pthread_tsd.c revision 1.26 1 1.26 christos /* $NetBSD: pthread_tsd.c,v 1.26 2025/03/01 18:21:49 christos Exp $ */
2 1.1 nathanw
3 1.1 nathanw /*-
4 1.23 ad * Copyright (c) 2001, 2007, 2020 The NetBSD Foundation, Inc.
5 1.1 nathanw * All rights reserved.
6 1.1 nathanw *
7 1.1 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.10 christos * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9 1.1 nathanw *
10 1.1 nathanw * Redistribution and use in source and binary forms, with or without
11 1.1 nathanw * modification, are permitted provided that the following conditions
12 1.1 nathanw * are met:
13 1.1 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.1 nathanw * notice, this list of conditions and the following disclaimer.
15 1.1 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.1 nathanw * documentation and/or other materials provided with the distribution.
18 1.1 nathanw *
19 1.1 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 nathanw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 nathanw */
31 1.1 nathanw
32 1.1 nathanw #include <sys/cdefs.h>
33 1.26 christos __RCSID("$NetBSD: pthread_tsd.c,v 1.26 2025/03/01 18:21:49 christos Exp $");
34 1.24 riastrad
35 1.24 riastrad /* Need to use libc-private names for atomic operations. */
36 1.24 riastrad #include "../../common/lib/libc/atomic/atomic_op_namespace.h"
37 1.1 nathanw
38 1.1 nathanw /* Functions and structures dealing with thread-specific data */
39 1.1 nathanw #include <errno.h>
40 1.13 christos #include <sys/mman.h>
41 1.1 nathanw
42 1.1 nathanw #include "pthread.h"
43 1.1 nathanw #include "pthread_int.h"
44 1.11 christos #include "reentrant.h"
45 1.17 christos #include "tsd.h"
46 1.1 nathanw
47 1.12 manu int pthread_keys_max;
48 1.1 nathanw static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
49 1.1 nathanw static int nextkey;
50 1.9 christos
51 1.12 manu PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
52 1.12 manu void (**pthread__tsd_destructors)(void *) = NULL;
53 1.1 nathanw
54 1.1 nathanw __strong_alias(__libc_thr_keycreate,pthread_key_create)
55 1.1 nathanw __strong_alias(__libc_thr_keydelete,pthread_key_delete)
56 1.1 nathanw
57 1.9 christos static void
58 1.9 christos /*ARGSUSED*/
59 1.9 christos null_destructor(void *p)
60 1.9 christos {
61 1.9 christos }
62 1.9 christos
63 1.11 christos #include <err.h>
64 1.11 christos #include <stdlib.h>
65 1.12 manu #include <stdio.h>
66 1.12 manu
67 1.20 kamil static void
68 1.20 kamil pthread_tsd_prefork(void)
69 1.20 kamil {
70 1.20 kamil pthread_mutex_lock(&tsd_mutex);
71 1.20 kamil }
72 1.20 kamil
73 1.20 kamil static void
74 1.20 kamil pthread_tsd_postfork(void)
75 1.20 kamil {
76 1.20 kamil pthread_mutex_unlock(&tsd_mutex);
77 1.20 kamil }
78 1.20 kamil
79 1.21 joerg static void
80 1.21 joerg pthread_tsd_postfork_child(void)
81 1.21 joerg {
82 1.21 joerg pthread_mutex_init(&tsd_mutex, NULL);
83 1.21 joerg }
84 1.21 joerg
85 1.13 christos void *
86 1.20 kamil pthread_tsd_init(size_t *tlen)
87 1.12 manu {
88 1.12 manu char *pkm;
89 1.13 christos size_t alen;
90 1.13 christos char *arena;
91 1.12 manu
92 1.26 christos /*
93 1.26 christos * This pthread_atfork() call will not call malloc, since it
94 1.26 christos * has a cache of 3 entries, specially for this purpose.
95 1.26 christos */
96 1.26 christos pthread_atfork(pthread_tsd_prefork, pthread_tsd_postfork,
97 1.26 christos pthread_tsd_postfork_child);
98 1.20 kamil
99 1.13 christos if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
100 1.12 manu pthread_keys_max = (int)strtol(pkm, NULL, 0);
101 1.12 manu if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
102 1.12 manu pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
103 1.12 manu } else {
104 1.12 manu pthread_keys_max = PTHREAD_KEYS_MAX;
105 1.12 manu }
106 1.12 manu
107 1.13 christos /*
108 1.13 christos * Can't use malloc here yet, because malloc will use the fake
109 1.13 christos * libc thread functions to initialize itself, so mmap the space.
110 1.13 christos */
111 1.13 christos *tlen = sizeof(struct __pthread_st)
112 1.13 christos + pthread_keys_max * sizeof(struct pt_specific);
113 1.13 christos alen = *tlen
114 1.13 christos + sizeof(*pthread__tsd_list) * pthread_keys_max
115 1.13 christos + sizeof(*pthread__tsd_destructors) * pthread_keys_max;
116 1.13 christos
117 1.15 pooka arena = mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
118 1.13 christos if (arena == MAP_FAILED) {
119 1.13 christos pthread_keys_max = 0;
120 1.13 christos return NULL;
121 1.13 christos }
122 1.12 manu
123 1.13 christos pthread__tsd_list = (void *)arena;
124 1.13 christos arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
125 1.13 christos pthread__tsd_destructors = (void *)arena;
126 1.13 christos arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
127 1.13 christos return arena;
128 1.12 manu }
129 1.12 manu
130 1.1 nathanw int
131 1.1 nathanw pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
132 1.1 nathanw {
133 1.1 nathanw int i;
134 1.1 nathanw
135 1.11 christos if (__predict_false(__uselibcstub))
136 1.11 christos return __libc_thr_keycreate_stub(key, destructor);
137 1.11 christos
138 1.1 nathanw /* Get a lock on the allocation list */
139 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
140 1.25 riastrad
141 1.9 christos /* Find an available slot:
142 1.9 christos * The condition for an available slot is one with the destructor
143 1.25 riastrad * not being NULL. If the desired destructor is NULL we set it to
144 1.9 christos * our own internal destructor to satisfy the non NULL condition.
145 1.9 christos */
146 1.1 nathanw /* 1. Search from "nextkey" to the end of the list. */
147 1.12 manu for (i = nextkey; i < pthread_keys_max; i++)
148 1.9 christos if (pthread__tsd_destructors[i] == NULL)
149 1.1 nathanw break;
150 1.1 nathanw
151 1.12 manu if (i == pthread_keys_max) {
152 1.1 nathanw /* 2. If that didn't work, search from the start
153 1.1 nathanw * of the list back to "nextkey".
154 1.1 nathanw */
155 1.1 nathanw for (i = 0; i < nextkey; i++)
156 1.9 christos if (pthread__tsd_destructors[i] == NULL)
157 1.1 nathanw break;
158 1.25 riastrad
159 1.1 nathanw if (i == nextkey) {
160 1.1 nathanw /* If we didn't find one here, there isn't one
161 1.1 nathanw * to be found.
162 1.1 nathanw */
163 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
164 1.1 nathanw return EAGAIN;
165 1.1 nathanw }
166 1.1 nathanw }
167 1.1 nathanw
168 1.1 nathanw /* Got one. */
169 1.9 christos pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
170 1.9 christos pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
171 1.9 christos
172 1.12 manu nextkey = (i + 1) % pthread_keys_max;
173 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
174 1.1 nathanw *key = i;
175 1.1 nathanw
176 1.1 nathanw return 0;
177 1.1 nathanw }
178 1.1 nathanw
179 1.9 christos /*
180 1.12 manu * Each thread holds an array of pthread_keys_max pt_specific list
181 1.9 christos * elements. When an element is used it is inserted into the appropriate
182 1.9 christos * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
183 1.9 christos * means that the element is not threaded, ptqe_prev != NULL it is
184 1.22 joerg * already part of the list. If a key is set to a non-NULL value for the
185 1.22 joerg * first time, it is added to the list.
186 1.9 christos *
187 1.9 christos * We keep this global array of lists of threads that have called
188 1.9 christos * pthread_set_specific with non-null values, for each key so that
189 1.9 christos * we don't have to check all threads for non-NULL values in
190 1.22 joerg * pthread_key_destroy.
191 1.22 joerg *
192 1.22 joerg * The assumption here is that a concurrent pthread_key_delete is already
193 1.22 joerg * undefined behavior. The mutex is taken only once per thread/key
194 1.22 joerg * combination.
195 1.9 christos *
196 1.9 christos * We could keep an accounting of the number of specific used
197 1.9 christos * entries per thread, so that we can update pt_havespecific when we delete
198 1.9 christos * the last one, but we don't bother for now
199 1.9 christos */
200 1.9 christos int
201 1.9 christos pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
202 1.9 christos {
203 1.9 christos struct pt_specific *pt;
204 1.9 christos
205 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
206 1.9 christos
207 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
208 1.9 christos pt = &self->pt_specific[key];
209 1.9 christos self->pt_havespecific = 1;
210 1.22 joerg if (value && !pt->pts_next.ptqe_prev) {
211 1.22 joerg pthread_mutex_lock(&tsd_mutex);
212 1.22 joerg PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
213 1.22 joerg pthread_mutex_unlock(&tsd_mutex);
214 1.9 christos }
215 1.9 christos pt->pts_value = __UNCONST(value);
216 1.9 christos
217 1.9 christos return 0;
218 1.9 christos }
219 1.9 christos
220 1.1 nathanw int
221 1.1 nathanw pthread_key_delete(pthread_key_t key)
222 1.1 nathanw {
223 1.1 nathanw /*
224 1.1 nathanw * This is tricky. The standard says of pthread_key_create()
225 1.1 nathanw * that new keys have the value NULL associated with them in
226 1.1 nathanw * all threads. According to people who were present at the
227 1.1 nathanw * standardization meeting, that requirement was written
228 1.1 nathanw * before pthread_key_delete() was introduced, and not
229 1.1 nathanw * reconsidered when it was.
230 1.1 nathanw *
231 1.1 nathanw * See David Butenhof's article in comp.programming.threads:
232 1.1 nathanw * Subject: Re: TSD key reusing issue
233 1.1 nathanw * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
234 1.1 nathanw * Date: Thu, 21 Feb 2002 09:06:17 -0500
235 1.10 christos * http://groups.google.com/groups?\
236 1.10 christos * hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
237 1.25 riastrad *
238 1.1 nathanw * Given:
239 1.1 nathanw *
240 1.1 nathanw * 1: Applications are not required to clear keys in all
241 1.1 nathanw * threads before calling pthread_key_delete().
242 1.1 nathanw * 2: Clearing pointers without running destructors is a
243 1.1 nathanw * memory leak.
244 1.1 nathanw * 3: The pthread_key_delete() function is expressly forbidden
245 1.1 nathanw * to run any destructors.
246 1.1 nathanw *
247 1.1 nathanw * Option 1: Make this function effectively a no-op and
248 1.1 nathanw * prohibit key reuse. This is a possible resource-exhaustion
249 1.1 nathanw * problem given that we have a static storage area for keys,
250 1.1 nathanw * but having a non-static storage area would make
251 1.1 nathanw * pthread_setspecific() expensive (might need to realloc the
252 1.1 nathanw * TSD array).
253 1.1 nathanw *
254 1.1 nathanw * Option 2: Ignore the specified behavior of
255 1.1 nathanw * pthread_key_create() and leave the old values. If an
256 1.1 nathanw * application deletes a key that still has non-NULL values in
257 1.1 nathanw * some threads... it's probably a memory leak and hence
258 1.1 nathanw * incorrect anyway, and we're within our rights to let the
259 1.1 nathanw * application lose. However, it's possible (if unlikely) that
260 1.1 nathanw * the application is storing pointers to non-heap data, or
261 1.1 nathanw * non-pointers that have been wedged into a void pointer, so
262 1.1 nathanw * we can't entirely write off such applications as incorrect.
263 1.1 nathanw * This could also lead to running (new) destructors on old
264 1.1 nathanw * data that was never supposed to be associated with that
265 1.1 nathanw * destructor.
266 1.1 nathanw *
267 1.1 nathanw * Option 3: Follow the specified behavior of
268 1.1 nathanw * pthread_key_create(). Either pthread_key_create() or
269 1.1 nathanw * pthread_key_delete() would then have to clear the values in
270 1.1 nathanw * every thread's slot for that key. In order to guarantee the
271 1.1 nathanw * visibility of the NULL value in other threads, there would
272 1.1 nathanw * have to be synchronization operations in both the clearer
273 1.1 nathanw * and pthread_getspecific(). Putting synchronization in
274 1.1 nathanw * pthread_getspecific() is a big performance lose. But in
275 1.1 nathanw * reality, only (buggy) reuse of an old key would require
276 1.1 nathanw * this synchronization; for a new key, there has to be a
277 1.1 nathanw * memory-visibility propagating event between the call to
278 1.1 nathanw * pthread_key_create() and pthread_getspecific() with that
279 1.1 nathanw * key, so setting the entries to NULL without synchronization
280 1.1 nathanw * will work, subject to problem (2) above. However, it's kind
281 1.1 nathanw * of slow.
282 1.1 nathanw *
283 1.1 nathanw * Note that the argument in option 3 only applies because we
284 1.1 nathanw * keep TSD in ordinary memory which follows the pthreads
285 1.1 nathanw * visibility rules. The visibility rules are not required by
286 1.1 nathanw * the standard to apply to TSD, so the argument doesn't
287 1.1 nathanw * apply in general, just to this implementation.
288 1.1 nathanw */
289 1.1 nathanw
290 1.9 christos /*
291 1.9 christos * We do option 3; we find the list of all pt_specific structures
292 1.10 christos * threaded on the key we are deleting, unthread them, and set the
293 1.10 christos * pointer to NULL. Finally we unthread the entry, freeing it for
294 1.10 christos * further use.
295 1.10 christos *
296 1.10 christos * We don't call the destructor here, it is the responsibility
297 1.10 christos * of the application to cleanup the storage:
298 1.10 christos * http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
299 1.10 christos * pthread_key_delete.html
300 1.9 christos */
301 1.9 christos struct pt_specific *pt;
302 1.9 christos
303 1.11 christos if (__predict_false(__uselibcstub))
304 1.11 christos return __libc_thr_keydelete_stub(key);
305 1.11 christos
306 1.12 manu pthread__assert(key >= 0 && key < pthread_keys_max);
307 1.9 christos
308 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
309 1.9 christos
310 1.9 christos pthread__assert(pthread__tsd_destructors[key] != NULL);
311 1.9 christos
312 1.9 christos while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
313 1.9 christos PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
314 1.9 christos pt->pts_value = NULL;
315 1.9 christos pt->pts_next.ptqe_prev = NULL;
316 1.9 christos }
317 1.9 christos
318 1.1 nathanw pthread__tsd_destructors[key] = NULL;
319 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
320 1.1 nathanw
321 1.1 nathanw return 0;
322 1.1 nathanw }
323 1.1 nathanw
324 1.1 nathanw /* Perform thread-exit-time destruction of thread-specific data. */
325 1.1 nathanw void
326 1.1 nathanw pthread__destroy_tsd(pthread_t self)
327 1.1 nathanw {
328 1.1 nathanw int i, done, iterations;
329 1.1 nathanw void *val;
330 1.1 nathanw void (*destructor)(void *);
331 1.1 nathanw
332 1.3 ad if (!self->pt_havespecific)
333 1.3 ad return;
334 1.3 ad
335 1.1 nathanw /* Butenhof, section 5.4.2 (page 167):
336 1.25 riastrad *
337 1.1 nathanw * ``Also, Pthreads sets the thread-specific data value for a
338 1.1 nathanw * key to NULL before calling that key's destructor (passing
339 1.1 nathanw * the previous value of the key) when a thread terminates [*].
340 1.1 nathanw * ...
341 1.1 nathanw * [*] That is, unfortunately, not what the standard
342 1.1 nathanw * says. This is one of the problems with formal standards -
343 1.1 nathanw * they say what they say, not what they were intended to
344 1.1 nathanw * say. Somehow, an error crept in, and the sentence
345 1.1 nathanw * specifying that "the implementation clears the
346 1.1 nathanw * thread-specific data value before calling the destructor"
347 1.1 nathanw * was deleted. Nobody noticed, and the standard was approved
348 1.1 nathanw * with the error. So the standard says (by omission) that if
349 1.1 nathanw * you want to write a portable application using
350 1.1 nathanw * thread-specific data, that will not hang on thread
351 1.1 nathanw * termination, you must call pthread_setspecific within your
352 1.1 nathanw * destructor function to change the value to NULL. This would
353 1.1 nathanw * be silly, and any serious implementation of Pthreads will
354 1.1 nathanw * violate the standard in this respect. Of course, the
355 1.1 nathanw * standard will be fixed, probably by the 1003.1n amendment
356 1.1 nathanw * (assorted corrections to 1003.1c-1995), but that will take
357 1.1 nathanw * a while.''
358 1.1 nathanw */
359 1.1 nathanw
360 1.16 christos /* We're not required to try very hard */
361 1.16 christos iterations = PTHREAD_DESTRUCTOR_ITERATIONS;
362 1.1 nathanw do {
363 1.1 nathanw done = 1;
364 1.12 manu for (i = 0; i < pthread_keys_max; i++) {
365 1.9 christos struct pt_specific *pt = &self->pt_specific[i];
366 1.9 christos if (pt->pts_next.ptqe_prev == NULL)
367 1.9 christos continue;
368 1.9 christos pthread_mutex_lock(&tsd_mutex);
369 1.9 christos
370 1.9 christos if (pt->pts_next.ptqe_prev != NULL) {
371 1.9 christos PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
372 1.9 christos val = pt->pts_value;
373 1.9 christos pt->pts_value = NULL;
374 1.9 christos pt->pts_next.ptqe_prev = NULL;
375 1.1 nathanw destructor = pthread__tsd_destructors[i];
376 1.9 christos } else
377 1.9 christos destructor = NULL;
378 1.9 christos
379 1.9 christos pthread_mutex_unlock(&tsd_mutex);
380 1.22 joerg if (destructor != NULL && val != NULL) {
381 1.9 christos done = 0;
382 1.9 christos (*destructor)(val);
383 1.1 nathanw }
384 1.1 nathanw }
385 1.16 christos } while (!done && --iterations);
386 1.3 ad
387 1.3 ad self->pt_havespecific = 0;
388 1.1 nathanw }
389 1.17 christos
390 1.17 christos void
391 1.17 christos pthread__copy_tsd(pthread_t self)
392 1.17 christos {
393 1.17 christos for (size_t key = 0; key < TSD_KEYS_MAX; key++) {
394 1.17 christos
395 1.17 christos if (__libc_tsd[key].tsd_inuse == 0)
396 1.17 christos continue;
397 1.17 christos
398 1.17 christos pthread__assert(pthread__tsd_destructors[key] == NULL);
399 1.17 christos pthread__tsd_destructors[key] = __libc_tsd[key].tsd_dtor ?
400 1.17 christos __libc_tsd[key].tsd_dtor : null_destructor;
401 1.17 christos nextkey = (key + 1) % pthread_keys_max;
402 1.17 christos
403 1.17 christos self->pt_havespecific = 1;
404 1.17 christos struct pt_specific *pt = &self->pt_specific[key];
405 1.17 christos pt->pts_value = __libc_tsd[key].tsd_val;
406 1.17 christos __libc_tsd[key].tsd_inuse = 0;
407 1.17 christos }
408 1.17 christos }
409