextkey".
79 1.1 nathanw */
80 1.1 nathanw for (i = 0; i < nextkey; i++)
81 1.9 christos if (pthread__tsd_destructors[i] == NULL)
82 1.1 nathanw break;
83 1.1 nathanw
84 1.1 nathanw if (i == nextkey) {
85 1.1 nathanw /* If we didn't find one here, there isn't one
86 1.1 nathanw * to be found.
87 1.1 nathanw */
88 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
89 1.1 nathanw return EAGAIN;
90 1.1 nathanw }
91 1.1 nathanw }
92 1.1 nathanw
93 1.1 nathanw /* Got one. */
94 1.9 christos pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
95 1.9 christos pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
96 1.9 christos
97 1.1 nathanw nextkey = (i + 1) % PTHREAD_KEYS_MAX;
98 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
99 1.1 nathanw *key = i;
100 1.1 nathanw
101 1.1 nathanw return 0;
102 1.1 nathanw }
103 1.1 nathanw
104 1.9 christos /*
105 1.9 christos * Each thread holds an array of PTHREAD_KEYS_MAX pt_specific list
106 1.9 christos * elements. When an element is used it is inserted into the appropriate
107 1.9 christos * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
108 1.9 christos * means that the element is not threaded, ptqe_prev != NULL it is
109 1.9 christos * already part of the list. When we set to a NULL value we delete from the
110 1.9 christos * list if it was in the list, and when we set to non-NULL value, we insert
111 1.9 christos * in the list if it was not already there.
112 1.9 christos *
113 1.9 christos * We keep this global array of lists of threads that have called
114 1.9 christos * pthread_set_specific with non-null values, for each key so that
115 1.9 christos * we don't have to check all threads for non-NULL values in
116 1.9 christos * pthread_key_destroy
117 1.9 christos *
118 1.9 christos * We could keep an accounting of the number of specific used
119 1.9 christos * entries per thread, so that we can update pt_havespecific when we delete
120 1.9 christos * the last one, but we don't bother for now
121 1.9 christos */
122 1.9 christos int
123 1.9 christos pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
124 1.9 christos {
125 1.9 christos struct pt_specific *pt;
126 1.9 christos
127 1.9 christos pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
128 1.9 christos
129 1.9 christos pthread_mutex_lock(&tsd_mutex);
130 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
131 1.9 christos pt = &self->pt_specific[key];
132 1.9 christos self->pt_havespecific = 1;
133 1.9 christos if (value) {
134 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
135 1.9 christos PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
136 1.9 christos } else {
137 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
138 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
139 1.9 christos pt->pts_next.ptqe_prev = NULL;
140 1.9 christos }
141 1.9 christos }
142 1.9 christos pt->pts_value = __UNCONST(value);
143 1.9 christos pthread_mutex_unlock(&tsd_mutex);
144 1.9 christos
145 1.9 christos return 0;
146 1.9 christos }
147 1.9 christos
148 1.1 nathanw int
149 1.1 nathanw pthread_key_delete(pthread_key_t key)
150 1.1 nathanw {
151 1.1 nathanw
152 1.1 nathanw /*
153 1.1 nathanw * This is tricky. The standard says of pthread_key_create()
154 1.1 nathanw * that new keys have the value NULL associated with them in
155 1.1 nathanw * all threads. According to people who were present at the
156 1.1 nathanw * standardization meeting, that requirement was written
157 1.1 nathanw * before pthread_key_delete() was introduced, and not
158 1.1 nathanw * reconsidered when it was.
159 1.1 nathanw *
160 1.1 nathanw * See David Butenhof's article in comp.programming.threads:
161 1.1 nathanw * Subject: Re: TSD key reusing issue
162 1.1 nathanw * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
163 1.1 nathanw * Date: Thu, 21 Feb 2002 09:06:17 -0500
164 1.10 christos * http://groups.google.com/groups?\
165 1.10 christos * hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
166 1.1 nathanw *
167 1.1 nathanw * Given:
168 1.1 nathanw *
169 1.1 nathanw * 1: Applications are not required to clear keys in all
170 1.1 nathanw * threads before calling pthread_key_delete().
171 1.1 nathanw * 2: Clearing pointers without running destructors is a
172 1.1 nathanw * memory leak.
173 1.1 nathanw * 3: The pthread_key_delete() function is expressly forbidden
174 1.1 nathanw * to run any destructors.
175 1.1 nathanw *
176 1.1 nathanw * Option 1: Make this function effectively a no-op and
177 1.1 nathanw * prohibit key reuse. This is a possible resource-exhaustion
178 1.1 nathanw * problem given that we have a static storage area for keys,
179 1.1 nathanw * but having a non-static storage area would make
180 1.1 nathanw * pthread_setspecific() expensive (might need to realloc the
181 1.1 nathanw * TSD array).
182 1.1 nathanw *
183 1.1 nathanw * Option 2: Ignore the specified behavior of
184 1.1 nathanw * pthread_key_create() and leave the old values. If an
185 1.1 nathanw * application deletes a key that still has non-NULL values in
186 1.1 nathanw * some threads... it's probably a memory leak and hence
187 1.1 nathanw * incorrect anyway, and we're within our rights to let the
188 1.1 nathanw * application lose. However, it's possible (if unlikely) that
189 1.1 nathanw * the application is storing pointers to non-heap data, or
190 1.1 nathanw * non-pointers that have been wedged into a void pointer, so
191 1.1 nathanw * we can't entirely write off such applications as incorrect.
192 1.1 nathanw * This could also lead to running (new) destructors on old
193 1.1 nathanw * data that was never supposed to be associated with that
194 1.1 nathanw * destructor.
195 1.1 nathanw *
196 1.1 nathanw * Option 3: Follow the specified behavior of
197 1.1 nathanw * pthread_key_create(). Either pthread_key_create() or
198 1.1 nathanw * pthread_key_delete() would then have to clear the values in
199 1.1 nathanw * every thread's slot for that key. In order to guarantee the
200 1.1 nathanw * visibility of the NULL value in other threads, there would
201 1.1 nathanw * have to be synchronization operations in both the clearer
202 1.1 nathanw * and pthread_getspecific(). Putting synchronization in
203 1.1 nathanw * pthread_getspecific() is a big performance lose. But in
204 1.1 nathanw * reality, only (buggy) reuse of an old key would require
205 1.1 nathanw * this synchronization; for a new key, there has to be a
206 1.1 nathanw * memory-visibility propagating event between the call to
207 1.1 nathanw * pthread_key_create() and pthread_getspecific() with that
208 1.1 nathanw * key, so setting the entries to NULL without synchronization
209 1.1 nathanw * will work, subject to problem (2) above. However, it's kind
210 1.1 nathanw * of slow.
211 1.1 nathanw *
212 1.1 nathanw * Note that the argument in option 3 only applies because we
213 1.1 nathanw * keep TSD in ordinary memory which follows the pthreads
214 1.1 nathanw * visibility rules. The visibility rules are not required by
215 1.1 nathanw * the standard to apply to TSD, so the argument doesn't
216 1.1 nathanw * apply in general, just to this implementation.
217 1.1 nathanw */
218 1.1 nathanw
219 1.9 christos /*
220 1.9 christos * We do option 3; we find the list of all pt_specific structures
221 1.10 christos * threaded on the key we are deleting, unthread them, and set the
222 1.10 christos * pointer to NULL. Finally we unthread the entry, freeing it for
223 1.10 christos * further use.
224 1.10 christos *
225 1.10 christos * We don't call the destructor here, it is the responsibility
226 1.10 christos * of the application to cleanup the storage:
227 1.10 christos * http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
228 1.10 christos * pthread_key_delete.html
229 1.9 christos */
230 1.9 christos struct pt_specific *pt;
231 1.9 christos
232 1.9 christos pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
233 1.9 christos
234 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
235 1.9 christos
236 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
237 1.9 christos
238 1.9 christos while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
239 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
240 1.9 christos pt->pts_value = NULL;
241 1.9 christos pt->pts_next.ptqe_prev = NULL;
242 1.9 christos }
243 1.9 christos
244 1.1 nathanw pthread__tsd_destructors[key] = NULL;
245 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
246 1.1 nathanw
247 1.1 nathanw return 0;
248 1.1 nathanw }
249 1.1 nathanw
250 1.1 nathanw /* Perform thread-exit-time destruction of thread-specific data. */
251 1.1 nathanw void
252 1.1 nathanw pthread__destroy_tsd(pthread_t self)
253 1.1 nathanw {
254 1.1 nathanw int i, done, iterations;
255 1.1 nathanw void *val;
256 1.1 nathanw void (*destructor)(void *);
257 1.1 nathanw
258 1.3 ad if (!self->pt_havespecific)
259 1.3 ad return;
260 1.4 ad pthread_mutex_unlock(&self->pt_lock);
261 1.3 ad
262 1.1 nathanw /* Butenhof, section 5.4.2 (page 167):
263 1.1 nathanw *
264 1.1 nathanw * ``Also, Pthreads sets the thread-specific data value for a
265 1.1 nathanw * key to NULL before calling that key's destructor (passing
266 1.1 nathanw * the previous value of the key) when a thread terminates [*].
267 1.1 nathanw * ...
268 1.1 nathanw * [*] That is, unfortunately, not what the standard
269 1.1 nathanw * says. This is one of the problems with formal standards -
270 1.1 nathanw * they say what they say, not what they were intended to
271 1.1 nathanw * say. Somehow, an error crept in, and the sentence
272 1.1 nathanw * specifying that "the implementation clears the
273 1.1 nathanw * thread-specific data value before calling the destructor"
274 1.1 nathanw * was deleted. Nobody noticed, and the standard was approved
275 1.1 nathanw * with the error. So the standard says (by omission) that if
276 1.1 nathanw * you want to write a portable application using
277 1.1 nathanw * thread-specific data, that will not hang on thread
278 1.1 nathanw * termination, you must call pthread_setspecific within your
279 1.1 nathanw * destructor function to change the value to NULL. This would
280 1.1 nathanw * be silly, and any serious implementation of Pthreads will
281 1.1 nathanw * violate the standard in this respect. Of course, the
282 1.1 nathanw * standard will be fixed, probably by the 1003.1n amendment
283 1.1 nathanw * (assorted corrections to 1003.1c-1995), but that will take
284 1.1 nathanw * a while.''
285 1.1 nathanw */
286 1.1 nathanw
287 1.1 nathanw iterations = 4; /* We're not required to try very hard */
288 1.1 nathanw do {
289 1.1 nathanw done = 1;
290 1.1 nathanw for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
291 1.9 christos struct pt_specific *pt = &self->pt_specific[i];
292 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
293 1.9 christos continue;
294 1.9 christos pthread_mutex_lock(&tsd_mutex);
295 1.9 christos
296 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
297 1.9 christos PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
298 1.9 christos val = pt->pts_value;
299 1.9 christos pt->pts_value = NULL;
300 1.9 christos pt->pts_next.ptqe_prev = NULL;
301 1.1 nathanw destructor = pthread__tsd_destructors[i];
302 1.9 christos } else
303 1.9 christos destructor = NULL;
304 1.9 christos
305 1.9 christos pthread_mutex_unlock(&tsd_mutex);
306 1.9 christos if (destructor != NULL) {
307 1.9 christos done = 0;
308 1.9 christos (*destructor)(val);
309 1.1 nathanw }
310 1.1 nathanw }
311 1.1 nathanw } while (!done && iterations--);
312 1.3 ad
313 1.3 ad self->pt_havespecific = 0;
314 1.4 ad pthread_mutex_lock(&self->pt_lock);
315 1.1 nathanw }
316