Home | History | Annotate | Line # | Download | only in libpthread
pthread_tsd.c revision 1.11
      1 /*	$NetBSD: pthread_tsd.c,v 1.11 2013/03/21 16:49:12 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __RCSID("$NetBSD: pthread_tsd.c,v 1.11 2013/03/21 16:49:12 christos Exp $");
     34 
     35 /* Functions and structures dealing with thread-specific data */
     36 #include <errno.h>
     37 
     38 #include "pthread.h"
     39 #include "pthread_int.h"
     40 #include "reentrant.h"
     41 
     42 
     43 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
     44 static int nextkey;
     45 
     46 PTQ_HEAD(pthread__tsd_list, pt_specific)
     47     pthread__tsd_list[PTHREAD_KEYS_MAX];
     48 void (*pthread__tsd_destructors[PTHREAD_KEYS_MAX])(void *);
     49 
     50 __strong_alias(__libc_thr_keycreate,pthread_key_create)
     51 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
     52 
     53 static void
     54 /*ARGSUSED*/
     55 null_destructor(void *p)
     56 {
     57 }
     58 
     59 #include <err.h>
     60 #include <stdlib.h>
     61 int
     62 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
     63 {
     64 	int i;
     65 
     66 	if (__predict_false(__uselibcstub))
     67 		return __libc_thr_keycreate_stub(key, destructor);
     68 
     69 	/* Get a lock on the allocation list */
     70 	pthread_mutex_lock(&tsd_mutex);
     71 
     72 	/* Find an available slot:
     73 	 * The condition for an available slot is one with the destructor
     74 	 * not being NULL. If the desired destructor is NULL we set it to
     75 	 * our own internal destructor to satisfy the non NULL condition.
     76 	 */
     77 	/* 1. Search from "nextkey" to the end of the list. */
     78 	for (i = nextkey; i < PTHREAD_KEYS_MAX; i++)
     79 		if (pthread__tsd_destructors[i] == NULL)
     80 			break;
     81 
     82 	if (i == PTHREAD_KEYS_MAX) {
     83 		/* 2. If that didn't work, search from the start
     84 		 *    of the list back to "nextkey".
     85 		 */
     86 		for (i = 0; i < nextkey; i++)
     87 			if (pthread__tsd_destructors[i] == NULL)
     88 				break;
     89 
     90 		if (i == nextkey) {
     91 			/* If we didn't find one here, there isn't one
     92 			 * to be found.
     93 			 */
     94 			pthread_mutex_unlock(&tsd_mutex);
     95 			return EAGAIN;
     96 		}
     97 	}
     98 
     99 	/* Got one. */
    100 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
    101 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
    102 
    103 	nextkey = (i + 1) % PTHREAD_KEYS_MAX;
    104 	pthread_mutex_unlock(&tsd_mutex);
    105 	*key = i;
    106 
    107 	return 0;
    108 }
    109 
    110 /*
    111  * Each thread holds an array of PTHREAD_KEYS_MAX pt_specific list
    112  * elements. When an element is used it is inserted into the appropriate
    113  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
    114  * means that the element is not threaded, ptqe_prev != NULL it is
    115  * already part of the list. When we set to a NULL value we delete from the
    116  * list if it was in the list, and when we set to non-NULL value, we insert
    117  * in the list if it was not already there.
    118  *
    119  * We keep this global array of lists of threads that have called
    120  * pthread_set_specific with non-null values, for each key so that
    121  * we don't have to check all threads for non-NULL values in
    122  * pthread_key_destroy
    123  *
    124  * We could keep an accounting of the number of specific used
    125  * entries per thread, so that we can update pt_havespecific when we delete
    126  * the last one, but we don't bother for now
    127  */
    128 int
    129 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
    130 {
    131 	struct pt_specific *pt;
    132 
    133 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
    134 
    135 	pthread_mutex_lock(&tsd_mutex);
    136 	pthread__assert(pthread__tsd_destructors[key] != NULL);
    137 	pt = &self->pt_specific[key];
    138 	self->pt_havespecific = 1;
    139 	if (value) {
    140 		if (pt->pts_next.ptqe_prev == NULL)
    141 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
    142 	} else {
    143 		if (pt->pts_next.ptqe_prev != NULL) {
    144 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
    145 			pt->pts_next.ptqe_prev = NULL;
    146 		}
    147 	}
    148 	pt->pts_value = __UNCONST(value);
    149 	pthread_mutex_unlock(&tsd_mutex);
    150 
    151 	return 0;
    152 }
    153 
    154 int
    155 pthread_key_delete(pthread_key_t key)
    156 {
    157 	/*
    158 	 * This is tricky.  The standard says of pthread_key_create()
    159 	 * that new keys have the value NULL associated with them in
    160 	 * all threads.  According to people who were present at the
    161 	 * standardization meeting, that requirement was written
    162 	 * before pthread_key_delete() was introduced, and not
    163 	 * reconsidered when it was.
    164 	 *
    165 	 * See David Butenhof's article in comp.programming.threads:
    166 	 * Subject: Re: TSD key reusing issue
    167 	 * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
    168 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
    169 	 *	 http://groups.google.com/groups?\
    170 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
    171 	 *
    172 	 * Given:
    173 	 *
    174 	 * 1: Applications are not required to clear keys in all
    175 	 *    threads before calling pthread_key_delete().
    176 	 * 2: Clearing pointers without running destructors is a
    177 	 *    memory leak.
    178 	 * 3: The pthread_key_delete() function is expressly forbidden
    179 	 *    to run any destructors.
    180 	 *
    181 	 * Option 1: Make this function effectively a no-op and
    182 	 * prohibit key reuse. This is a possible resource-exhaustion
    183 	 * problem given that we have a static storage area for keys,
    184 	 * but having a non-static storage area would make
    185 	 * pthread_setspecific() expensive (might need to realloc the
    186 	 * TSD array).
    187 	 *
    188 	 * Option 2: Ignore the specified behavior of
    189 	 * pthread_key_create() and leave the old values. If an
    190 	 * application deletes a key that still has non-NULL values in
    191 	 * some threads... it's probably a memory leak and hence
    192 	 * incorrect anyway, and we're within our rights to let the
    193 	 * application lose. However, it's possible (if unlikely) that
    194 	 * the application is storing pointers to non-heap data, or
    195 	 * non-pointers that have been wedged into a void pointer, so
    196 	 * we can't entirely write off such applications as incorrect.
    197 	 * This could also lead to running (new) destructors on old
    198 	 * data that was never supposed to be associated with that
    199 	 * destructor.
    200 	 *
    201 	 * Option 3: Follow the specified behavior of
    202 	 * pthread_key_create().  Either pthread_key_create() or
    203 	 * pthread_key_delete() would then have to clear the values in
    204 	 * every thread's slot for that key. In order to guarantee the
    205 	 * visibility of the NULL value in other threads, there would
    206 	 * have to be synchronization operations in both the clearer
    207 	 * and pthread_getspecific().  Putting synchronization in
    208 	 * pthread_getspecific() is a big performance lose.  But in
    209 	 * reality, only (buggy) reuse of an old key would require
    210 	 * this synchronization; for a new key, there has to be a
    211 	 * memory-visibility propagating event between the call to
    212 	 * pthread_key_create() and pthread_getspecific() with that
    213 	 * key, so setting the entries to NULL without synchronization
    214 	 * will work, subject to problem (2) above. However, it's kind
    215 	 * of slow.
    216 	 *
    217 	 * Note that the argument in option 3 only applies because we
    218 	 * keep TSD in ordinary memory which follows the pthreads
    219 	 * visibility rules. The visibility rules are not required by
    220 	 * the standard to apply to TSD, so the argument doesn't
    221 	 * apply in general, just to this implementation.
    222 	 */
    223 
    224 	/*
    225 	 * We do option 3; we find the list of all pt_specific structures
    226 	 * threaded on the key we are deleting, unthread them, and set the
    227 	 * pointer to NULL. Finally we unthread the entry, freeing it for
    228 	 * further use.
    229 	 *
    230 	 * We don't call the destructor here, it is the responsibility
    231 	 * of the application to cleanup the storage:
    232 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
    233 	 *	pthread_key_delete.html
    234 	 */
    235 	struct pt_specific *pt;
    236 
    237 	if (__predict_false(__uselibcstub))
    238 		return __libc_thr_keydelete_stub(key);
    239 
    240 	pthread__assert(key >= 0 && key < PTHREAD_KEYS_MAX);
    241 
    242 	pthread_mutex_lock(&tsd_mutex);
    243 
    244 	pthread__assert(pthread__tsd_destructors[key] != NULL);
    245 
    246 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
    247 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
    248 		pt->pts_value = NULL;
    249 		pt->pts_next.ptqe_prev = NULL;
    250 	}
    251 
    252 	pthread__tsd_destructors[key] = NULL;
    253 	pthread_mutex_unlock(&tsd_mutex);
    254 
    255 	return 0;
    256 }
    257 
    258 /* Perform thread-exit-time destruction of thread-specific data. */
    259 void
    260 pthread__destroy_tsd(pthread_t self)
    261 {
    262 	int i, done, iterations;
    263 	void *val;
    264 	void (*destructor)(void *);
    265 
    266 	if (!self->pt_havespecific)
    267 		return;
    268 	pthread_mutex_unlock(&self->pt_lock);
    269 
    270 	/* Butenhof, section 5.4.2 (page 167):
    271 	 *
    272 	 * ``Also, Pthreads sets the thread-specific data value for a
    273 	 * key to NULL before calling that key's destructor (passing
    274 	 * the previous value of the key) when a thread terminates [*].
    275 	 * ...
    276 	 * [*] That is, unfortunately, not what the standard
    277 	 * says. This is one of the problems with formal standards -
    278 	 * they say what they say, not what they were intended to
    279 	 * say. Somehow, an error crept in, and the sentence
    280 	 * specifying that "the implementation clears the
    281 	 * thread-specific data value before calling the destructor"
    282 	 * was deleted. Nobody noticed, and the standard was approved
    283 	 * with the error. So the standard says (by omission) that if
    284 	 * you want to write a portable application using
    285 	 * thread-specific data, that will not hang on thread
    286 	 * termination, you must call pthread_setspecific within your
    287 	 * destructor function to change the value to NULL. This would
    288 	 * be silly, and any serious implementation of Pthreads will
    289 	 * violate the standard in this respect. Of course, the
    290 	 * standard will be fixed, probably by the 1003.1n amendment
    291 	 * (assorted corrections to 1003.1c-1995), but that will take
    292 	 * a while.''
    293 	 */
    294 
    295 	iterations = 4; /* We're not required to try very hard */
    296 	do {
    297 		done = 1;
    298 		for (i = 0; i < PTHREAD_KEYS_MAX; i++) {
    299 			struct pt_specific *pt = &self->pt_specific[i];
    300 			if (pt->pts_next.ptqe_prev == NULL)
    301 				continue;
    302 			pthread_mutex_lock(&tsd_mutex);
    303 
    304 			if (pt->pts_next.ptqe_prev != NULL)  {
    305 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
    306 				val = pt->pts_value;
    307 				pt->pts_value = NULL;
    308 				pt->pts_next.ptqe_prev = NULL;
    309 				destructor = pthread__tsd_destructors[i];
    310 			} else
    311 				destructor = NULL;
    312 
    313 			pthread_mutex_unlock(&tsd_mutex);
    314 			if (destructor != NULL) {
    315 				done = 0;
    316 				(*destructor)(val);
    317 			}
    318 		}
    319 	} while (!done && iterations--);
    320 
    321 	self->pt_havespecific = 0;
    322 	pthread_mutex_lock(&self->pt_lock);
    323 }
    324