pthread_tsd.c revision 1.12 1 1.12 manu /* $NetBSD: pthread_tsd.c,v 1.12 2015/05/29 07:37:31 manu Exp $ */
2 1.1 nathanw
3 1.1 nathanw /*-
4 1.3 ad * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5 1.1 nathanw * All rights reserved.
6 1.1 nathanw *
7 1.1 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.10 christos * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9 1.1 nathanw *
10 1.1 nathanw * Redistribution and use in source and binary forms, with or without
11 1.1 nathanw * modification, are permitted provided that the following conditions
12 1.1 nathanw * are met:
13 1.1 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.1 nathanw * notice, this list of conditions and the following disclaimer.
15 1.1 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.1 nathanw * documentation and/or other materials provided with the distribution.
18 1.1 nathanw *
19 1.1 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 nathanw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 nathanw */
31 1.1 nathanw
32 1.1 nathanw #include <sys/cdefs.h>
33 1.12 manu __RCSID("$NetBSD: pthread_tsd.c,v 1.12 2015/05/29 07:37:31 manu Exp $");
34 1.1 nathanw
35 1.1 nathanw /* Functions and structures dealing with thread-specific data */
36 1.1 nathanw #include <errno.h>
37 1.1 nathanw
38 1.1 nathanw #include "pthread.h"
39 1.1 nathanw #include "pthread_int.h"
40 1.11 christos #include "reentrant.h"
41 1.1 nathanw
42 1.12 manu int pthread_keys_max;
43 1.1 nathanw static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
44 1.1 nathanw static int nextkey;
45 1.9 christos
46 1.12 manu PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
47 1.12 manu void (**pthread__tsd_destructors)(void *) = NULL;
48 1.1 nathanw
49 1.1 nathanw __strong_alias(__libc_thr_keycreate,pthread_key_create)
50 1.1 nathanw __strong_alias(__libc_thr_keydelete,pthread_key_delete)
51 1.1 nathanw
52 1.9 christos static void
53 1.9 christos /*ARGSUSED*/
54 1.9 christos null_destructor(void *p)
55 1.9 christos {
56 1.9 christos }
57 1.9 christos
58 1.11 christos #include <err.h>
59 1.11 christos #include <stdlib.h>
60 1.12 manu #include <stdio.h>
61 1.12 manu
62 1.12 manu int
63 1.12 manu pthread_tsd_init(void)
64 1.12 manu {
65 1.12 manu char *pkm;
66 1.12 manu size_t len;
67 1.12 manu
68 1.12 manu if ((pkm = getenv("PTHREAD_KEYS_MAX")) != NULL) {
69 1.12 manu pthread_keys_max = (int)strtol(pkm, NULL, 0);
70 1.12 manu if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
71 1.12 manu pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
72 1.12 manu } else {
73 1.12 manu pthread_keys_max = PTHREAD_KEYS_MAX;
74 1.12 manu }
75 1.12 manu
76 1.12 manu len = sizeof(*pthread__tsd_list);
77 1.12 manu if ((pthread__tsd_list = calloc(pthread_keys_max, len)) == NULL)
78 1.12 manu goto out1;
79 1.12 manu
80 1.12 manu len = sizeof(*pthread__tsd_destructors);
81 1.12 manu if ((pthread__tsd_destructors = calloc(pthread_keys_max, len)) == NULL)
82 1.12 manu goto out2;
83 1.12 manu
84 1.12 manu return 0;
85 1.12 manu
86 1.12 manu out2:
87 1.12 manu free(pthread__tsd_list);
88 1.12 manu out1:
89 1.12 manu pthread_keys_max = 0;
90 1.12 manu
91 1.12 manu return -1;
92 1.12 manu }
93 1.12 manu
94 1.1 nathanw int
95 1.1 nathanw pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
96 1.1 nathanw {
97 1.1 nathanw int i;
98 1.1 nathanw
99 1.11 christos if (__predict_false(__uselibcstub))
100 1.11 christos return __libc_thr_keycreate_stub(key, destructor);
101 1.11 christos
102 1.1 nathanw /* Get a lock on the allocation list */
103 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
104 1.1 nathanw
105 1.9 christos /* Find an available slot:
106 1.9 christos * The condition for an available slot is one with the destructor
107 1.9 christos * not being NULL. If the desired destructor is NULL we set it to
108 1.9 christos * our own internal destructor to satisfy the non NULL condition.
109 1.9 christos */
110 1.1 nathanw /* 1. Search from "nextkey" to the end of the list. */
111 1.12 manu for (i = nextkey; i < pthread_keys_max; i++)
112 1.9 christos if (pthread__tsd_destructors[i] == NULL)
113 1.1 nathanw break;
114 1.1 nathanw
115 1.12 manu if (i == pthread_keys_max) {
116 1.1 nathanw /* 2. If that didn't work, search from the start
117 1.1 nathanw * of the list back to "nextkey".
118 1.1 nathanw */
119 1.1 nathanw for (i = 0; i < nextkey; i++)
120 1.9 christos if (pthread__tsd_destructors[i] == NULL)
121 1.1 nathanw break;
122 1.1 nathanw
123 1.1 nathanw if (i == nextkey) {
124 1.1 nathanw /* If we didn't find one here, there isn't one
125 1.1 nathanw * to be found.
126 1.1 nathanw */
127 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
128 1.1 nathanw return EAGAIN;
129 1.1 nathanw }
130 1.1 nathanw }
131 1.1 nathanw
132 1.1 nathanw /* Got one. */
133 1.9 christos pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
134 1.9 christos pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
135 1.9 christos
136 1.12 manu nextkey = (i + 1) % pthread_keys_max;
137 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
138 1.1 nathanw *key = i;
139 1.1 nathanw
140 1.1 nathanw return 0;
141 1.1 nathanw }
142 1.1 nathanw
143 1.9 christos /*
144 1.12 manu * Each thread holds an array of pthread_keys_max pt_specific list
145 1.9 christos * elements. When an element is used it is inserted into the appropriate
146 1.9 christos * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
147 1.9 christos * means that the element is not threaded, ptqe_prev != NULL it is
148 1.9 christos * already part of the list. When we set to a NULL value we delete from the
149 1.9 christos * list if it was in the list, and when we set to non-NULL value, we insert
150 1.9 christos * in the list if it was not already there.
151 1.9 christos *
152 1.9 christos * We keep this global array of lists of threads that have called
153 1.9 christos * pthread_set_specific with non-null values, for each key so that
154 1.9 christos * we don't have to check all threads for non-NULL values in
155 1.9 christos * pthread_key_destroy
156 1.9 christos *
157 1.9 christos * We could keep an accounting of the number of specific used
158 1.9 christos * entries per thread, so that we can update pt_havespecific when we delete
159 1.9 christos * the last one, but we don't bother for now
160 1.9 christos */
161 1.9 christos int
162 1.9 christos pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
163 1.9 christos {
164 1.9 christos struct pt_specific *pt;
165 1.9 christos
166 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
167 1.9 christos
168 1.9 christos pthread_mutex_lock(&tsd_mutex);
169 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
170 1.9 christos pt = &self->pt_specific[key];
171 1.9 christos self->pt_havespecific = 1;
172 1.9 christos if (value) {
173 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
174 1.9 christos PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
175 1.9 christos } else {
176 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
177 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
178 1.9 christos pt->pts_next.ptqe_prev = NULL;
179 1.9 christos }
180 1.9 christos }
181 1.9 christos pt->pts_value = __UNCONST(value);
182 1.9 christos pthread_mutex_unlock(&tsd_mutex);
183 1.9 christos
184 1.9 christos return 0;
185 1.9 christos }
186 1.9 christos
187 1.1 nathanw int
188 1.1 nathanw pthread_key_delete(pthread_key_t key)
189 1.1 nathanw {
190 1.1 nathanw /*
191 1.1 nathanw * This is tricky. The standard says of pthread_key_create()
192 1.1 nathanw * that new keys have the value NULL associated with them in
193 1.1 nathanw * all threads. According to people who were present at the
194 1.1 nathanw * standardization meeting, that requirement was written
195 1.1 nathanw * before pthread_key_delete() was introduced, and not
196 1.1 nathanw * reconsidered when it was.
197 1.1 nathanw *
198 1.1 nathanw * See David Butenhof's article in comp.programming.threads:
199 1.1 nathanw * Subject: Re: TSD key reusing issue
200 1.1 nathanw * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
201 1.1 nathanw * Date: Thu, 21 Feb 2002 09:06:17 -0500
202 1.10 christos * http://groups.google.com/groups?\
203 1.10 christos * hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
204 1.1 nathanw *
205 1.1 nathanw * Given:
206 1.1 nathanw *
207 1.1 nathanw * 1: Applications are not required to clear keys in all
208 1.1 nathanw * threads before calling pthread_key_delete().
209 1.1 nathanw * 2: Clearing pointers without running destructors is a
210 1.1 nathanw * memory leak.
211 1.1 nathanw * 3: The pthread_key_delete() function is expressly forbidden
212 1.1 nathanw * to run any destructors.
213 1.1 nathanw *
214 1.1 nathanw * Option 1: Make this function effectively a no-op and
215 1.1 nathanw * prohibit key reuse. This is a possible resource-exhaustion
216 1.1 nathanw * problem given that we have a static storage area for keys,
217 1.1 nathanw * but having a non-static storage area would make
218 1.1 nathanw * pthread_setspecific() expensive (might need to realloc the
219 1.1 nathanw * TSD array).
220 1.1 nathanw *
221 1.1 nathanw * Option 2: Ignore the specified behavior of
222 1.1 nathanw * pthread_key_create() and leave the old values. If an
223 1.1 nathanw * application deletes a key that still has non-NULL values in
224 1.1 nathanw * some threads... it's probably a memory leak and hence
225 1.1 nathanw * incorrect anyway, and we're within our rights to let the
226 1.1 nathanw * application lose. However, it's possible (if unlikely) that
227 1.1 nathanw * the application is storing pointers to non-heap data, or
228 1.1 nathanw * non-pointers that have been wedged into a void pointer, so
229 1.1 nathanw * we can't entirely write off such applications as incorrect.
230 1.1 nathanw * This could also lead to running (new) destructors on old
231 1.1 nathanw * data that was never supposed to be associated with that
232 1.1 nathanw * destructor.
233 1.1 nathanw *
234 1.1 nathanw * Option 3: Follow the specified behavior of
235 1.1 nathanw * pthread_key_create(). Either pthread_key_create() or
236 1.1 nathanw * pthread_key_delete() would then have to clear the values in
237 1.1 nathanw * every thread's slot for that key. In order to guarantee the
238 1.1 nathanw * visibility of the NULL value in other threads, there would
239 1.1 nathanw * have to be synchronization operations in both the clearer
240 1.1 nathanw * and pthread_getspecific(). Putting synchronization in
241 1.1 nathanw * pthread_getspecific() is a big performance lose. But in
242 1.1 nathanw * reality, only (buggy) reuse of an old key would require
243 1.1 nathanw * this synchronization; for a new key, there has to be a
244 1.1 nathanw * memory-visibility propagating event between the call to
245 1.1 nathanw * pthread_key_create() and pthread_getspecific() with that
246 1.1 nathanw * key, so setting the entries to NULL without synchronization
247 1.1 nathanw * will work, subject to problem (2) above. However, it's kind
248 1.1 nathanw * of slow.
249 1.1 nathanw *
250 1.1 nathanw * Note that the argument in option 3 only applies because we
251 1.1 nathanw * keep TSD in ordinary memory which follows the pthreads
252 1.1 nathanw * visibility rules. The visibility rules are not required by
253 1.1 nathanw * the standard to apply to TSD, so the argument doesn't
254 1.1 nathanw * apply in general, just to this implementation.
255 1.1 nathanw */
256 1.1 nathanw
257 1.9 christos /*
258 1.9 christos * We do option 3; we find the list of all pt_specific structures
259 1.10 christos * threaded on the key we are deleting, unthread them, and set the
260 1.10 christos * pointer to NULL. Finally we unthread the entry, freeing it for
261 1.10 christos * further use.
262 1.10 christos *
263 1.10 christos * We don't call the destructor here, it is the responsibility
264 1.10 christos * of the application to cleanup the storage:
265 1.10 christos * http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
266 1.10 christos * pthread_key_delete.html
267 1.9 christos */
268 1.9 christos struct pt_specific *pt;
269 1.9 christos
270 1.11 christos if (__predict_false(__uselibcstub))
271 1.11 christos return __libc_thr_keydelete_stub(key);
272 1.11 christos
273 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
274 1.9 christos
275 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
276 1.9 christos
277 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
278 1.9 christos
279 1.9 christos while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
280 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
281 1.9 christos pt->pts_value = NULL;
282 1.9 christos pt->pts_next.ptqe_prev = NULL;
283 1.9 christos }
284 1.9 christos
285 1.1 nathanw pthread__tsd_destructors[key] = NULL;
286 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
287 1.1 nathanw
288 1.1 nathanw return 0;
289 1.1 nathanw }
290 1.1 nathanw
291 1.1 nathanw /* Perform thread-exit-time destruction of thread-specific data. */
292 1.1 nathanw void
293 1.1 nathanw pthread__destroy_tsd(pthread_t self)
294 1.1 nathanw {
295 1.1 nathanw int i, done, iterations;
296 1.1 nathanw void *val;
297 1.1 nathanw void (*destructor)(void *);
298 1.1 nathanw
299 1.3 ad if (!self->pt_havespecific)
300 1.3 ad return;
301 1.4 ad pthread_mutex_unlock(&self->pt_lock);
302 1.3 ad
303 1.1 nathanw /* Butenhof, section 5.4.2 (page 167):
304 1.1 nathanw *
305 1.1 nathanw * ``Also, Pthreads sets the thread-specific data value for a
306 1.1 nathanw * key to NULL before calling that key's destructor (passing
307 1.1 nathanw * the previous value of the key) when a thread terminates [*].
308 1.1 nathanw * ...
309 1.1 nathanw * [*] That is, unfortunately, not what the standard
310 1.1 nathanw * says. This is one of the problems with formal standards -
311 1.1 nathanw * they say what they say, not what they were intended to
312 1.1 nathanw * say. Somehow, an error crept in, and the sentence
313 1.1 nathanw * specifying that "the implementation clears the
314 1.1 nathanw * thread-specific data value before calling the destructor"
315 1.1 nathanw * was deleted. Nobody noticed, and the standard was approved
316 1.1 nathanw * with the error. So the standard says (by omission) that if
317 1.1 nathanw * you want to write a portable application using
318 1.1 nathanw * thread-specific data, that will not hang on thread
319 1.1 nathanw * termination, you must call pthread_setspecific within your
320 1.1 nathanw * destructor function to change the value to NULL. This would
321 1.1 nathanw * be silly, and any serious implementation of Pthreads will
322 1.1 nathanw * violate the standard in this respect. Of course, the
323 1.1 nathanw * standard will be fixed, probably by the 1003.1n amendment
324 1.1 nathanw * (assorted corrections to 1003.1c-1995), but that will take
325 1.1 nathanw * a while.''
326 1.1 nathanw */
327 1.1 nathanw
328 1.1 nathanw iterations = 4; /* We're not required to try very hard */
329 1.1 nathanw do {
330 1.1 nathanw done = 1;
331 1.12 manu for (i = 0; i < pthread_keys_max; i++) {
332 1.9 christos struct pt_specific *pt = &self->pt_specific[i];
333 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
334 1.9 christos continue;
335 1.9 christos pthread_mutex_lock(&tsd_mutex);
336 1.9 christos
337 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
338 1.9 christos PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
339 1.9 christos val = pt->pts_value;
340 1.9 christos pt->pts_value = NULL;
341 1.9 christos pt->pts_next.ptqe_prev = NULL;
342 1.1 nathanw destructor = pthread__tsd_destructors[i];
343 1.9 christos } else
344 1.9 christos destructor = NULL;
345 1.9 christos
346 1.9 christos pthread_mutex_unlock(&tsd_mutex);
347 1.9 christos if (destructor != NULL) {
348 1.9 christos done = 0;
349 1.9 christos (*destructor)(val);
350 1.1 nathanw }
351 1.1 nathanw }
352 1.1 nathanw } while (!done && iterations--);
353 1.3 ad
354 1.3 ad self->pt_havespecific = 0;
355 1.4 ad pthread_mutex_lock(&self->pt_lock);
356 1.1 nathanw }
357