pthread_tsd.c revision 1.16 1 1.16 christos /* $NetBSD: pthread_tsd.c,v 1.16 2017/07/09 20:21:08 christos Exp $ */
2 1.1 nathanw
3 1.1 nathanw /*-
4 1.3 ad * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5 1.1 nathanw * All rights reserved.
6 1.1 nathanw *
7 1.1 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.10 christos * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9 1.1 nathanw *
10 1.1 nathanw * Redistribution and use in source and binary forms, with or without
11 1.1 nathanw * modification, are permitted provided that the following conditions
12 1.1 nathanw * are met:
13 1.1 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.1 nathanw * notice, this list of conditions and the following disclaimer.
15 1.1 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.1 nathanw * documentation and/or other materials provided with the distribution.
18 1.1 nathanw *
19 1.1 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 nathanw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 nathanw */
31 1.1 nathanw
32 1.1 nathanw #include <sys/cdefs.h>
33 1.16 christos __RCSID("$NetBSD: pthread_tsd.c,v 1.16 2017/07/09 20:21:08 christos Exp $");
34 1.1 nathanw
35 1.1 nathanw /* Functions and structures dealing with thread-specific data */
36 1.1 nathanw #include <errno.h>
37 1.13 christos #include <sys/mman.h>
38 1.1 nathanw
39 1.1 nathanw #include "pthread.h"
40 1.1 nathanw #include "pthread_int.h"
41 1.11 christos #include "reentrant.h"
42 1.1 nathanw
43 1.12 manu int pthread_keys_max;
44 1.1 nathanw static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
45 1.1 nathanw static int nextkey;
46 1.9 christos
47 1.12 manu PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
48 1.12 manu void (**pthread__tsd_destructors)(void *) = NULL;
49 1.1 nathanw
50 1.1 nathanw __strong_alias(__libc_thr_keycreate,pthread_key_create)
51 1.1 nathanw __strong_alias(__libc_thr_keydelete,pthread_key_delete)
52 1.1 nathanw
53 1.9 christos static void
54 1.9 christos /*ARGSUSED*/
55 1.9 christos null_destructor(void *p)
56 1.9 christos {
57 1.9 christos }
58 1.9 christos
59 1.11 christos #include <err.h>
60 1.11 christos #include <stdlib.h>
61 1.12 manu #include <stdio.h>
62 1.12 manu
63 1.13 christos void *
64 1.13 christos pthread_tsd_init(size_t *tlen)
65 1.12 manu {
66 1.12 manu char *pkm;
67 1.13 christos size_t alen;
68 1.13 christos char *arena;
69 1.12 manu
70 1.13 christos if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
71 1.12 manu pthread_keys_max = (int)strtol(pkm, NULL, 0);
72 1.12 manu if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
73 1.12 manu pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
74 1.12 manu } else {
75 1.12 manu pthread_keys_max = PTHREAD_KEYS_MAX;
76 1.12 manu }
77 1.12 manu
78 1.13 christos /*
79 1.13 christos * Can't use malloc here yet, because malloc will use the fake
80 1.13 christos * libc thread functions to initialize itself, so mmap the space.
81 1.13 christos */
82 1.13 christos *tlen = sizeof(struct __pthread_st)
83 1.13 christos + pthread_keys_max * sizeof(struct pt_specific);
84 1.13 christos alen = *tlen
85 1.13 christos + sizeof(*pthread__tsd_list) * pthread_keys_max
86 1.13 christos + sizeof(*pthread__tsd_destructors) * pthread_keys_max;
87 1.13 christos
88 1.15 pooka arena = mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
89 1.13 christos if (arena == MAP_FAILED) {
90 1.13 christos pthread_keys_max = 0;
91 1.13 christos return NULL;
92 1.13 christos }
93 1.12 manu
94 1.13 christos pthread__tsd_list = (void *)arena;
95 1.13 christos arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
96 1.13 christos pthread__tsd_destructors = (void *)arena;
97 1.13 christos arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
98 1.13 christos return arena;
99 1.12 manu }
100 1.12 manu
101 1.1 nathanw int
102 1.1 nathanw pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
103 1.1 nathanw {
104 1.1 nathanw int i;
105 1.1 nathanw
106 1.11 christos if (__predict_false(__uselibcstub))
107 1.11 christos return __libc_thr_keycreate_stub(key, destructor);
108 1.11 christos
109 1.1 nathanw /* Get a lock on the allocation list */
110 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
111 1.1 nathanw
112 1.9 christos /* Find an available slot:
113 1.9 christos * The condition for an available slot is one with the destructor
114 1.9 christos * not being NULL. If the desired destructor is NULL we set it to
115 1.9 christos * our own internal destructor to satisfy the non NULL condition.
116 1.9 christos */
117 1.1 nathanw /* 1. Search from "nextkey" to the end of the list. */
118 1.12 manu for (i = nextkey; i < pthread_keys_max; i++)
119 1.9 christos if (pthread__tsd_destructors[i] == NULL)
120 1.1 nathanw break;
121 1.1 nathanw
122 1.12 manu if (i == pthread_keys_max) {
123 1.1 nathanw /* 2. If that didn't work, search from the start
124 1.1 nathanw * of the list back to "nextkey".
125 1.1 nathanw */
126 1.1 nathanw for (i = 0; i < nextkey; i++)
127 1.9 christos if (pthread__tsd_destructors[i] == NULL)
128 1.1 nathanw break;
129 1.1 nathanw
130 1.1 nathanw if (i == nextkey) {
131 1.1 nathanw /* If we didn't find one here, there isn't one
132 1.1 nathanw * to be found.
133 1.1 nathanw */
134 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
135 1.1 nathanw return EAGAIN;
136 1.1 nathanw }
137 1.1 nathanw }
138 1.1 nathanw
139 1.1 nathanw /* Got one. */
140 1.9 christos pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
141 1.9 christos pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
142 1.9 christos
143 1.12 manu nextkey = (i + 1) % pthread_keys_max;
144 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
145 1.1 nathanw *key = i;
146 1.1 nathanw
147 1.1 nathanw return 0;
148 1.1 nathanw }
149 1.1 nathanw
150 1.9 christos /*
151 1.12 manu * Each thread holds an array of pthread_keys_max pt_specific list
152 1.9 christos * elements. When an element is used it is inserted into the appropriate
153 1.9 christos * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
154 1.9 christos * means that the element is not threaded, ptqe_prev != NULL it is
155 1.9 christos * already part of the list. When we set to a NULL value we delete from the
156 1.9 christos * list if it was in the list, and when we set to non-NULL value, we insert
157 1.9 christos * in the list if it was not already there.
158 1.9 christos *
159 1.9 christos * We keep this global array of lists of threads that have called
160 1.9 christos * pthread_set_specific with non-null values, for each key so that
161 1.9 christos * we don't have to check all threads for non-NULL values in
162 1.9 christos * pthread_key_destroy
163 1.9 christos *
164 1.9 christos * We could keep an accounting of the number of specific used
165 1.9 christos * entries per thread, so that we can update pt_havespecific when we delete
166 1.9 christos * the last one, but we don't bother for now
167 1.9 christos */
168 1.9 christos int
169 1.9 christos pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
170 1.9 christos {
171 1.9 christos struct pt_specific *pt;
172 1.9 christos
173 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
174 1.9 christos
175 1.9 christos pthread_mutex_lock(&tsd_mutex);
176 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
177 1.9 christos pt = &self->pt_specific[key];
178 1.9 christos self->pt_havespecific = 1;
179 1.9 christos if (value) {
180 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
181 1.9 christos PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
182 1.9 christos } else {
183 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
184 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
185 1.9 christos pt->pts_next.ptqe_prev = NULL;
186 1.9 christos }
187 1.9 christos }
188 1.9 christos pt->pts_value = __UNCONST(value);
189 1.9 christos pthread_mutex_unlock(&tsd_mutex);
190 1.9 christos
191 1.9 christos return 0;
192 1.9 christos }
193 1.9 christos
194 1.1 nathanw int
195 1.1 nathanw pthread_key_delete(pthread_key_t key)
196 1.1 nathanw {
197 1.1 nathanw /*
198 1.1 nathanw * This is tricky. The standard says of pthread_key_create()
199 1.1 nathanw * that new keys have the value NULL associated with them in
200 1.1 nathanw * all threads. According to people who were present at the
201 1.1 nathanw * standardization meeting, that requirement was written
202 1.1 nathanw * before pthread_key_delete() was introduced, and not
203 1.1 nathanw * reconsidered when it was.
204 1.1 nathanw *
205 1.1 nathanw * See David Butenhof's article in comp.programming.threads:
206 1.1 nathanw * Subject: Re: TSD key reusing issue
207 1.1 nathanw * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
208 1.1 nathanw * Date: Thu, 21 Feb 2002 09:06:17 -0500
209 1.10 christos * http://groups.google.com/groups?\
210 1.10 christos * hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
211 1.1 nathanw *
212 1.1 nathanw * Given:
213 1.1 nathanw *
214 1.1 nathanw * 1: Applications are not required to clear keys in all
215 1.1 nathanw * threads before calling pthread_key_delete().
216 1.1 nathanw * 2: Clearing pointers without running destructors is a
217 1.1 nathanw * memory leak.
218 1.1 nathanw * 3: The pthread_key_delete() function is expressly forbidden
219 1.1 nathanw * to run any destructors.
220 1.1 nathanw *
221 1.1 nathanw * Option 1: Make this function effectively a no-op and
222 1.1 nathanw * prohibit key reuse. This is a possible resource-exhaustion
223 1.1 nathanw * problem given that we have a static storage area for keys,
224 1.1 nathanw * but having a non-static storage area would make
225 1.1 nathanw * pthread_setspecific() expensive (might need to realloc the
226 1.1 nathanw * TSD array).
227 1.1 nathanw *
228 1.1 nathanw * Option 2: Ignore the specified behavior of
229 1.1 nathanw * pthread_key_create() and leave the old values. If an
230 1.1 nathanw * application deletes a key that still has non-NULL values in
231 1.1 nathanw * some threads... it's probably a memory leak and hence
232 1.1 nathanw * incorrect anyway, and we're within our rights to let the
233 1.1 nathanw * application lose. However, it's possible (if unlikely) that
234 1.1 nathanw * the application is storing pointers to non-heap data, or
235 1.1 nathanw * non-pointers that have been wedged into a void pointer, so
236 1.1 nathanw * we can't entirely write off such applications as incorrect.
237 1.1 nathanw * This could also lead to running (new) destructors on old
238 1.1 nathanw * data that was never supposed to be associated with that
239 1.1 nathanw * destructor.
240 1.1 nathanw *
241 1.1 nathanw * Option 3: Follow the specified behavior of
242 1.1 nathanw * pthread_key_create(). Either pthread_key_create() or
243 1.1 nathanw * pthread_key_delete() would then have to clear the values in
244 1.1 nathanw * every thread's slot for that key. In order to guarantee the
245 1.1 nathanw * visibility of the NULL value in other threads, there would
246 1.1 nathanw * have to be synchronization operations in both the clearer
247 1.1 nathanw * and pthread_getspecific(). Putting synchronization in
248 1.1 nathanw * pthread_getspecific() is a big performance lose. But in
249 1.1 nathanw * reality, only (buggy) reuse of an old key would require
250 1.1 nathanw * this synchronization; for a new key, there has to be a
251 1.1 nathanw * memory-visibility propagating event between the call to
252 1.1 nathanw * pthread_key_create() and pthread_getspecific() with that
253 1.1 nathanw * key, so setting the entries to NULL without synchronization
254 1.1 nathanw * will work, subject to problem (2) above. However, it's kind
255 1.1 nathanw * of slow.
256 1.1 nathanw *
257 1.1 nathanw * Note that the argument in option 3 only applies because we
258 1.1 nathanw * keep TSD in ordinary memory which follows the pthreads
259 1.1 nathanw * visibility rules. The visibility rules are not required by
260 1.1 nathanw * the standard to apply to TSD, so the argument doesn't
261 1.1 nathanw * apply in general, just to this implementation.
262 1.1 nathanw */
263 1.1 nathanw
264 1.9 christos /*
265 1.9 christos * We do option 3; we find the list of all pt_specific structures
266 1.10 christos * threaded on the key we are deleting, unthread them, and set the
267 1.10 christos * pointer to NULL. Finally we unthread the entry, freeing it for
268 1.10 christos * further use.
269 1.10 christos *
270 1.10 christos * We don't call the destructor here, it is the responsibility
271 1.10 christos * of the application to cleanup the storage:
272 1.10 christos * http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
273 1.10 christos * pthread_key_delete.html
274 1.9 christos */
275 1.9 christos struct pt_specific *pt;
276 1.9 christos
277 1.11 christos if (__predict_false(__uselibcstub))
278 1.11 christos return __libc_thr_keydelete_stub(key);
279 1.11 christos
280 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
281 1.9 christos
282 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
283 1.9 christos
284 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
285 1.9 christos
286 1.9 christos while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
287 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
288 1.9 christos pt->pts_value = NULL;
289 1.9 christos pt->pts_next.ptqe_prev = NULL;
290 1.9 christos }
291 1.9 christos
292 1.1 nathanw pthread__tsd_destructors[key] = NULL;
293 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
294 1.1 nathanw
295 1.1 nathanw return 0;
296 1.1 nathanw }
297 1.1 nathanw
298 1.1 nathanw /* Perform thread-exit-time destruction of thread-specific data. */
299 1.1 nathanw void
300 1.1 nathanw pthread__destroy_tsd(pthread_t self)
301 1.1 nathanw {
302 1.1 nathanw int i, done, iterations;
303 1.1 nathanw void *val;
304 1.1 nathanw void (*destructor)(void *);
305 1.1 nathanw
306 1.3 ad if (!self->pt_havespecific)
307 1.3 ad return;
308 1.4 ad pthread_mutex_unlock(&self->pt_lock);
309 1.3 ad
310 1.1 nathanw /* Butenhof, section 5.4.2 (page 167):
311 1.1 nathanw *
312 1.1 nathanw * ``Also, Pthreads sets the thread-specific data value for a
313 1.1 nathanw * key to NULL before calling that key's destructor (passing
314 1.1 nathanw * the previous value of the key) when a thread terminates [*].
315 1.1 nathanw * ...
316 1.1 nathanw * [*] That is, unfortunately, not what the standard
317 1.1 nathanw * says. This is one of the problems with formal standards -
318 1.1 nathanw * they say what they say, not what they were intended to
319 1.1 nathanw * say. Somehow, an error crept in, and the sentence
320 1.1 nathanw * specifying that "the implementation clears the
321 1.1 nathanw * thread-specific data value before calling the destructor"
322 1.1 nathanw * was deleted. Nobody noticed, and the standard was approved
323 1.1 nathanw * with the error. So the standard says (by omission) that if
324 1.1 nathanw * you want to write a portable application using
325 1.1 nathanw * thread-specific data, that will not hang on thread
326 1.1 nathanw * termination, you must call pthread_setspecific within your
327 1.1 nathanw * destructor function to change the value to NULL. This would
328 1.1 nathanw * be silly, and any serious implementation of Pthreads will
329 1.1 nathanw * violate the standard in this respect. Of course, the
330 1.1 nathanw * standard will be fixed, probably by the 1003.1n amendment
331 1.1 nathanw * (assorted corrections to 1003.1c-1995), but that will take
332 1.1 nathanw * a while.''
333 1.1 nathanw */
334 1.1 nathanw
335 1.16 christos /* We're not required to try very hard */
336 1.16 christos iterations = PTHREAD_DESTRUCTOR_ITERATIONS;
337 1.1 nathanw do {
338 1.1 nathanw done = 1;
339 1.12 manu for (i = 0; i < pthread_keys_max; i++) {
340 1.9 christos struct pt_specific *pt = &self->pt_specific[i];
341 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
342 1.9 christos continue;
343 1.9 christos pthread_mutex_lock(&tsd_mutex);
344 1.9 christos
345 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
346 1.9 christos PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
347 1.9 christos val = pt->pts_value;
348 1.9 christos pt->pts_value = NULL;
349 1.9 christos pt->pts_next.ptqe_prev = NULL;
350 1.1 nathanw destructor = pthread__tsd_destructors[i];
351 1.9 christos } else
352 1.9 christos destructor = NULL;
353 1.9 christos
354 1.9 christos pthread_mutex_unlock(&tsd_mutex);
355 1.9 christos if (destructor != NULL) {
356 1.9 christos done = 0;
357 1.9 christos (*destructor)(val);
358 1.1 nathanw }
359 1.1 nathanw }
360 1.16 christos } while (!done && --iterations);
361 1.3 ad
362 1.3 ad self->pt_havespecific = 0;
363 1.4 ad pthread_mutex_lock(&self->pt_lock);
364 1.1 nathanw }
365