pthread_tsd.c revision 1.8.2.2 1 1.8.2.2 tls /* $NetBSD: pthread_tsd.c,v 1.8.2.2 2013/06/23 06:21:08 tls Exp $ */
2 1.1 nathanw
3 1.1 nathanw /*-
4 1.3 ad * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
5 1.1 nathanw * All rights reserved.
6 1.1 nathanw *
7 1.1 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.8.2.1 tls * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
9 1.1 nathanw *
10 1.1 nathanw * Redistribution and use in source and binary forms, with or without
11 1.1 nathanw * modification, are permitted provided that the following conditions
12 1.1 nathanw * are met:
13 1.1 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.1 nathanw * notice, this list of conditions and the following disclaimer.
15 1.1 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.1 nathanw * documentation and/or other materials provided with the distribution.
18 1.1 nathanw *
19 1.1 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 nathanw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 nathanw */
31 1.1 nathanw
32 1.1 nathanw #include <sys/cdefs.h>
33 1.8.2.2 tls __RCSID("$NetBSD: pthread_tsd.c,v 1.8.2.2 2013/06/23 06:21:08 tls Exp $");
34 1.1 nathanw
35 1.1 nathanw /* Functions and structures dealing with thread-specific data */
36 1.1 nathanw #include <errno.h>
37 1.1 nathanw
38 1.1 nathanw #include "pthread.h"
39 1.1 nathanw #include "pthread_int.h"
40 1.8.2.2 tls #include "reentrant.h"
41 1.1 nathanw
42 1.8.2.1 tls
43 1.1 nathanw static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
44 1.1 nathanw static int nextkey;
45 1.8.2.1 tls
46 1.8.2.1 tls PTQ_HEAD(pthread__tsd_list, pt_specific)
47 1.8.2.1 tls pthread__tsd_list[PTHREAD_KEYS_MAX];
48 1.1 nathanw void (*pthread__tsd_destructors[PTHREAD_KEYS_MAX])(void *);
49 1.1 nathanw
50 1.1 nathanw __strong_alias(__libc_thr_keycreate,pthread_key_create)
51 1.1 nathanw __strong_alias(__libc_thr_keydelete,pthread_key_delete)
52 1.1 nathanw
53 1.8.2.1 tls static void
54 1.8.2.1 tls /*ARGSUSED*/
55 1.8.2.1 tls null_destructor(void *p)
56 1.8.2.1 tls {
57 1.8.2.1 tls }
58 1.8.2.1 tls
59 1.8.2.2 tls #include <err.h>
60 1.8.2.2 tls #include <stdlib.h>
61 1.1 nathanw int
62 1.1 nathanw pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
63 1.1 nathanw {
64 1.1 nathanw int i;
65 1.1 nathanw
66 1.8.2.2 tls if (__predict_false(__uselibcstub))
67 1.8.2.2 tls return __libc_thr_keycreate_stub(key, destructor);
68 1.8.2.2 tls
69 1.1 nathanw /* Get a lock on the allocation list */
70 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
71 1.1 nathanw
72 1.8.2.1 tls /* Find an available slot:
73 1.8.2.1 tls * The condition for an available slot is one with the destructor
74 1.8.2.1 tls * not being NULL. If the desired destructor is NULL we set it to
75 1.8.2.1 tls * our own internal destructor to satisfy the non NULL condition.
76 1.8.2.1 tls */
77 1.1 nathanw /* 1. Search from "nextkey" to the end of the list. */
78 1.1 nathanw for (i = nextkey; i < PTHREAD_KEYS_MAX; i++)
79 1.8.2.1 tls if (pthread__tsd_destructors[i] == NULL)
80 1.1 nathanw break;
81 1.1 nathanw
82 1.1 nathanw if (i == PTHREAD_KEYS_MAX) {
83 1.1 nathanw /* 2. If that didn't work, search from the start
84 1.1 nathanw * of the list back to "nextkey".
85 1.1 nathanw */
86 1.1 nathanw for (i = 0; i < nextkey; i++)
87 1.8.2.1 tls if (pthread__tsd_destructors[i] == NULL)
88 1.1 nathanw break;
89 1.1 nathanw
90 1.1 nathanw if (i == nextkey) {
91 1.1 nathanw /* If we didn't find one here, there isn't one
92 1.1 nathanw * to be found.
93 1.1 nathanw */
94 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
95 1.1 nathanw return EAGAIN;
96 1.1 nathanw }
97 1.1 nathanw }
98 1.1 nathanw
99 1.1 nathanw /* Got one. */
100 1.8.2.1 tls pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
101 1.8.2.1 tls pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
102 1.8.2.1 tls
103 1.1 nathanw nextkey = (i + 1) % PTHREAD_KEYS_MAX;
104 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
105 1.1 nathanw *key = i;
106 1.1 nathanw
107 1.1 nathanw return 0;
108 1.1 nathanw }
109 1.1 nathanw
110 1.8.2.1 tls /*
111 1.8.2.1 tls * Each thread holds an array of PTHREAD_KEYS_MAX pt_specific list
112 1.8.2.1 tls * elements. When an element is used it is inserted into the appropriate
113 1.8.2.1 tls * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
114 1.8.2.1 tls * means that the element is not threaded, ptqe_prev != NULL it is
115 1.8.2.1 tls * already part of the list. When we set to a NULL value we delete from the
116 1.8.2.1 tls * list if it was in the list, and when we set to non-NULL value, we insert
117 1.8.2.1 tls * in the list if it was not already there.
118 1.8.2.1 tls *
119 1.8.2.1 tls * We keep this global array of lists of threads that have called
120 1.8.2.1 tls * pthread_set_specific with non-null values, for each key so that
121 1.8.2.1 tls * we don't have to check all threads for non-NULL values in
122 1.8.2.1 tls * pthread_key_destroy
123 1.8.2.1 tls *
124 1.8.2.1 tls * We could keep an accounting of the number of specific used
125 1.8.2.1 tls * entries per thread, so that we can update pt_havespecific when we delete
126 1.8.2.1 tls * the last one, but we don't bother for now
127 1.8.2.1 tls */
128 1.8.2.1 tls int
129 1.8.2.1 tls pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
130 1.8.2.1 tls {
131 1.8.2.1 tls struct pt_specific *pt;
132 1.8.2.1 tls
133 1.8.2.1 tls pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
134 1.8.2.1 tls
135 1.8.2.1 tls pthread_mutex_lock(&tsd_mutex);
136 1.8.2.1 tls pthread__assert(pthread__tsd_destructors[key] != NULL);
137 1.8.2.1 tls pt = &self->pt_specific[key];
138 1.8.2.1 tls self->pt_havespecific = 1;
139 1.8.2.1 tls if (value) {
140 1.8.2.1 tls if (pt->pts_next.ptqe_prev == NULL)
141 1.8.2.1 tls PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
142 1.8.2.1 tls } else {
143 1.8.2.1 tls if (pt->pts_next.ptqe_prev != NULL) {
144 1.8.2.1 tls PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
145 1.8.2.1 tls pt->pts_next.ptqe_prev = NULL;
146 1.8.2.1 tls }
147 1.8.2.1 tls }
148 1.8.2.1 tls pt->pts_value = __UNCONST(value);
149 1.8.2.1 tls pthread_mutex_unlock(&tsd_mutex);
150 1.8.2.1 tls
151 1.8.2.1 tls return 0;
152 1.8.2.1 tls }
153 1.8.2.1 tls
154 1.1 nathanw int
155 1.1 nathanw pthread_key_delete(pthread_key_t key)
156 1.1 nathanw {
157 1.1 nathanw /*
158 1.1 nathanw * This is tricky. The standard says of pthread_key_create()
159 1.1 nathanw * that new keys have the value NULL associated with them in
160 1.1 nathanw * all threads. According to people who were present at the
161 1.1 nathanw * standardization meeting, that requirement was written
162 1.1 nathanw * before pthread_key_delete() was introduced, and not
163 1.1 nathanw * reconsidered when it was.
164 1.1 nathanw *
165 1.1 nathanw * See David Butenhof's article in comp.programming.threads:
166 1.1 nathanw * Subject: Re: TSD key reusing issue
167 1.1 nathanw * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
168 1.1 nathanw * Date: Thu, 21 Feb 2002 09:06:17 -0500
169 1.8.2.1 tls * http://groups.google.com/groups?\
170 1.8.2.1 tls * hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
171 1.1 nathanw *
172 1.1 nathanw * Given:
173 1.1 nathanw *
174 1.1 nathanw * 1: Applications are not required to clear keys in all
175 1.1 nathanw * threads before calling pthread_key_delete().
176 1.1 nathanw * 2: Clearing pointers without running destructors is a
177 1.1 nathanw * memory leak.
178 1.1 nathanw * 3: The pthread_key_delete() function is expressly forbidden
179 1.1 nathanw * to run any destructors.
180 1.1 nathanw *
181 1.1 nathanw * Option 1: Make this function effectively a no-op and
182 1.1 nathanw * prohibit key reuse. This is a possible resource-exhaustion
183 1.1 nathanw * problem given that we have a static storage area for keys,
184 1.1 nathanw * but having a non-static storage area would make
185 1.1 nathanw * pthread_setspecific() expensive (might need to realloc the
186 1.1 nathanw * TSD array).
187 1.1 nathanw *
188 1.1 nathanw * Option 2: Ignore the specified behavior of
189 1.1 nathanw * pthread_key_create() and leave the old values. If an
190 1.1 nathanw * application deletes a key that still has non-NULL values in
191 1.1 nathanw * some threads... it's probably a memory leak and hence
192 1.1 nathanw * incorrect anyway, and we're within our rights to let the
193 1.1 nathanw * application lose. However, it's possible (if unlikely) that
194 1.1 nathanw * the application is storing pointers to non-heap data, or
195 1.1 nathanw * non-pointers that have been wedged into a void pointer, so
196 1.1 nathanw * we can't entirely write off such applications as incorrect.
197 1.1 nathanw * This could also lead to running (new) destructors on old
198 1.1 nathanw * data that was never supposed to be associated with that
199 1.1 nathanw * destructor.
200 1.1 nathanw *
201 1.1 nathanw * Option 3: Follow the specified behavior of
202 1.1 nathanw * pthread_key_create(). Either pthread_key_create() or
203 1.1 nathanw * pthread_key_delete() would then have to clear the values in
204 1.1 nathanw * every thread's slot for that key. In order to guarantee the
205 1.1 nathanw * visibility of the NULL value in other threads, there would
206 1.1 nathanw * have to be synchronization operations in both the clearer
207 1.1 nathanw * and pthread_getspecific(). Putting synchronization in
208 1.1 nathanw * pthread_getspecific() is a big performance lose. But in
209 1.1 nathanw * reality, only (buggy) reuse of an old key would require
210 1.1 nathanw * this synchronization; for a new key, there has to be a
211 1.1 nathanw * memory-visibility propagating event between the call to
212 1.1 nathanw * pthread_key_create() and pthread_getspecific() with that
213 1.1 nathanw * key, so setting the entries to NULL without synchronization
214 1.1 nathanw * will work, subject to problem (2) above. However, it's kind
215 1.1 nathanw * of slow.
216 1.1 nathanw *
217 1.1 nathanw * Note that the argument in option 3 only applies because we
218 1.1 nathanw * keep TSD in ordinary memory which follows the pthreads
219 1.1 nathanw * visibility rules. The visibility rules are not required by
220 1.1 nathanw * the standard to apply to TSD, so the argument doesn't
221 1.1 nathanw * apply in general, just to this implementation.
222 1.1 nathanw */
223 1.1 nathanw
224 1.8.2.1 tls /*
225 1.8.2.1 tls * We do option 3; we find the list of all pt_specific structures
226 1.8.2.1 tls * threaded on the key we are deleting, unthread them, and set the
227 1.8.2.1 tls * pointer to NULL. Finally we unthread the entry, freeing it for
228 1.8.2.1 tls * further use.
229 1.8.2.1 tls *
230 1.8.2.1 tls * We don't call the destructor here, it is the responsibility
231 1.8.2.1 tls * of the application to cleanup the storage:
232 1.8.2.1 tls * http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
233 1.8.2.1 tls * pthread_key_delete.html
234 1.8.2.1 tls */
235 1.8.2.1 tls struct pt_specific *pt;
236 1.8.2.1 tls
237 1.8.2.2 tls if (__predict_false(__uselibcstub))
238 1.8.2.2 tls return __libc_thr_keydelete_stub(key);
239 1.8.2.2 tls
240 1.8.2.1 tls pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
241 1.8.2.1 tls
242 1.1 nathanw pthread_mutex_lock(&tsd_mutex);
243 1.8.2.1 tls
244 1.8.2.1 tls pthread__assert(pthread__tsd_destructors[key] != NULL);
245 1.8.2.1 tls
246 1.8.2.1 tls while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
247 1.8.2.1 tls PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
248 1.8.2.1 tls pt->pts_value = NULL;
249 1.8.2.1 tls pt->pts_next.ptqe_prev = NULL;
250 1.8.2.1 tls }
251 1.8.2.1 tls
252 1.1 nathanw pthread__tsd_destructors[key] = NULL;
253 1.1 nathanw pthread_mutex_unlock(&tsd_mutex);
254 1.1 nathanw
255 1.1 nathanw return 0;
256 1.1 nathanw }
257 1.1 nathanw
258 1.1 nathanw /* Perform thread-exit-time destruction of thread-specific data. */
259 1.1 nathanw void
260 1.1 nathanw pthread__destroy_tsd(pthread_t self)
261 1.1 nathanw {
262 1.1 nathanw int i, done, iterations;
263 1.1 nathanw void *val;
264 1.1 nathanw void (*destructor)(void *);
265 1.1 nathanw
266 1.3 ad if (!self->pt_havespecific)
267 1.3 ad return;
268 1.4 ad pthread_mutex_unlock(&self->pt_lock);
269 1.3 ad
270 1.1 nathanw /* Butenhof, section 5.4.2 (page 167):
271 1.1 nathanw *
272 1.1 nathanw * ``Also, Pthreads sets the thread-specific data value for a
273 1.1 nathanw * key to NULL before calling that key's destructor (passing
274 1.1 nathanw * the previous value of the key) when a thread terminates [*].
275 1.1 nathanw * ...
276 1.1 nathanw * [*] That is, unfortunately, not what the standard
277 1.1 nathanw * says. This is one of the problems with formal standards -
278 1.1 nathanw * they say what they say, not what they were intended to
279 1.1 nathanw * say. Somehow, an error crept in, and the sentence
280 1.1 nathanw * specifying that "the implementation clears the
281 1.1 nathanw * thread-specific data value before calling the destructor"
282 1.1 nathanw * was deleted. Nobody noticed, and the standard was approved
283 1.1 nathanw * with the error. So the standard says (by omission) that if
284 1.1 nathanw * you want to write a portable application using
285 1.1 nathanw * thread-specific data, that will not hang on thread
286 1.1 nathanw * termination, you must call pthread_setspecific within your
287 1.1 nathanw * destructor function to change the value to NULL. This would
288 1.1 nathanw * be silly, and any serious implementation of Pthreads will
289 1.1 nathanw * violate the standard in this respect. Of course, the
290 1.1 nathanw * standard will be fixed, probably by the 1003.1n amendment
291 1.1 nathanw * (assorted corrections to 1003.1c-1995), but that will take
292 1.1 nathanw * a while.''
293 1.1 nathanw */
294 1.1 nathanw
295 1.1 nathanw iterations = 4; /* We're not required to try very hard */
296 1.1 nathanw do {
297 1.1 nathanw done = 1;
298 1.1 nathanw for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
299 1.8.2.1 tls struct pt_specific *pt = &self->pt_specific[i];
300 1.8.2.1 tls if (pt->pts_next.ptqe_prev == NULL)
301 1.8.2.1 tls continue;
302 1.8.2.1 tls pthread_mutex_lock(&tsd_mutex);
303 1.8.2.1 tls
304 1.8.2.1 tls if (pt->pts_next.ptqe_prev != NULL) {
305 1.8.2.1 tls PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
306 1.8.2.1 tls val = pt->pts_value;
307 1.8.2.1 tls pt->pts_value = NULL;
308 1.8.2.1 tls pt->pts_next.ptqe_prev = NULL;
309 1.1 nathanw destructor = pthread__tsd_destructors[i];
310 1.8.2.1 tls } else
311 1.8.2.1 tls destructor = NULL;
312 1.8.2.1 tls
313 1.8.2.1 tls pthread_mutex_unlock(&tsd_mutex);
314 1.8.2.1 tls if (destructor != NULL) {
315 1.8.2.1 tls done = 0;
316 1.8.2.1 tls (*destructor)(val);
317 1.1 nathanw }
318 1.1 nathanw }
319 1.1 nathanw } while (!done && iterations--);
320 1.3 ad
321 1.3 ad self->pt_havespecific = 0;
322 1.4 ad pthread_mutex_lock(&self->pt_lock);
323 1.1 nathanw }
324