Home | History | Annotate | Line # | Download | only in libpthread
pthread_tsd.c revision 1.12
      1 /*	$NetBSD: pthread_tsd.c,v 1.12 2015/05/29 07:37:31 manu Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __RCSID("$NetBSD: pthread_tsd.c,v 1.12 2015/05/29 07:37:31 manu Exp $");
     34 
     35 /* Functions and structures dealing with thread-specific data */
     36 #include <errno.h>
     37 
     38 #include "pthread.h"
     39 #include "pthread_int.h"
     40 #include "reentrant.h"
     41 
     42 int pthread_keys_max;
     43 static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
     44 static int nextkey;
     45 
     46 PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
     47 void (**pthread__tsd_destructors)(void *) = NULL;
     48 
     49 __strong_alias(__libc_thr_keycreate,pthread_key_create)
     50 __strong_alias(__libc_thr_keydelete,pthread_key_delete)
     51 
     52 static void
     53 /*ARGSUSED*/
     54 null_destructor(void *p)
     55 {
     56 }
     57 
     58 #include <err.h>
     59 #include <stdlib.h>
     60 #include <stdio.h>
     61 
     62 int
     63 pthread_tsd_init(void)
     64 {
     65 	char *pkm;
     66 	size_t len;
     67 
     68 	if ((pkm = getenv("PTHREAD_KEYS_MAX")) != NULL) {
     69 		pthread_keys_max = (int)strtol(pkm, NULL, 0);
     70 		if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
     71 			pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
     72 	} else {
     73 		pthread_keys_max = PTHREAD_KEYS_MAX;
     74 	}
     75 
     76 	len = sizeof(*pthread__tsd_list);
     77 	if ((pthread__tsd_list = calloc(pthread_keys_max, len)) == NULL)
     78 		goto out1;
     79 
     80 	len = sizeof(*pthread__tsd_destructors);
     81 	if ((pthread__tsd_destructors = calloc(pthread_keys_max, len)) == NULL)
     82 		goto out2;
     83 
     84 	return 0;
     85 
     86 out2:
     87 	free(pthread__tsd_list);
     88 out1:
     89 	pthread_keys_max = 0;
     90 
     91 	return -1;
     92 }
     93 
     94 int
     95 pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
     96 {
     97 	int i;
     98 
     99 	if (__predict_false(__uselibcstub))
    100 		return __libc_thr_keycreate_stub(key, destructor);
    101 
    102 	/* Get a lock on the allocation list */
    103 	pthread_mutex_lock(&tsd_mutex);
    104 
    105 	/* Find an available slot:
    106 	 * The condition for an available slot is one with the destructor
    107 	 * not being NULL. If the desired destructor is NULL we set it to
    108 	 * our own internal destructor to satisfy the non NULL condition.
    109 	 */
    110 	/* 1. Search from "nextkey" to the end of the list. */
    111 	for (i = nextkey; i < pthread_keys_max; i++)
    112 		if (pthread__tsd_destructors[i] == NULL)
    113 			break;
    114 
    115 	if (i == pthread_keys_max) {
    116 		/* 2. If that didn't work, search from the start
    117 		 *    of the list back to "nextkey".
    118 		 */
    119 		for (i = 0; i < nextkey; i++)
    120 			if (pthread__tsd_destructors[i] == NULL)
    121 				break;
    122 
    123 		if (i == nextkey) {
    124 			/* If we didn't find one here, there isn't one
    125 			 * to be found.
    126 			 */
    127 			pthread_mutex_unlock(&tsd_mutex);
    128 			return EAGAIN;
    129 		}
    130 	}
    131 
    132 	/* Got one. */
    133 	pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
    134 	pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;
    135 
    136 	nextkey = (i + 1) % pthread_keys_max;
    137 	pthread_mutex_unlock(&tsd_mutex);
    138 	*key = i;
    139 
    140 	return 0;
    141 }
    142 
    143 /*
    144  * Each thread holds an array of pthread_keys_max pt_specific list
    145  * elements. When an element is used it is inserted into the appropriate
    146  * key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
    147  * means that the element is not threaded, ptqe_prev != NULL it is
    148  * already part of the list. When we set to a NULL value we delete from the
    149  * list if it was in the list, and when we set to non-NULL value, we insert
    150  * in the list if it was not already there.
    151  *
    152  * We keep this global array of lists of threads that have called
    153  * pthread_set_specific with non-null values, for each key so that
    154  * we don't have to check all threads for non-NULL values in
    155  * pthread_key_destroy
    156  *
    157  * We could keep an accounting of the number of specific used
    158  * entries per thread, so that we can update pt_havespecific when we delete
    159  * the last one, but we don't bother for now
    160  */
    161 int
    162 pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
    163 {
    164 	struct pt_specific *pt;
    165 
    166 	pthread__assert(key >= 0 && key < pthread_keys_max);
    167 
    168 	pthread_mutex_lock(&tsd_mutex);
    169 	pthread__assert(pthread__tsd_destructors[key] != NULL);
    170 	pt = &self->pt_specific[key];
    171 	self->pt_havespecific = 1;
    172 	if (value) {
    173 		if (pt->pts_next.ptqe_prev == NULL)
    174 			PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
    175 	} else {
    176 		if (pt->pts_next.ptqe_prev != NULL) {
    177 			PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
    178 			pt->pts_next.ptqe_prev = NULL;
    179 		}
    180 	}
    181 	pt->pts_value = __UNCONST(value);
    182 	pthread_mutex_unlock(&tsd_mutex);
    183 
    184 	return 0;
    185 }
    186 
    187 int
    188 pthread_key_delete(pthread_key_t key)
    189 {
    190 	/*
    191 	 * This is tricky.  The standard says of pthread_key_create()
    192 	 * that new keys have the value NULL associated with them in
    193 	 * all threads.  According to people who were present at the
    194 	 * standardization meeting, that requirement was written
    195 	 * before pthread_key_delete() was introduced, and not
    196 	 * reconsidered when it was.
    197 	 *
    198 	 * See David Butenhof's article in comp.programming.threads:
    199 	 * Subject: Re: TSD key reusing issue
    200 	 * Message-ID: <u97d8.29$fL6.200 (at) news.cpqcorp.net>
    201 	 * Date: Thu, 21 Feb 2002 09:06:17 -0500
    202 	 *	 http://groups.google.com/groups?\
    203 	 *	 hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
    204 	 *
    205 	 * Given:
    206 	 *
    207 	 * 1: Applications are not required to clear keys in all
    208 	 *    threads before calling pthread_key_delete().
    209 	 * 2: Clearing pointers without running destructors is a
    210 	 *    memory leak.
    211 	 * 3: The pthread_key_delete() function is expressly forbidden
    212 	 *    to run any destructors.
    213 	 *
    214 	 * Option 1: Make this function effectively a no-op and
    215 	 * prohibit key reuse. This is a possible resource-exhaustion
    216 	 * problem given that we have a static storage area for keys,
    217 	 * but having a non-static storage area would make
    218 	 * pthread_setspecific() expensive (might need to realloc the
    219 	 * TSD array).
    220 	 *
    221 	 * Option 2: Ignore the specified behavior of
    222 	 * pthread_key_create() and leave the old values. If an
    223 	 * application deletes a key that still has non-NULL values in
    224 	 * some threads... it's probably a memory leak and hence
    225 	 * incorrect anyway, and we're within our rights to let the
    226 	 * application lose. However, it's possible (if unlikely) that
    227 	 * the application is storing pointers to non-heap data, or
    228 	 * non-pointers that have been wedged into a void pointer, so
    229 	 * we can't entirely write off such applications as incorrect.
    230 	 * This could also lead to running (new) destructors on old
    231 	 * data that was never supposed to be associated with that
    232 	 * destructor.
    233 	 *
    234 	 * Option 3: Follow the specified behavior of
    235 	 * pthread_key_create().  Either pthread_key_create() or
    236 	 * pthread_key_delete() would then have to clear the values in
    237 	 * every thread's slot for that key. In order to guarantee the
    238 	 * visibility of the NULL value in other threads, there would
    239 	 * have to be synchronization operations in both the clearer
    240 	 * and pthread_getspecific().  Putting synchronization in
    241 	 * pthread_getspecific() is a big performance lose.  But in
    242 	 * reality, only (buggy) reuse of an old key would require
    243 	 * this synchronization; for a new key, there has to be a
    244 	 * memory-visibility propagating event between the call to
    245 	 * pthread_key_create() and pthread_getspecific() with that
    246 	 * key, so setting the entries to NULL without synchronization
    247 	 * will work, subject to problem (2) above. However, it's kind
    248 	 * of slow.
    249 	 *
    250 	 * Note that the argument in option 3 only applies because we
    251 	 * keep TSD in ordinary memory which follows the pthreads
    252 	 * visibility rules. The visibility rules are not required by
    253 	 * the standard to apply to TSD, so the argument doesn't
    254 	 * apply in general, just to this implementation.
    255 	 */
    256 
    257 	/*
    258 	 * We do option 3; we find the list of all pt_specific structures
    259 	 * threaded on the key we are deleting, unthread them, and set the
    260 	 * pointer to NULL. Finally we unthread the entry, freeing it for
    261 	 * further use.
    262 	 *
    263 	 * We don't call the destructor here, it is the responsibility
    264 	 * of the application to cleanup the storage:
    265 	 * 	http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
    266 	 *	pthread_key_delete.html
    267 	 */
    268 	struct pt_specific *pt;
    269 
    270 	if (__predict_false(__uselibcstub))
    271 		return __libc_thr_keydelete_stub(key);
    272 
    273 	pthread__assert(key >= 0 && key < pthread_keys_max);
    274 
    275 	pthread_mutex_lock(&tsd_mutex);
    276 
    277 	pthread__assert(pthread__tsd_destructors[key] != NULL);
    278 
    279 	while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
    280 		PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
    281 		pt->pts_value = NULL;
    282 		pt->pts_next.ptqe_prev = NULL;
    283 	}
    284 
    285 	pthread__tsd_destructors[key] = NULL;
    286 	pthread_mutex_unlock(&tsd_mutex);
    287 
    288 	return 0;
    289 }
    290 
    291 /* Perform thread-exit-time destruction of thread-specific data. */
    292 void
    293 pthread__destroy_tsd(pthread_t self)
    294 {
    295 	int i, done, iterations;
    296 	void *val;
    297 	void (*destructor)(void *);
    298 
    299 	if (!self->pt_havespecific)
    300 		return;
    301 	pthread_mutex_unlock(&self->pt_lock);
    302 
    303 	/* Butenhof, section 5.4.2 (page 167):
    304 	 *
    305 	 * ``Also, Pthreads sets the thread-specific data value for a
    306 	 * key to NULL before calling that key's destructor (passing
    307 	 * the previous value of the key) when a thread terminates [*].
    308 	 * ...
    309 	 * [*] That is, unfortunately, not what the standard
    310 	 * says. This is one of the problems with formal standards -
    311 	 * they say what they say, not what they were intended to
    312 	 * say. Somehow, an error crept in, and the sentence
    313 	 * specifying that "the implementation clears the
    314 	 * thread-specific data value before calling the destructor"
    315 	 * was deleted. Nobody noticed, and the standard was approved
    316 	 * with the error. So the standard says (by omission) that if
    317 	 * you want to write a portable application using
    318 	 * thread-specific data, that will not hang on thread
    319 	 * termination, you must call pthread_setspecific within your
    320 	 * destructor function to change the value to NULL. This would
    321 	 * be silly, and any serious implementation of Pthreads will
    322 	 * violate the standard in this respect. Of course, the
    323 	 * standard will be fixed, probably by the 1003.1n amendment
    324 	 * (assorted corrections to 1003.1c-1995), but that will take
    325 	 * a while.''
    326 	 */
    327 
    328 	iterations = 4; /* We're not required to try very hard */
    329 	do {
    330 		done = 1;
    331 		for (i = 0; i < pthread_keys_max; i++) {
    332 			struct pt_specific *pt = &self->pt_specific[i];
    333 			if (pt->pts_next.ptqe_prev == NULL)
    334 				continue;
    335 			pthread_mutex_lock(&tsd_mutex);
    336 
    337 			if (pt->pts_next.ptqe_prev != NULL)  {
    338 				PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
    339 				val = pt->pts_value;
    340 				pt->pts_value = NULL;
    341 				pt->pts_next.ptqe_prev = NULL;
    342 				destructor = pthread__tsd_destructors[i];
    343 			} else
    344 				destructor = NULL;
    345 
    346 			pthread_mutex_unlock(&tsd_mutex);
    347 			if (destructor != NULL) {
    348 				done = 0;
    349 				(*destructor)(val);
    350 			}
    351 		}
    352 	} while (!done && iterations--);
    353 
    354 	self->pt_havespecific = 0;
    355 	pthread_mutex_lock(&self->pt_lock);
    356 }
    357