hijack.c revision 1.129 1 /* $NetBSD: hijack.c,v 1.129 2020/02/10 09:10:58 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 /*
29 * XXX: rumphijack sort of works on glibc Linux. But it's not
30 * the same quality working as on NetBSD.
31 * autoconf HAVE_FOO vs. __NetBSD__ / __linux__ could be further
32 * improved.
33 */
34 #include <rump/rumpuser_port.h>
35
36 #if !defined(lint)
37 __RCSID("$NetBSD: hijack.c,v 1.129 2020/02/10 09:10:58 kamil Exp $");
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/ioctl.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/socket.h>
46 #include <sys/stat.h>
47 #include <sys/time.h>
48 #include <sys/uio.h>
49
50 #ifdef __NetBSD__
51 #include <sys/statvfs.h>
52 #endif
53
54 #ifdef HAVE_KQUEUE
55 #include <sys/event.h>
56 #endif
57
58 #ifdef __NetBSD__
59 #include <sys/quotactl.h>
60 #endif
61
62 #include <assert.h>
63 #include <dlfcn.h>
64 #include <err.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <poll.h>
68 #include <pthread.h>
69 #include <signal.h>
70 #include <stdarg.h>
71 #include <stdbool.h>
72 #include <stdint.h>
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <string.h>
76 #include <time.h>
77 #include <unistd.h>
78
79 #include <rump/rumpclient.h>
80 #include <rump/rump_syscalls.h>
81
82 #include "hijack.h"
83
84 /*
85 * XXX: Consider autogenerating this, syscnames[] and syscalls[] with
86 * a DSL where the tool also checks the symbols exported by this library
87 * to make sure all relevant calls are accounted for.
88 */
89 enum dualcall {
90 DUALCALL_WRITE, DUALCALL_WRITEV, DUALCALL_PWRITE, DUALCALL_PWRITEV,
91 DUALCALL_IOCTL, DUALCALL_FCNTL,
92 DUALCALL_SOCKET, DUALCALL_ACCEPT,
93 #ifndef __linux__
94 DUALCALL_PACCEPT,
95 #endif
96 DUALCALL_BIND, DUALCALL_CONNECT,
97 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
98 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
99 DUALCALL_SENDTO, DUALCALL_SENDMSG,
100 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
101 DUALCALL_SHUTDOWN,
102 DUALCALL_READ, DUALCALL_READV, DUALCALL_PREAD, DUALCALL_PREADV,
103 DUALCALL_DUP2,
104 DUALCALL_CLOSE,
105 DUALCALL_POLLTS,
106
107 #ifndef __linux__
108 DUALCALL_STAT, DUALCALL_LSTAT, DUALCALL_FSTAT,
109 #endif
110
111 DUALCALL_CHMOD, DUALCALL_LCHMOD, DUALCALL_FCHMOD,
112 DUALCALL_CHOWN, DUALCALL_LCHOWN, DUALCALL_FCHOWN,
113 DUALCALL_OPEN,
114 DUALCALL_CHDIR, DUALCALL_FCHDIR,
115 DUALCALL_LSEEK,
116 DUALCALL_UNLINK, DUALCALL_SYMLINK, DUALCALL_READLINK,
117 DUALCALL_LINK, DUALCALL_RENAME,
118 DUALCALL_MKDIR, DUALCALL_RMDIR,
119 DUALCALL_UTIMES, DUALCALL_LUTIMES, DUALCALL_FUTIMES,
120 DUALCALL_UTIMENSAT, DUALCALL_FUTIMENS,
121 DUALCALL_TRUNCATE, DUALCALL_FTRUNCATE,
122 DUALCALL_FSYNC,
123 DUALCALL_ACCESS,
124
125 #ifndef __linux__
126 DUALCALL___GETCWD,
127 DUALCALL_GETDENTS,
128 #endif
129
130 #ifndef __linux__
131 DUALCALL_MKNOD,
132 #endif
133
134 #ifdef __NetBSD__
135 DUALCALL_GETFH, DUALCALL_FHOPEN, DUALCALL_FHSTAT, DUALCALL_FHSTATVFS1,
136 #endif
137
138 #ifdef HAVE_KQUEUE
139 DUALCALL_KEVENT,
140 #endif
141
142 #ifdef __NetBSD__
143 DUALCALL___SYSCTL,
144 DUALCALL_MODCTL,
145 #endif
146
147 #ifdef __NetBSD__
148 DUALCALL_NFSSVC,
149 #endif
150
151 #ifdef __NetBSD__
152 DUALCALL_STATVFS1, DUALCALL_FSTATVFS1, DUALCALL_GETVFSSTAT,
153 #endif
154
155 #ifdef __NetBSD__
156 DUALCALL_MOUNT, DUALCALL_UNMOUNT,
157 #endif
158
159 #ifdef HAVE_FSYNC_RANGE
160 DUALCALL_FSYNC_RANGE,
161 #endif
162
163 #ifdef HAVE_CHFLAGS
164 DUALCALL_CHFLAGS, DUALCALL_LCHFLAGS, DUALCALL_FCHFLAGS,
165 #endif
166
167 #ifdef HAVE___QUOTACTL
168 DUALCALL_QUOTACTL,
169 #endif
170 #ifdef __NetBSD__
171 DUALCALL_LINKAT,
172 #endif
173 DUALCALL__NUM
174 };
175
176 #define RSYS_STRING(a) __STRING(a)
177 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
178
179 /*
180 * Would be nice to get this automatically in sync with libc.
181 * Also, this does not work for compat-using binaries (we should
182 * provide all previous interfaces, not just the current ones)
183 */
184 #if defined(__NetBSD__)
185
186 #if !__NetBSD_Prereq__(5,99,7)
187 #define REALSELECT select
188 #define REALPOLLTS pollts
189 #define REALKEVENT kevent
190 #define REALSTAT __stat30
191 #define REALLSTAT __lstat30
192 #define REALFSTAT __fstat30
193 #define REALUTIMES utimes
194 #define REALLUTIMES lutimes
195 #define REALFUTIMES futimes
196 #define REALMKNOD mknod
197 #define REALFHSTAT __fhstat40
198 #else /* >= 5.99.7 */
199 #define REALSELECT _sys___select50
200 #define REALPOLLTS _sys___pollts50
201 #define REALKEVENT _sys___kevent50
202 #define REALSTAT __stat50
203 #define REALLSTAT __lstat50
204 #define REALFSTAT __fstat50
205 #define REALUTIMES __utimes50
206 #define REALLUTIMES __lutimes50
207 #define REALFUTIMES __futimes50
208 #define REALMKNOD __mknod50
209 #define REALFHSTAT __fhstat50
210 #endif /* < 5.99.7 */
211
212 #define REALREAD _sys_read
213 #define REALPREAD _sys_pread
214 #define REALPWRITE _sys_pwrite
215 #define REALGETDENTS __getdents30
216 #define REALMOUNT __mount50
217 #define REALGETFH __getfh30
218 #define REALFHOPEN __fhopen40
219 #if !__NetBSD_Prereq__(9,99,13)
220 #define REALSTATVFS1 statvfs1
221 #define REALFSTATVFS1 fstatvfs1
222 #define REALGETVFSSTAT getvfsstat
223 #define REALFHSTATVFS1 __fhstatvfs140
224 #else
225 #define REALSTATVFS1 __statvfs190
226 #define REALFSTATVFS1 __fstatvfs190
227 #define REALGETVFSSTAT __getvfsstat90
228 #define REALFHSTATVFS1 __fhstatvfs190
229 #endif
230 #define REALSOCKET __socket30
231
232 #define LSEEK_ALIAS _lseek
233 #define VFORK __vfork14
234
235 int REALSTAT(const char *, struct stat *);
236 int REALLSTAT(const char *, struct stat *);
237 int REALFSTAT(int, struct stat *);
238 int REALMKNOD(const char *, mode_t, dev_t);
239 int REALGETDENTS(int, char *, size_t);
240
241 int __getcwd(char *, size_t);
242
243 #elif defined(__linux__) /* glibc, really */
244
245 #define REALREAD read
246 #define REALPREAD pread
247 #define REALPWRITE pwrite
248 #define REALSELECT select
249 #define REALPOLLTS ppoll
250 #define REALUTIMES utimes
251 #define REALLUTIMES lutimes
252 #define REALFUTIMES futimes
253 #define REALFHSTAT fhstat
254 #define REALSOCKET socket
255
256 #else /* !NetBSD && !linux */
257
258 #error platform not supported
259
260 #endif /* platform */
261
262 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
263 int REALPOLLTS(struct pollfd *, nfds_t,
264 const struct timespec *, const sigset_t *);
265 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
266 const struct timespec *);
267 ssize_t REALREAD(int, void *, size_t);
268 ssize_t REALPREAD(int, void *, size_t, off_t);
269 ssize_t REALPWRITE(int, const void *, size_t, off_t);
270 int REALUTIMES(const char *, const struct timeval [2]);
271 int REALLUTIMES(const char *, const struct timeval [2]);
272 int REALFUTIMES(int, const struct timeval [2]);
273 int REALMOUNT(const char *, const char *, int, void *, size_t);
274 int REALGETFH(const char *, void *, size_t *);
275 int REALFHOPEN(const void *, size_t, int);
276 int REALFHSTAT(const void *, size_t, struct stat *);
277 int REALSTATVFS1(const char *, struct statvfs *, int);
278 int REALFSTATVFS1(int, struct statvfs *, int);
279 int REALFHSTATVFS1(const void *, size_t, struct statvfs *, int);
280 int REALGETVFSSTAT(struct statvfs *, size_t, int);
281 int REALSOCKET(int, int, int);
282
283 #define S(a) __STRING(a)
284 struct sysnames {
285 enum dualcall scm_callnum;
286 const char *scm_hostname;
287 const char *scm_rumpname;
288 } syscnames[] = {
289 { DUALCALL_SOCKET, S(REALSOCKET), RSYS_NAME(SOCKET) },
290 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
291 #ifndef __linux__
292 { DUALCALL_PACCEPT, "paccept", RSYS_NAME(PACCEPT) },
293 #endif
294 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
295 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
296 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
297 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
298 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
299 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
300 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
301 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
302 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
303 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
304 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
305 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
306 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
307 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
308 { DUALCALL_PREAD, S(REALPREAD), RSYS_NAME(PREAD) },
309 { DUALCALL_PREADV, "preadv", RSYS_NAME(PREADV) },
310 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
311 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
312 { DUALCALL_PWRITE, S(REALPWRITE), RSYS_NAME(PWRITE) },
313 { DUALCALL_PWRITEV, "pwritev", RSYS_NAME(PWRITEV) },
314 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
315 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
316 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
317 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
318 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
319 #ifndef __linux__
320 { DUALCALL_STAT, S(REALSTAT), RSYS_NAME(STAT) },
321 { DUALCALL_LSTAT, S(REALLSTAT), RSYS_NAME(LSTAT) },
322 { DUALCALL_FSTAT, S(REALFSTAT), RSYS_NAME(FSTAT) },
323 #endif
324 { DUALCALL_CHOWN, "chown", RSYS_NAME(CHOWN) },
325 { DUALCALL_LCHOWN, "lchown", RSYS_NAME(LCHOWN) },
326 { DUALCALL_FCHOWN, "fchown", RSYS_NAME(FCHOWN) },
327 { DUALCALL_CHMOD, "chmod", RSYS_NAME(CHMOD) },
328 { DUALCALL_LCHMOD, "lchmod", RSYS_NAME(LCHMOD) },
329 { DUALCALL_FCHMOD, "fchmod", RSYS_NAME(FCHMOD) },
330 { DUALCALL_UTIMES, S(REALUTIMES), RSYS_NAME(UTIMES) },
331 { DUALCALL_LUTIMES, S(REALLUTIMES), RSYS_NAME(LUTIMES) },
332 { DUALCALL_FUTIMES, S(REALFUTIMES), RSYS_NAME(FUTIMES) },
333 { DUALCALL_UTIMENSAT, "utimensat", RSYS_NAME(UTIMENSAT) },
334 { DUALCALL_FUTIMENS, "futimens", RSYS_NAME(FUTIMENS) },
335 { DUALCALL_OPEN, "open", RSYS_NAME(OPEN) },
336 { DUALCALL_CHDIR, "chdir", RSYS_NAME(CHDIR) },
337 { DUALCALL_FCHDIR, "fchdir", RSYS_NAME(FCHDIR) },
338 { DUALCALL_LSEEK, "lseek", RSYS_NAME(LSEEK) },
339 { DUALCALL_UNLINK, "unlink", RSYS_NAME(UNLINK) },
340 { DUALCALL_SYMLINK, "symlink", RSYS_NAME(SYMLINK) },
341 { DUALCALL_READLINK, "readlink", RSYS_NAME(READLINK) },
342 { DUALCALL_LINK, "link", RSYS_NAME(LINK) },
343 { DUALCALL_RENAME, "rename", RSYS_NAME(RENAME) },
344 { DUALCALL_MKDIR, "mkdir", RSYS_NAME(MKDIR) },
345 { DUALCALL_RMDIR, "rmdir", RSYS_NAME(RMDIR) },
346 { DUALCALL_TRUNCATE, "truncate", RSYS_NAME(TRUNCATE) },
347 { DUALCALL_FTRUNCATE, "ftruncate", RSYS_NAME(FTRUNCATE) },
348 { DUALCALL_FSYNC, "fsync", RSYS_NAME(FSYNC) },
349 { DUALCALL_ACCESS, "access", RSYS_NAME(ACCESS) },
350
351 #ifndef __linux__
352 { DUALCALL___GETCWD, "__getcwd", RSYS_NAME(__GETCWD) },
353 { DUALCALL_GETDENTS, S(REALGETDENTS),RSYS_NAME(GETDENTS) },
354 #endif
355
356 #ifndef __linux__
357 { DUALCALL_MKNOD, S(REALMKNOD), RSYS_NAME(MKNOD) },
358 #endif
359
360 #ifdef __NetBSD__
361 { DUALCALL_GETFH, S(REALGETFH), RSYS_NAME(GETFH) },
362 { DUALCALL_FHOPEN, S(REALFHOPEN), RSYS_NAME(FHOPEN) },
363 { DUALCALL_FHSTAT, S(REALFHSTAT), RSYS_NAME(FHSTAT) },
364 { DUALCALL_FHSTATVFS1, S(REALFHSTATVFS1),RSYS_NAME(FHSTATVFS1) },
365 #endif
366
367 #ifdef HAVE_KQUEUE
368 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
369 #endif
370
371 #ifdef __NetBSD__
372 { DUALCALL___SYSCTL, "__sysctl", RSYS_NAME(__SYSCTL) },
373 { DUALCALL_MODCTL, "modctl", RSYS_NAME(MODCTL) },
374 #endif
375
376 #ifdef __NetBSD__
377 { DUALCALL_NFSSVC, "nfssvc", RSYS_NAME(NFSSVC) },
378 #endif
379
380 #ifdef __NetBSD__
381 { DUALCALL_STATVFS1, S(REALSTATVFS1),RSYS_NAME(STATVFS1) },
382 { DUALCALL_FSTATVFS1, S(REALFSTATVFS1),RSYS_NAME(FSTATVFS1) },
383 { DUALCALL_GETVFSSTAT, S(REALGETVFSSTAT),RSYS_NAME(GETVFSSTAT) },
384 #endif
385
386 #ifdef __NetBSD__
387 { DUALCALL_MOUNT, S(REALMOUNT), RSYS_NAME(MOUNT) },
388 { DUALCALL_UNMOUNT, "unmount", RSYS_NAME(UNMOUNT) },
389 #endif
390
391 #ifdef HAVE_FSYNC_RANGE
392 { DUALCALL_FSYNC_RANGE, "fsync_range", RSYS_NAME(FSYNC_RANGE) },
393 #endif
394
395 #ifdef HAVE_CHFLAGS
396 { DUALCALL_CHFLAGS, "chflags", RSYS_NAME(CHFLAGS) },
397 { DUALCALL_LCHFLAGS, "lchflags", RSYS_NAME(LCHFLAGS) },
398 { DUALCALL_FCHFLAGS, "fchflags", RSYS_NAME(FCHFLAGS) },
399 #endif /* HAVE_CHFLAGS */
400
401 #ifdef HAVE___QUOTACTL
402 { DUALCALL_QUOTACTL, "__quotactl", RSYS_NAME(__QUOTACTL) },
403 #endif /* HAVE___QUOTACTL */
404
405 #ifdef __NetBSD__
406 { DUALCALL_LINKAT, "linkat", RSYS_NAME(LINKAT) },
407 #endif
408 };
409 #undef S
410
411 struct bothsys {
412 void *bs_host;
413 void *bs_rump;
414 } syscalls[DUALCALL__NUM];
415 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
416
417 static pid_t (*host_fork)(void);
418 static int (*host_daemon)(int, int);
419 static void * (*host_mmap)(void *, size_t, int, int, int, off_t);
420
421 /*
422 * This tracks if our process is in a subdirectory of /rump.
423 * It's preserved over exec.
424 */
425 static bool pwdinrump;
426
427 enum pathtype { PATH_HOST, PATH_RUMP, PATH_RUMPBLANKET };
428
429 static bool fd_isrump(int);
430 static enum pathtype path_isrump(const char *);
431
432 /* default FD_SETSIZE is 256 ==> default fdoff is 128 */
433 static int hijack_fdoff = FD_SETSIZE/2;
434
435 /*
436 * Maintain a mapping table for the usual dup2 suspects.
437 * Could use atomic ops to operate on dup2vec, but an application
438 * racing there is not well-defined, so don't bother.
439 */
440 /* note: you cannot change this without editing the env-passing code */
441 #define DUP2HIGH 2
442 static uint32_t dup2vec[DUP2HIGH+1];
443 #define DUP2BIT (1U<<31)
444 #define DUP2ALIAS (1<<30)
445 #define DUP2FDMASK ((1<<30)-1)
446
447 static bool
448 isdup2d(int fd)
449 {
450
451 return fd <= DUP2HIGH && fd >= 0 && dup2vec[fd] & DUP2BIT;
452 }
453
454 static int
455 mapdup2(int hostfd)
456 {
457
458 _DIAGASSERT(isdup2d(hostfd));
459 return dup2vec[hostfd] & DUP2FDMASK;
460 }
461
462 static int
463 unmapdup2(int rumpfd)
464 {
465 int i;
466
467 for (i = 0; i <= DUP2HIGH; i++) {
468 if (dup2vec[i] & DUP2BIT &&
469 (dup2vec[i] & DUP2FDMASK) == (unsigned)rumpfd)
470 return i;
471 }
472 return -1;
473 }
474
475 static void
476 setdup2(int hostfd, int rumpfd)
477 {
478
479 if (hostfd > DUP2HIGH) {
480 _DIAGASSERT(0);
481 return;
482 }
483
484 dup2vec[hostfd] = DUP2BIT | DUP2ALIAS | rumpfd;
485 }
486
487 static void
488 clrdup2(int hostfd)
489 {
490
491 if (hostfd > DUP2HIGH) {
492 _DIAGASSERT(0);
493 return;
494 }
495
496 dup2vec[hostfd] = 0;
497 }
498
499 static bool
500 killdup2alias(int rumpfd)
501 {
502 int hostfd;
503
504 if ((hostfd = unmapdup2(rumpfd)) == -1)
505 return false;
506
507 if (dup2vec[hostfd] & DUP2ALIAS) {
508 dup2vec[hostfd] &= ~DUP2ALIAS;
509 return true;
510 }
511 return false;
512 }
513
514 //#define DEBUGJACK
515 #ifdef DEBUGJACK
516 #define DPRINTF(x) mydprintf x
517 static void
518 mydprintf(const char *fmt, ...)
519 {
520 va_list ap;
521
522 if (isdup2d(STDERR_FILENO))
523 return;
524
525 va_start(ap, fmt);
526 vfprintf(stderr, fmt, ap);
527 va_end(ap);
528 }
529
530 static const char *
531 whichfd(int fd)
532 {
533
534 if (fd == -1)
535 return "-1";
536 else if (fd_isrump(fd))
537 return "rump";
538 else
539 return "host";
540 }
541
542 static const char *
543 whichpath(const char *path)
544 {
545
546 if (path_isrump(path))
547 return "rump";
548 else
549 return "host";
550 }
551
552 #else
553 #define DPRINTF(x)
554 #endif
555
556 #define ATCALL(type, name, rcname, args, proto, vars) \
557 type name args \
558 { \
559 type (*fun) proto; \
560 int isrump = -1; \
561 \
562 if (fd == AT_FDCWD || *path == '/') { \
563 isrump = path_isrump(path); \
564 } else { \
565 isrump = fd_isrump(fd); \
566 } \
567 \
568 DPRINTF(("%s -> %d:%s (%s)\n", __STRING(name), \
569 fd, path, isrump ? "rump" : "host")); \
570 \
571 assert(isrump != -1); \
572 if (isrump) { \
573 fun = syscalls[rcname].bs_rump; \
574 if (fd != AT_FDCWD) \
575 fd = fd_host2rump(fd); \
576 path = path_host2rump(path); \
577 } else { \
578 fun = syscalls[rcname].bs_host; \
579 } \
580 return fun vars; \
581 }
582
583 #define FDCALL(type, name, rcname, args, proto, vars) \
584 type name args \
585 { \
586 type (*fun) proto; \
587 \
588 DPRINTF(("%s -> %d (%s)\n", __STRING(name), fd, whichfd(fd))); \
589 if (fd_isrump(fd)) { \
590 fun = syscalls[rcname].bs_rump; \
591 fd = fd_host2rump(fd); \
592 } else { \
593 fun = syscalls[rcname].bs_host; \
594 } \
595 \
596 return fun vars; \
597 }
598
599 #define PATHCALL(type, name, rcname, args, proto, vars) \
600 type name args \
601 { \
602 type (*fun) proto; \
603 enum pathtype pt; \
604 \
605 DPRINTF(("%s -> %s (%s)\n", __STRING(name), path, \
606 whichpath(path))); \
607 if ((pt = path_isrump(path)) != PATH_HOST) { \
608 fun = syscalls[rcname].bs_rump; \
609 if (pt == PATH_RUMP) \
610 path = path_host2rump(path); \
611 } else { \
612 fun = syscalls[rcname].bs_host; \
613 } \
614 \
615 return fun vars; \
616 }
617
618 #define VFSCALL(bit, type, name, rcname, args, proto, vars) \
619 type name args \
620 { \
621 type (*fun) proto; \
622 \
623 DPRINTF(("%s (0x%x, 0x%x)\n", __STRING(name), bit, vfsbits)); \
624 if (vfsbits & bit) { \
625 fun = syscalls[rcname].bs_rump; \
626 } else { \
627 fun = syscalls[rcname].bs_host; \
628 } \
629 \
630 return fun vars; \
631 }
632
633 /*
634 * These variables are set from the RUMPHIJACK string and control
635 * which operations can product rump kernel file descriptors.
636 * This should be easily extendable for future needs.
637 */
638 #define RUMPHIJACK_DEFAULT "path=/rump,socket=all:nolocal"
639 static bool rumpsockets[PF_MAX];
640 static const char *rumpprefix;
641 static size_t rumpprefixlen;
642
643 static struct {
644 int pf;
645 const char *name;
646 } socketmap[] = {
647 { PF_LOCAL, "local" },
648 { PF_INET, "inet" },
649 #ifdef PF_LINK
650 { PF_LINK, "link" },
651 #endif
652 #ifdef PF_OROUTE
653 { PF_OROUTE, "oroute" },
654 #endif
655 { PF_ROUTE, "route" },
656 { PF_INET6, "inet6" },
657 #ifdef PF_MPLS
658 { PF_MPLS, "mpls" },
659 #endif
660 { -1, NULL }
661 };
662
663 static void
664 sockparser(char *buf)
665 {
666 char *p, *l = NULL;
667 bool value;
668 int i;
669
670 /* if "all" is present, it must be specified first */
671 if (strncmp(buf, "all", strlen("all")) == 0) {
672 for (i = 0; i < (int)__arraycount(rumpsockets); i++) {
673 rumpsockets[i] = true;
674 }
675 buf += strlen("all");
676 if (*buf == ':')
677 buf++;
678 }
679
680 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
681 value = true;
682 if (strncmp(p, "no", strlen("no")) == 0) {
683 value = false;
684 p += strlen("no");
685 }
686
687 for (i = 0; socketmap[i].name; i++) {
688 if (strcmp(p, socketmap[i].name) == 0) {
689 rumpsockets[socketmap[i].pf] = value;
690 break;
691 }
692 }
693 if (socketmap[i].name == NULL) {
694 errx(1, "invalid socket specifier %s", p);
695 }
696 }
697 }
698
699 static void
700 pathparser(char *buf)
701 {
702
703 /* sanity-check */
704 if (*buf != '/')
705 errx(1, "hijack path specifier must begin with ``/''");
706 rumpprefixlen = strlen(buf);
707 if (rumpprefixlen < 2)
708 errx(1, "invalid hijack prefix: %s", buf);
709 if (buf[rumpprefixlen-1] == '/' && strspn(buf, "/") != rumpprefixlen)
710 errx(1, "hijack prefix may end in slash only if pure "
711 "slash, gave %s", buf);
712
713 if ((rumpprefix = strdup(buf)) == NULL)
714 err(1, "strdup");
715 rumpprefixlen = strlen(rumpprefix);
716 }
717
718 static struct blanket {
719 const char *pfx;
720 size_t len;
721 } *blanket;
722 static int nblanket;
723
724 static void
725 blanketparser(char *buf)
726 {
727 char *p, *l = NULL;
728 int i;
729
730 for (nblanket = 0, p = buf; p; p = strchr(p+1, ':'), nblanket++)
731 continue;
732
733 blanket = malloc(nblanket * sizeof(*blanket));
734 if (blanket == NULL)
735 err(1, "alloc blanket %d", nblanket);
736
737 for (p = strtok_r(buf, ":", &l), i = 0; p;
738 p = strtok_r(NULL, ":", &l), i++) {
739 blanket[i].pfx = strdup(p);
740 if (blanket[i].pfx == NULL)
741 err(1, "strdup blanket");
742 blanket[i].len = strlen(p);
743
744 if (blanket[i].len == 0 || *blanket[i].pfx != '/')
745 errx(1, "invalid blanket specifier %s", p);
746 if (*(blanket[i].pfx + blanket[i].len-1) == '/')
747 errx(1, "invalid blanket specifier %s", p);
748 }
749 }
750
751 #define VFSBIT_NFSSVC 0x01
752 #define VFSBIT_GETVFSSTAT 0x02
753 #define VFSBIT_FHCALLS 0x04
754 static unsigned vfsbits;
755
756 static struct {
757 int bit;
758 const char *name;
759 } vfscalls[] = {
760 { VFSBIT_NFSSVC, "nfssvc" },
761 { VFSBIT_GETVFSSTAT, "getvfsstat" },
762 { VFSBIT_FHCALLS, "fhcalls" },
763 { -1, NULL }
764 };
765
766 static void
767 vfsparser(char *buf)
768 {
769 char *p, *l = NULL;
770 bool turnon;
771 unsigned int fullmask;
772 int i;
773
774 /* build the full mask and sanity-check while we're at it */
775 fullmask = 0;
776 for (i = 0; vfscalls[i].name != NULL; i++) {
777 if (fullmask & vfscalls[i].bit)
778 errx(1, "problem exists between vi and chair");
779 fullmask |= vfscalls[i].bit;
780 }
781
782
783 /* if "all" is present, it must be specified first */
784 if (strncmp(buf, "all", strlen("all")) == 0) {
785 vfsbits = fullmask;
786 buf += strlen("all");
787 if (*buf == ':')
788 buf++;
789 }
790
791 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
792 turnon = true;
793 if (strncmp(p, "no", strlen("no")) == 0) {
794 turnon = false;
795 p += strlen("no");
796 }
797
798 for (i = 0; vfscalls[i].name; i++) {
799 if (strcmp(p, vfscalls[i].name) == 0) {
800 if (turnon)
801 vfsbits |= vfscalls[i].bit;
802 else
803 vfsbits &= ~vfscalls[i].bit;
804 break;
805 }
806 }
807 if (vfscalls[i].name == NULL) {
808 errx(1, "invalid vfscall specifier %s", p);
809 }
810 }
811 }
812
813 static bool rumpsysctl = false;
814
815 static void
816 sysctlparser(char *buf)
817 {
818
819 if (buf == NULL) {
820 rumpsysctl = true;
821 return;
822 }
823
824 if (strcasecmp(buf, "y") == 0 || strcasecmp(buf, "yes") == 0 ||
825 strcasecmp(buf, "yep") == 0 || strcasecmp(buf, "tottakai") == 0) {
826 rumpsysctl = true;
827 return;
828 }
829 if (strcasecmp(buf, "n") == 0 || strcasecmp(buf, "no") == 0) {
830 rumpsysctl = false;
831 return;
832 }
833
834 errx(1, "sysctl value should be y(es)/n(o), gave: %s", buf);
835 }
836
837 static bool rumpmodctl = false;
838
839 static void
840 modctlparser(char *buf)
841 {
842
843 if (buf == NULL) {
844 rumpmodctl = true;
845 return;
846 }
847
848 if (strcasecmp(buf, "y") == 0 || strcasecmp(buf, "yes") == 0 ||
849 strcasecmp(buf, "yep") == 0 || strcasecmp(buf, "tottakai") == 0) {
850 rumpmodctl = true;
851 return;
852 }
853 if (strcasecmp(buf, "n") == 0 || strcasecmp(buf, "no") == 0) {
854 rumpmodctl = false;
855 return;
856 }
857
858 errx(1, "modctl value should be y(es)/n(o), gave: %s", buf);
859 }
860
861 static void
862 fdoffparser(char *buf)
863 {
864 unsigned long fdoff;
865 char *ep;
866
867 if (*buf == '-') {
868 errx(1, "fdoff must not be negative");
869 }
870 fdoff = strtoul(buf, &ep, 10);
871 if (*ep != '\0')
872 errx(1, "invalid fdoff specifier \"%s\"", buf);
873 if (fdoff >= INT_MAX/2 || fdoff < 3)
874 errx(1, "fdoff out of range");
875 hijack_fdoff = fdoff;
876 }
877
878 static struct {
879 void (*parsefn)(char *);
880 const char *name;
881 bool needvalues;
882 } hijackparse[] = {
883 { sockparser, "socket", true },
884 { pathparser, "path", true },
885 { blanketparser, "blanket", true },
886 { vfsparser, "vfs", true },
887 { sysctlparser, "sysctl", false },
888 { modctlparser, "modctl", false },
889 { fdoffparser, "fdoff", true },
890 { NULL, NULL, false },
891 };
892
893 static void
894 parsehijack(char *hijack)
895 {
896 char *p, *p2, *l;
897 const char *hijackcopy;
898 bool nop2;
899 int i;
900
901 if ((hijackcopy = strdup(hijack)) == NULL)
902 err(1, "strdup");
903
904 /* disable everything explicitly */
905 for (i = 0; i < PF_MAX; i++)
906 rumpsockets[i] = false;
907
908 for (p = strtok_r(hijack, ",", &l); p; p = strtok_r(NULL, ",", &l)) {
909 nop2 = false;
910 p2 = strchr(p, '=');
911 if (!p2) {
912 nop2 = true;
913 p2 = p + strlen(p);
914 }
915
916 for (i = 0; hijackparse[i].parsefn; i++) {
917 if (strncmp(hijackparse[i].name, p,
918 (size_t)(p2-p)) == 0) {
919 if (nop2 && hijackparse[i].needvalues)
920 errx(1, "invalid hijack specifier: %s",
921 hijackcopy);
922 hijackparse[i].parsefn(nop2 ? NULL : p2+1);
923 break;
924 }
925 }
926
927 if (hijackparse[i].parsefn == NULL)
928 errx(1, "invalid hijack specifier name in %s", p);
929 }
930
931 }
932
933 static void __attribute__((constructor))
934 rcinit(void)
935 {
936 char buf[1024];
937 unsigned i, j;
938
939 host_fork = dlsym(RTLD_NEXT, "fork");
940 host_daemon = dlsym(RTLD_NEXT, "daemon");
941 if (host_mmap == NULL)
942 host_mmap = dlsym(RTLD_NEXT, "mmap");
943
944 /*
945 * In theory cannot print anything during lookups because
946 * we might not have the call vector set up. so, the errx()
947 * is a bit of a strech, but it might work.
948 */
949
950 for (i = 0; i < DUALCALL__NUM; i++) {
951 /* build runtime O(1) access */
952 for (j = 0; j < __arraycount(syscnames); j++) {
953 if (syscnames[j].scm_callnum == i)
954 break;
955 }
956
957 if (j == __arraycount(syscnames))
958 errx(1, "rumphijack error: syscall pos %d missing", i);
959
960 syscalls[i].bs_host = dlsym(RTLD_NEXT,
961 syscnames[j].scm_hostname);
962 if (syscalls[i].bs_host == NULL)
963 errx(1, "hostcall %s not found!",
964 syscnames[j].scm_hostname);
965
966 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
967 syscnames[j].scm_rumpname);
968 if (syscalls[i].bs_rump == NULL)
969 errx(1, "rumpcall %s not found!",
970 syscnames[j].scm_rumpname);
971 }
972
973 if (rumpclient_init() == -1)
974 err(1, "rumpclient init");
975
976 /* check which syscalls we're supposed to hijack */
977 if (getenv_r("RUMPHIJACK", buf, sizeof(buf)) == -1) {
978 strcpy(buf, RUMPHIJACK_DEFAULT);
979 }
980 parsehijack(buf);
981
982 /* set client persistence level */
983 if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
984 if (strcmp(buf, "die") == 0)
985 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
986 else if (strcmp(buf, "inftime") == 0)
987 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
988 else if (strcmp(buf, "once") == 0)
989 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
990 else {
991 time_t timeout;
992 char *ep;
993
994 timeout = (time_t)strtoll(buf, &ep, 10);
995 if (timeout <= 0 || ep != buf + strlen(buf))
996 errx(1, "RUMPHIJACK_RETRYCONNECT must be "
997 "keyword or integer, got: %s", buf);
998
999 rumpclient_setconnretry(timeout);
1000 }
1001 }
1002
1003 if (getenv_r("RUMPHIJACK__DUP2INFO", buf, sizeof(buf)) == 0) {
1004 if (sscanf(buf, "%u,%u,%u",
1005 &dup2vec[0], &dup2vec[1], &dup2vec[2]) != 3) {
1006 warnx("invalid dup2mask: %s", buf);
1007 memset(dup2vec, 0, sizeof(dup2vec));
1008 }
1009 unsetenv("RUMPHIJACK__DUP2INFO");
1010 }
1011 if (getenv_r("RUMPHIJACK__PWDINRUMP", buf, sizeof(buf)) == 0) {
1012 pwdinrump = true;
1013 unsetenv("RUMPHIJACK__PWDINRUMP");
1014 }
1015 }
1016
1017 static int
1018 fd_rump2host(int fd)
1019 {
1020
1021 if (fd == -1)
1022 return fd;
1023 return fd + hijack_fdoff;
1024 }
1025
1026 static int
1027 fd_rump2host_withdup(int fd)
1028 {
1029 int hfd;
1030
1031 _DIAGASSERT(fd != -1);
1032 hfd = unmapdup2(fd);
1033 if (hfd != -1) {
1034 _DIAGASSERT(hfd <= DUP2HIGH);
1035 return hfd;
1036 }
1037 return fd_rump2host(fd);
1038 }
1039
1040 static int
1041 fd_host2rump(int fd)
1042 {
1043 if (!isdup2d(fd))
1044 return fd - hijack_fdoff;
1045 else
1046 return mapdup2(fd);
1047 }
1048
1049 static bool
1050 fd_isrump(int fd)
1051 {
1052
1053 return isdup2d(fd) || fd >= hijack_fdoff;
1054 }
1055
1056 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= hijack_fdoff)
1057
1058 static enum pathtype
1059 path_isrump(const char *path)
1060 {
1061 size_t plen;
1062 int i;
1063
1064 if (rumpprefix == NULL && nblanket == 0)
1065 return PATH_HOST;
1066
1067 if (*path == '/') {
1068 plen = strlen(path);
1069 if (rumpprefix && plen >= rumpprefixlen) {
1070 if (strncmp(path, rumpprefix, rumpprefixlen) == 0
1071 && (plen == rumpprefixlen
1072 || *(path + rumpprefixlen) == '/')) {
1073 return PATH_RUMP;
1074 }
1075 }
1076 for (i = 0; i < nblanket; i++) {
1077 if (strncmp(path, blanket[i].pfx, blanket[i].len) == 0)
1078 return PATH_RUMPBLANKET;
1079 }
1080
1081 return PATH_HOST;
1082 } else {
1083 return pwdinrump ? PATH_RUMP : PATH_HOST;
1084 }
1085 }
1086
1087 static const char *rootpath = "/";
1088 static const char *
1089 path_host2rump(const char *path)
1090 {
1091 const char *rv;
1092
1093 if (*path == '/') {
1094 rv = path + rumpprefixlen;
1095 if (*rv == '\0')
1096 rv = rootpath;
1097 } else {
1098 rv = path;
1099 }
1100
1101 return rv;
1102 }
1103
1104 static int
1105 dodup(int oldd, int minfd)
1106 {
1107 int (*op_fcntl)(int, int, ...);
1108 int newd;
1109 int isrump;
1110
1111 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
1112 if (fd_isrump(oldd)) {
1113 op_fcntl = GETSYSCALL(rump, FCNTL);
1114 oldd = fd_host2rump(oldd);
1115 if (minfd >= hijack_fdoff)
1116 minfd -= hijack_fdoff;
1117 isrump = 1;
1118 } else {
1119 if (minfd >= hijack_fdoff) {
1120 errno = EINVAL;
1121 return -1;
1122 }
1123 op_fcntl = GETSYSCALL(host, FCNTL);
1124 isrump = 0;
1125 }
1126
1127 newd = op_fcntl(oldd, F_DUPFD, minfd);
1128
1129 if (isrump)
1130 newd = fd_rump2host(newd);
1131 DPRINTF(("dup <- %d\n", newd));
1132
1133 return newd;
1134 }
1135
1136 /*
1137 * Check that host fd value does not exceed fdoffset and if necessary
1138 * dup the file descriptor so that it doesn't collide with the dup2mask.
1139 */
1140 static int
1141 fd_host2host(int fd)
1142 {
1143 int (*op_fcntl)(int, int, ...) = GETSYSCALL(host, FCNTL);
1144 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
1145 int ofd, i;
1146
1147 if (fd >= hijack_fdoff) {
1148 op_close(fd);
1149 errno = ENFILE;
1150 return -1;
1151 }
1152
1153 for (i = 1; isdup2d(fd); i++) {
1154 ofd = fd;
1155 fd = op_fcntl(ofd, F_DUPFD, i);
1156 op_close(ofd);
1157 }
1158
1159 return fd;
1160 }
1161
1162 int
1163 open(const char *path, int flags, ...)
1164 {
1165 int (*op_open)(const char *, int, ...);
1166 bool isrump;
1167 va_list ap;
1168 enum pathtype pt;
1169 int fd;
1170
1171 DPRINTF(("open -> %s (%s)\n", path, whichpath(path)));
1172
1173 if ((pt = path_isrump(path)) != PATH_HOST) {
1174 if (pt == PATH_RUMP)
1175 path = path_host2rump(path);
1176 op_open = GETSYSCALL(rump, OPEN);
1177 isrump = true;
1178 } else {
1179 op_open = GETSYSCALL(host, OPEN);
1180 isrump = false;
1181 }
1182
1183 va_start(ap, flags);
1184 fd = op_open(path, flags, va_arg(ap, mode_t));
1185 va_end(ap);
1186
1187 if (isrump)
1188 fd = fd_rump2host(fd);
1189 else
1190 fd = fd_host2host(fd);
1191
1192 DPRINTF(("open <- %d (%s)\n", fd, whichfd(fd)));
1193 return fd;
1194 }
1195
1196 int
1197 chdir(const char *path)
1198 {
1199 int (*op_chdir)(const char *);
1200 enum pathtype pt;
1201 int rv;
1202
1203 if ((pt = path_isrump(path)) != PATH_HOST) {
1204 op_chdir = GETSYSCALL(rump, CHDIR);
1205 if (pt == PATH_RUMP)
1206 path = path_host2rump(path);
1207 } else {
1208 op_chdir = GETSYSCALL(host, CHDIR);
1209 }
1210
1211 rv = op_chdir(path);
1212 if (rv == 0)
1213 pwdinrump = pt != PATH_HOST;
1214
1215 return rv;
1216 }
1217
1218 int
1219 fchdir(int fd)
1220 {
1221 int (*op_fchdir)(int);
1222 bool isrump;
1223 int rv;
1224
1225 if (fd_isrump(fd)) {
1226 op_fchdir = GETSYSCALL(rump, FCHDIR);
1227 isrump = true;
1228 fd = fd_host2rump(fd);
1229 } else {
1230 op_fchdir = GETSYSCALL(host, FCHDIR);
1231 isrump = false;
1232 }
1233
1234 rv = op_fchdir(fd);
1235 if (rv == 0) {
1236 pwdinrump = isrump;
1237 }
1238
1239 return rv;
1240 }
1241
1242 #ifndef __linux__
1243 int
1244 __getcwd(char *bufp, size_t len)
1245 {
1246 int (*op___getcwd)(char *, size_t);
1247 size_t prefixgap;
1248 bool iamslash;
1249 int rv;
1250
1251 if (pwdinrump && rumpprefix) {
1252 if (rumpprefix[rumpprefixlen-1] == '/')
1253 iamslash = true;
1254 else
1255 iamslash = false;
1256
1257 if (iamslash)
1258 prefixgap = rumpprefixlen - 1; /* ``//+path'' */
1259 else
1260 prefixgap = rumpprefixlen; /* ``/pfx+/path'' */
1261 if (len <= prefixgap) {
1262 errno = ERANGE;
1263 return -1;
1264 }
1265
1266 op___getcwd = GETSYSCALL(rump, __GETCWD);
1267 rv = op___getcwd(bufp + prefixgap, len - prefixgap);
1268 if (rv == -1)
1269 return rv;
1270
1271 /* augment the "/" part only for a non-root path */
1272 memcpy(bufp, rumpprefix, rumpprefixlen);
1273
1274 /* append / only to non-root cwd */
1275 if (rv != 2)
1276 bufp[prefixgap] = '/';
1277
1278 /* don't append extra slash in the purely-slash case */
1279 if (rv == 2 && !iamslash)
1280 bufp[rumpprefixlen] = '\0';
1281 } else if (pwdinrump) {
1282 /* assume blanket. we can't provide a prefix here */
1283 op___getcwd = GETSYSCALL(rump, __GETCWD);
1284 rv = op___getcwd(bufp, len);
1285 } else {
1286 op___getcwd = GETSYSCALL(host, __GETCWD);
1287 rv = op___getcwd(bufp, len);
1288 }
1289
1290 return rv;
1291 }
1292 #endif
1293
1294 static int
1295 moveish(const char *from, const char *to,
1296 int (*rump_op)(const char *, const char *),
1297 int (*host_op)(const char *, const char *))
1298 {
1299 int (*op)(const char *, const char *);
1300 enum pathtype ptf, ptt;
1301
1302 if ((ptf = path_isrump(from)) != PATH_HOST) {
1303 if ((ptt = path_isrump(to)) == PATH_HOST) {
1304 errno = EXDEV;
1305 return -1;
1306 }
1307
1308 if (ptf == PATH_RUMP)
1309 from = path_host2rump(from);
1310 if (ptt == PATH_RUMP)
1311 to = path_host2rump(to);
1312 op = rump_op;
1313 } else {
1314 if (path_isrump(to) != PATH_HOST) {
1315 errno = EXDEV;
1316 return -1;
1317 }
1318
1319 op = host_op;
1320 }
1321
1322 return op(from, to);
1323 }
1324
1325 #ifdef __NetBSD__
1326 int
1327 linkat(int fromfd, const char *from, int tofd, const char *to, int flags)
1328 {
1329 if (fromfd != AT_FDCWD || tofd != AT_FDCWD
1330 || flags != AT_SYMLINK_FOLLOW)
1331 return ENOSYS;
1332
1333 return moveish(from, to,
1334 GETSYSCALL(rump, LINK), GETSYSCALL(host, LINK));
1335 }
1336 #endif
1337
1338 int
1339 link(const char *from, const char *to)
1340 {
1341 return moveish(from, to,
1342 GETSYSCALL(rump, LINK), GETSYSCALL(host, LINK));
1343 }
1344
1345 int
1346 rename(const char *from, const char *to)
1347 {
1348 return moveish(from, to,
1349 GETSYSCALL(rump, RENAME), GETSYSCALL(host, RENAME));
1350 }
1351
1352 int
1353 REALSOCKET(int domain, int type, int protocol)
1354 {
1355 int (*op_socket)(int, int, int);
1356 int fd;
1357 bool isrump;
1358
1359 isrump = domain < PF_MAX && rumpsockets[domain];
1360
1361 if (isrump)
1362 op_socket = GETSYSCALL(rump, SOCKET);
1363 else
1364 op_socket = GETSYSCALL(host, SOCKET);
1365 fd = op_socket(domain, type, protocol);
1366
1367 if (isrump)
1368 fd = fd_rump2host(fd);
1369 else
1370 fd = fd_host2host(fd);
1371 DPRINTF(("socket <- %d\n", fd));
1372
1373 return fd;
1374 }
1375
1376 int
1377 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
1378 {
1379 int (*op_accept)(int, struct sockaddr *, socklen_t *);
1380 int fd;
1381 bool isrump;
1382
1383 isrump = fd_isrump(s);
1384
1385 DPRINTF(("accept -> %d", s));
1386 if (isrump) {
1387 op_accept = GETSYSCALL(rump, ACCEPT);
1388 s = fd_host2rump(s);
1389 } else {
1390 op_accept = GETSYSCALL(host, ACCEPT);
1391 }
1392 fd = op_accept(s, addr, addrlen);
1393 if (fd != -1 && isrump)
1394 fd = fd_rump2host(fd);
1395 else
1396 fd = fd_host2host(fd);
1397
1398 DPRINTF((" <- %d\n", fd));
1399
1400 return fd;
1401 }
1402
1403 #ifndef __linux__
1404 int
1405 paccept(int s, struct sockaddr *addr, socklen_t *addrlen,
1406 const sigset_t * restrict sigmask, int flags)
1407 {
1408 int (*op_paccept)(int, struct sockaddr *, socklen_t *,
1409 const sigset_t * restrict, int);
1410 int fd;
1411 bool isrump;
1412
1413 isrump = fd_isrump(s);
1414
1415 DPRINTF(("paccept -> %d", s));
1416 if (isrump) {
1417 op_paccept = GETSYSCALL(rump, PACCEPT);
1418 s = fd_host2rump(s);
1419 } else {
1420 op_paccept = GETSYSCALL(host, PACCEPT);
1421 }
1422 fd = op_paccept(s, addr, addrlen, sigmask, flags);
1423 if (fd != -1 && isrump)
1424 fd = fd_rump2host(fd);
1425 else
1426 fd = fd_host2host(fd);
1427
1428 DPRINTF((" <- %d\n", fd));
1429
1430 return fd;
1431 }
1432 #endif
1433
1434 /*
1435 * ioctl() and fcntl() are varargs calls and need special treatment.
1436 */
1437
1438 /*
1439 * Various [Linux] libc's have various signatures for ioctl so we
1440 * need to handle the discrepancies. On NetBSD, we use the
1441 * one with unsigned long cmd.
1442 */
1443 int
1444 #ifdef HAVE_IOCTL_CMD_INT
1445 ioctl(int fd, int cmd, ...)
1446 {
1447 int (*op_ioctl)(int, int cmd, ...);
1448 #else
1449 ioctl(int fd, unsigned long cmd, ...)
1450 {
1451 int (*op_ioctl)(int, unsigned long cmd, ...);
1452 #endif
1453 va_list ap;
1454 int rv;
1455
1456 DPRINTF(("ioctl -> %d (%s)\n", fd, whichfd(fd)));
1457 if (fd_isrump(fd)) {
1458 fd = fd_host2rump(fd);
1459 op_ioctl = GETSYSCALL(rump, IOCTL);
1460 } else {
1461 op_ioctl = GETSYSCALL(host, IOCTL);
1462 }
1463
1464 va_start(ap, cmd);
1465 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
1466 va_end(ap);
1467 DPRINTF(("ioctl <- %d\n", rv));
1468 return rv;
1469 }
1470
1471 int
1472 fcntl(int fd, int cmd, ...)
1473 {
1474 int (*op_fcntl)(int, int, ...);
1475 va_list ap;
1476 int rv, minfd;
1477
1478 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
1479
1480 switch (cmd) {
1481 case F_DUPFD_CLOEXEC: /* Ignore CLOEXEC bit for now */
1482 case F_DUPFD:
1483 va_start(ap, cmd);
1484 minfd = va_arg(ap, int);
1485 va_end(ap);
1486 return dodup(fd, minfd);
1487
1488 #ifdef F_CLOSEM
1489 case F_CLOSEM: {
1490 int maxdup2, i;
1491
1492 /*
1493 * So, if fd < HIJACKOFF, we want to do a host closem.
1494 */
1495
1496 if (fd < hijack_fdoff) {
1497 int closemfd = fd;
1498
1499 if (rumpclient__closenotify(&closemfd,
1500 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
1501 return -1;
1502 op_fcntl = GETSYSCALL(host, FCNTL);
1503 rv = op_fcntl(closemfd, cmd);
1504 if (rv)
1505 return rv;
1506 }
1507
1508 /*
1509 * Additionally, we want to do a rump closem, but only
1510 * for the file descriptors not dup2'd.
1511 */
1512
1513 for (i = 0, maxdup2 = -1; i <= DUP2HIGH; i++) {
1514 if (dup2vec[i] & DUP2BIT) {
1515 int val;
1516
1517 val = dup2vec[i] & DUP2FDMASK;
1518 maxdup2 = MAX(val, maxdup2);
1519 }
1520 }
1521
1522 if (fd >= hijack_fdoff)
1523 fd -= hijack_fdoff;
1524 else
1525 fd = 0;
1526 fd = MAX(maxdup2+1, fd);
1527
1528 /* hmm, maybe we should close rump fd's not within dup2mask? */
1529 return rump_sys_fcntl(fd, F_CLOSEM);
1530 }
1531 #endif /* F_CLOSEM */
1532
1533 #ifdef F_MAXFD
1534 case F_MAXFD:
1535 /*
1536 * For maxfd, if there's a rump kernel fd, return
1537 * it hostified. Otherwise, return host's MAXFD
1538 * return value.
1539 */
1540 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
1541 /*
1542 * This might go a little wrong in case
1543 * of dup2 to [012], but I'm not sure if
1544 * there's a justification for tracking
1545 * that info. Consider e.g.
1546 * dup2(rumpfd, 2) followed by rump_sys_open()
1547 * returning 1. We should return 1+HIJACKOFF,
1548 * not 2+HIJACKOFF. However, if [01] is not
1549 * open, the correct return value is 2.
1550 */
1551 return fd_rump2host(fd);
1552 } else {
1553 op_fcntl = GETSYSCALL(host, FCNTL);
1554 return op_fcntl(fd, F_MAXFD);
1555 }
1556 /*NOTREACHED*/
1557 #endif /* F_MAXFD */
1558
1559 default:
1560 if (fd_isrump(fd)) {
1561 fd = fd_host2rump(fd);
1562 op_fcntl = GETSYSCALL(rump, FCNTL);
1563 } else {
1564 op_fcntl = GETSYSCALL(host, FCNTL);
1565 }
1566
1567 va_start(ap, cmd);
1568 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
1569 va_end(ap);
1570 return rv;
1571 }
1572 /*NOTREACHED*/
1573 }
1574
1575 int
1576 close(int fd)
1577 {
1578 int (*op_close)(int);
1579 int rv;
1580
1581 DPRINTF(("close -> %d\n", fd));
1582 if (fd_isrump(fd)) {
1583 bool undup2 = false;
1584 int ofd;
1585
1586 if (isdup2d(ofd = fd)) {
1587 undup2 = true;
1588 }
1589
1590 fd = fd_host2rump(fd);
1591 if (!undup2 && killdup2alias(fd)) {
1592 return 0;
1593 }
1594
1595 op_close = GETSYSCALL(rump, CLOSE);
1596 rv = op_close(fd);
1597 if (rv == 0 && undup2) {
1598 clrdup2(ofd);
1599 }
1600 } else {
1601 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
1602 return -1;
1603 op_close = GETSYSCALL(host, CLOSE);
1604 rv = op_close(fd);
1605 }
1606
1607 return rv;
1608 }
1609
1610 /*
1611 * write cannot issue a standard debug printf due to recursion
1612 */
1613 ssize_t
1614 write(int fd, const void *buf, size_t blen)
1615 {
1616 ssize_t (*op_write)(int, const void *, size_t);
1617
1618 if (fd_isrump(fd)) {
1619 fd = fd_host2rump(fd);
1620 op_write = GETSYSCALL(rump, WRITE);
1621 } else {
1622 op_write = GETSYSCALL(host, WRITE);
1623 }
1624
1625 return op_write(fd, buf, blen);
1626 }
1627
1628 /*
1629 * file descriptor passing
1630 *
1631 * we intercept sendmsg and recvmsg to convert file descriptors in
1632 * control messages. an attempt to send a descriptor from a different kernel
1633 * is rejected. (ENOTSUP)
1634 */
1635
1636 static int
1637 _msg_convert_fds(struct msghdr *msg, int (*func)(int), bool dryrun)
1638 {
1639 struct cmsghdr *cmsg;
1640
1641 for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
1642 cmsg = CMSG_NXTHDR(msg, cmsg)) {
1643 if (cmsg->cmsg_level == SOL_SOCKET &&
1644 cmsg->cmsg_type == SCM_RIGHTS) {
1645 int *fdp = (void *)CMSG_DATA(cmsg);
1646 const size_t size =
1647 cmsg->cmsg_len - __CMSG_ALIGN(sizeof(*cmsg));
1648 const int nfds = (int)(size / sizeof(int));
1649 const int * const efdp = fdp + nfds;
1650
1651 while (fdp < efdp) {
1652 const int newval = func(*fdp);
1653
1654 if (newval < 0) {
1655 return ENOTSUP;
1656 }
1657 if (!dryrun)
1658 *fdp = newval;
1659 fdp++;
1660 }
1661 }
1662 }
1663 return 0;
1664 }
1665
1666 static int
1667 msg_convert_fds(struct msghdr *msg, int (*func)(int))
1668 {
1669
1670 return _msg_convert_fds(msg, func, false);
1671 }
1672
1673 static int
1674 msg_check_fds(struct msghdr *msg, int (*func)(int))
1675 {
1676
1677 return _msg_convert_fds(msg, func, true);
1678 }
1679
1680 ssize_t
1681 recvmsg(int fd, struct msghdr *msg, int flags)
1682 {
1683 ssize_t (*op_recvmsg)(int, struct msghdr *, int);
1684 ssize_t ret;
1685 const bool isrump = fd_isrump(fd);
1686
1687 if (isrump) {
1688 fd = fd_host2rump(fd);
1689 op_recvmsg = GETSYSCALL(rump, RECVMSG);
1690 } else {
1691 op_recvmsg = GETSYSCALL(host, RECVMSG);
1692 }
1693 ret = op_recvmsg(fd, msg, flags);
1694 if (ret == -1) {
1695 return ret;
1696 }
1697 /*
1698 * convert descriptors in the message.
1699 */
1700 if (isrump) {
1701 msg_convert_fds(msg, fd_rump2host);
1702 } else {
1703 msg_convert_fds(msg, fd_host2host);
1704 }
1705 return ret;
1706 }
1707
1708 ssize_t
1709 recv(int fd, void *buf, size_t len, int flags)
1710 {
1711
1712 return recvfrom(fd, buf, len, flags, NULL, NULL);
1713 }
1714
1715 ssize_t
1716 send(int fd, const void *buf, size_t len, int flags)
1717 {
1718
1719 return sendto(fd, buf, len, flags, NULL, 0);
1720 }
1721
1722 static int
1723 fd_check_rump(int fd)
1724 {
1725
1726 return fd_isrump(fd) ? 0 : -1;
1727 }
1728
1729 static int
1730 fd_check_host(int fd)
1731 {
1732
1733 return !fd_isrump(fd) ? 0 : -1;
1734 }
1735
1736 ssize_t
1737 sendmsg(int fd, const struct msghdr *msg, int flags)
1738 {
1739 ssize_t (*op_sendmsg)(int, const struct msghdr *, int);
1740 const bool isrump = fd_isrump(fd);
1741 int error;
1742
1743 /*
1744 * reject descriptors from a different kernel.
1745 */
1746 error = msg_check_fds(__UNCONST(msg),
1747 isrump ? fd_check_rump: fd_check_host);
1748 if (error != 0) {
1749 errno = error;
1750 return -1;
1751 }
1752 /*
1753 * convert descriptors in the message to raw values.
1754 */
1755 if (isrump) {
1756 fd = fd_host2rump(fd);
1757 /*
1758 * XXX we directly modify the given message assuming:
1759 * - cmsg is writable (typically on caller's stack)
1760 * - caller don't care cmsg's contents after calling sendmsg.
1761 * (thus no need to restore values)
1762 *
1763 * it's safer to copy and modify instead.
1764 */
1765 msg_convert_fds(__UNCONST(msg), fd_host2rump);
1766 op_sendmsg = GETSYSCALL(rump, SENDMSG);
1767 } else {
1768 op_sendmsg = GETSYSCALL(host, SENDMSG);
1769 }
1770 return op_sendmsg(fd, msg, flags);
1771 }
1772
1773 /*
1774 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
1775 * many programs do that. dup2 of a rump kernel fd to another value
1776 * not >= fdoff is an error.
1777 *
1778 * Note: cannot rump2host newd, because it is often hardcoded.
1779 */
1780 int
1781 dup2(int oldd, int newd)
1782 {
1783 int (*host_dup2)(int, int);
1784 int rv;
1785
1786 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
1787
1788 if (fd_isrump(oldd)) {
1789 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
1790
1791 /* only allow fd 0-2 for cross-kernel dup */
1792 if (!(newd >= 0 && newd <= 2 && !fd_isrump(newd))) {
1793 errno = EBADF;
1794 return -1;
1795 }
1796
1797 /* regular dup2? */
1798 if (fd_isrump(newd)) {
1799 newd = fd_host2rump(newd);
1800 rv = rump_sys_dup2(oldd, newd);
1801 return fd_rump2host(rv);
1802 }
1803
1804 /*
1805 * dup2 rump => host? just establish an
1806 * entry in the mapping table.
1807 */
1808 op_close(newd);
1809 setdup2(newd, fd_host2rump(oldd));
1810 rv = 0;
1811 } else {
1812 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
1813 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
1814 return -1;
1815 rv = host_dup2(oldd, newd);
1816 }
1817
1818 return rv;
1819 }
1820
1821 int
1822 dup(int oldd)
1823 {
1824
1825 return dodup(oldd, 0);
1826 }
1827
1828 pid_t
1829 fork(void)
1830 {
1831 pid_t rv;
1832
1833 DPRINTF(("fork\n"));
1834
1835 rv = rumpclient__dofork(host_fork);
1836
1837 DPRINTF(("fork returns %d\n", rv));
1838 return rv;
1839 }
1840 #ifdef VFORK
1841 /* we do not have the luxury of not requiring a stackframe */
1842 #define __strong_alias_macro(m, f) __strong_alias(m, f)
1843 __strong_alias_macro(VFORK,fork);
1844 #endif
1845
1846 int
1847 daemon(int nochdir, int noclose)
1848 {
1849 struct rumpclient_fork *rf;
1850
1851 if ((rf = rumpclient_prefork()) == NULL)
1852 return -1;
1853
1854 if (host_daemon(nochdir, noclose) == -1)
1855 return -1;
1856
1857 if (rumpclient_fork_init(rf) == -1)
1858 return -1;
1859
1860 return 0;
1861 }
1862
1863 int
1864 execve(const char *path, char *const argv[], char *const envp[])
1865 {
1866 char buf[128];
1867 char *dup2str;
1868 const char *pwdinrumpstr;
1869 char **newenv;
1870 size_t nelem;
1871 int rv, sverrno;
1872 int bonus = 2, i = 0;
1873
1874 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2INFO=%u,%u,%u",
1875 dup2vec[0], dup2vec[1], dup2vec[2]);
1876 dup2str = strdup(buf);
1877 if (dup2str == NULL) {
1878 errno = ENOMEM;
1879 return -1;
1880 }
1881
1882 if (pwdinrump) {
1883 pwdinrumpstr = "RUMPHIJACK__PWDINRUMP=true";
1884 bonus++;
1885 } else {
1886 pwdinrumpstr = NULL;
1887 }
1888
1889 for (nelem = 0; envp && envp[nelem]; nelem++)
1890 continue;
1891 newenv = malloc(sizeof(*newenv) * (nelem+bonus));
1892 if (newenv == NULL) {
1893 free(dup2str);
1894 errno = ENOMEM;
1895 return -1;
1896 }
1897 memcpy(newenv, envp, nelem*sizeof(*newenv));
1898 newenv[nelem+i] = dup2str;
1899 i++;
1900
1901 if (pwdinrumpstr) {
1902 newenv[nelem+i] = __UNCONST(pwdinrumpstr);
1903 i++;
1904 }
1905 newenv[nelem+i] = NULL;
1906 _DIAGASSERT(i < bonus);
1907
1908 rv = rumpclient_exec(path, argv, newenv);
1909
1910 _DIAGASSERT(rv != 0);
1911 sverrno = errno;
1912 free(newenv);
1913 free(dup2str);
1914 errno = sverrno;
1915 return rv;
1916 }
1917
1918 /*
1919 * select is done by calling poll.
1920 */
1921 int
1922 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1923 struct timeval *timeout)
1924 {
1925 struct pollfd *pfds;
1926 struct timespec ts, *tsp = NULL;
1927 nfds_t realnfds;
1928 int i, j;
1929 int rv, incr;
1930
1931 DPRINTF(("select %d %p %p %p %p\n", nfds,
1932 readfds, writefds, exceptfds, timeout));
1933
1934 /*
1935 * Well, first we must scan the fds to figure out how many
1936 * fds there really are. This is because up to and including
1937 * nb5 poll() silently refuses nfds > process_maxopen_fds.
1938 * Seems to be fixed in current, thank the maker.
1939 * god damn cluster...bomb.
1940 */
1941
1942 for (i = 0, realnfds = 0; i < nfds; i++) {
1943 if (readfds && FD_ISSET(i, readfds)) {
1944 realnfds++;
1945 continue;
1946 }
1947 if (writefds && FD_ISSET(i, writefds)) {
1948 realnfds++;
1949 continue;
1950 }
1951 if (exceptfds && FD_ISSET(i, exceptfds)) {
1952 realnfds++;
1953 continue;
1954 }
1955 }
1956
1957 if (realnfds) {
1958 pfds = calloc(realnfds, sizeof(*pfds));
1959 if (!pfds)
1960 return -1;
1961 } else {
1962 pfds = NULL;
1963 }
1964
1965 for (i = 0, j = 0; i < nfds; i++) {
1966 incr = 0;
1967 if (readfds && FD_ISSET(i, readfds)) {
1968 pfds[j].fd = i;
1969 pfds[j].events |= POLLIN;
1970 incr=1;
1971 }
1972 if (writefds && FD_ISSET(i, writefds)) {
1973 pfds[j].fd = i;
1974 pfds[j].events |= POLLOUT;
1975 incr=1;
1976 }
1977 if (exceptfds && FD_ISSET(i, exceptfds)) {
1978 pfds[j].fd = i;
1979 pfds[j].events |= POLLHUP|POLLERR;
1980 incr=1;
1981 }
1982 if (incr)
1983 j++;
1984 }
1985 assert(j == (int)realnfds);
1986
1987 if (timeout) {
1988 TIMEVAL_TO_TIMESPEC(timeout, &ts);
1989 tsp = &ts;
1990 }
1991 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
1992 /*
1993 * "If select() returns with an error the descriptor sets
1994 * will be unmodified"
1995 */
1996 if (rv < 0)
1997 goto out;
1998
1999 /*
2000 * zero out results (can't use FD_ZERO for the
2001 * obvious select-me-not reason). whee.
2002 *
2003 * We do this here since some software ignores the return
2004 * value of select, and hence if the timeout expires, it may
2005 * assume all input descriptors have activity.
2006 */
2007 for (i = 0; i < nfds; i++) {
2008 if (readfds)
2009 FD_CLR(i, readfds);
2010 if (writefds)
2011 FD_CLR(i, writefds);
2012 if (exceptfds)
2013 FD_CLR(i, exceptfds);
2014 }
2015 if (rv == 0)
2016 goto out;
2017
2018 /*
2019 * We have >0 fds with activity. Harvest the results.
2020 */
2021 for (i = 0; i < (int)realnfds; i++) {
2022 if (readfds) {
2023 if (pfds[i].revents & POLLIN) {
2024 FD_SET(pfds[i].fd, readfds);
2025 }
2026 }
2027 if (writefds) {
2028 if (pfds[i].revents & POLLOUT) {
2029 FD_SET(pfds[i].fd, writefds);
2030 }
2031 }
2032 if (exceptfds) {
2033 if (pfds[i].revents & (POLLHUP|POLLERR)) {
2034 FD_SET(pfds[i].fd, exceptfds);
2035 }
2036 }
2037 }
2038
2039 out:
2040 free(pfds);
2041 return rv;
2042 }
2043
2044 static void
2045 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
2046 {
2047 nfds_t i;
2048
2049 for (i = 0; i < nfds; i++) {
2050 if (fds[i].fd == -1)
2051 continue;
2052
2053 if (fd_isrump(fds[i].fd))
2054 (*rumpcall)++;
2055 else
2056 (*hostcall)++;
2057 }
2058 }
2059
2060 static void
2061 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
2062 {
2063 nfds_t i;
2064
2065 for (i = 0; i < nfds; i++) {
2066 fds[i].fd = fdadj(fds[i].fd);
2067 }
2068 }
2069
2070 /*
2071 * poll is easy as long as the call comes in the fds only in one
2072 * kernel. otherwise its quite tricky...
2073 */
2074 struct pollarg {
2075 struct pollfd *pfds;
2076 nfds_t nfds;
2077 const struct timespec *ts;
2078 const sigset_t *sigmask;
2079 int pipefd;
2080 int errnum;
2081 };
2082
2083 static void *
2084 hostpoll(void *arg)
2085 {
2086 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
2087 const sigset_t *);
2088 struct pollarg *parg = arg;
2089 intptr_t rv;
2090
2091 op_pollts = GETSYSCALL(host, POLLTS);
2092 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
2093 if (rv == -1)
2094 parg->errnum = errno;
2095 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
2096
2097 return (void *)rv;
2098 }
2099
2100 int
2101 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
2102 const sigset_t *sigmask)
2103 {
2104 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
2105 const sigset_t *);
2106 int (*host_close)(int);
2107 int hostcall = 0, rumpcall = 0;
2108 pthread_t pt;
2109 nfds_t i;
2110 int rv;
2111
2112 DPRINTF(("poll %p %d %p %p\n", fds, (int)nfds, ts, sigmask));
2113 checkpoll(fds, nfds, &hostcall, &rumpcall);
2114
2115 if (hostcall && rumpcall) {
2116 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
2117 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
2118 struct pollarg parg;
2119 void *trv_val;
2120 int sverrno = 0, rv_rump, rv_host, errno_rump, errno_host;
2121
2122 /*
2123 * ok, this is where it gets tricky. We must support
2124 * this since it's a very common operation in certain
2125 * types of software (telnet, netcat, etc). We allocate
2126 * two vectors and run two poll commands in separate
2127 * threads. Whichever returns first "wins" and the
2128 * other kernel's fds won't show activity.
2129 */
2130 rv = -1;
2131
2132 /* allocate full vector for O(n) joining after call */
2133 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
2134 if (!pfd_host)
2135 goto out;
2136 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
2137 if (!pfd_rump) {
2138 goto out;
2139 }
2140
2141 /*
2142 * then, open two pipes, one for notifications
2143 * to each kernel.
2144 *
2145 * At least the rump pipe should probably be
2146 * cached, along with the helper threads. This
2147 * should give a microbenchmark improvement (haven't
2148 * experienced a macro-level problem yet, though).
2149 */
2150 if ((rv = rump_sys_pipe(rpipe)) == -1) {
2151 sverrno = errno;
2152 }
2153 if (rv == 0 && (rv = pipe(hpipe)) == -1) {
2154 sverrno = errno;
2155 }
2156
2157 /* split vectors (or signal errors) */
2158 for (i = 0; i < nfds; i++) {
2159 int fd;
2160
2161 fds[i].revents = 0;
2162 if (fds[i].fd == -1) {
2163 pfd_host[i].fd = -1;
2164 pfd_rump[i].fd = -1;
2165 } else if (fd_isrump(fds[i].fd)) {
2166 pfd_host[i].fd = -1;
2167 fd = fd_host2rump(fds[i].fd);
2168 if (fd == rpipe[0] || fd == rpipe[1]) {
2169 fds[i].revents = POLLNVAL;
2170 if (rv != -1)
2171 rv++;
2172 }
2173 pfd_rump[i].fd = fd;
2174 pfd_rump[i].events = fds[i].events;
2175 } else {
2176 pfd_rump[i].fd = -1;
2177 fd = fds[i].fd;
2178 if (fd == hpipe[0] || fd == hpipe[1]) {
2179 fds[i].revents = POLLNVAL;
2180 if (rv != -1)
2181 rv++;
2182 }
2183 pfd_host[i].fd = fd;
2184 pfd_host[i].events = fds[i].events;
2185 }
2186 pfd_rump[i].revents = pfd_host[i].revents = 0;
2187 }
2188 if (rv) {
2189 goto out;
2190 }
2191
2192 pfd_host[nfds].fd = hpipe[0];
2193 pfd_host[nfds].events = POLLIN;
2194 pfd_rump[nfds].fd = rpipe[0];
2195 pfd_rump[nfds].events = POLLIN;
2196
2197 /*
2198 * then, create a thread to do host part and meanwhile
2199 * do rump kernel part right here
2200 */
2201
2202 parg.pfds = pfd_host;
2203 parg.nfds = nfds+1;
2204 parg.ts = ts;
2205 parg.sigmask = sigmask;
2206 parg.pipefd = rpipe[1];
2207 pthread_create(&pt, NULL, hostpoll, &parg);
2208
2209 op_pollts = GETSYSCALL(rump, POLLTS);
2210 rv_rump = op_pollts(pfd_rump, nfds+1, ts, NULL);
2211 errno_rump = errno;
2212 write(hpipe[1], &rv, sizeof(rv));
2213 pthread_join(pt, &trv_val);
2214 rv_host = (int)(intptr_t)trv_val;
2215 errno_host = parg.errnum;
2216
2217 /* strip cross-thread notification from real results */
2218 if (rv_host > 0 && pfd_host[nfds].revents & POLLIN) {
2219 rv_host--;
2220 }
2221 if (rv_rump > 0 && pfd_rump[nfds].revents & POLLIN) {
2222 rv_rump--;
2223 }
2224
2225 /* then merge the results into what's reported to the caller */
2226 if (rv_rump > 0 || rv_host > 0) {
2227 /* SUCCESS */
2228
2229 rv = 0;
2230 if (rv_rump > 0) {
2231 for (i = 0; i < nfds; i++) {
2232 if (pfd_rump[i].fd != -1)
2233 fds[i].revents
2234 = pfd_rump[i].revents;
2235 }
2236 rv += rv_rump;
2237 }
2238 if (rv_host > 0) {
2239 for (i = 0; i < nfds; i++) {
2240 if (pfd_host[i].fd != -1)
2241 fds[i].revents
2242 = pfd_host[i].revents;
2243 }
2244 rv += rv_host;
2245 }
2246 assert(rv > 0);
2247 sverrno = 0;
2248 } else if (rv_rump == -1 || rv_host == -1) {
2249 /* ERROR */
2250
2251 /* just pick one kernel at "random" */
2252 rv = -1;
2253 if (rv_host == -1) {
2254 sverrno = errno_host;
2255 } else if (rv_rump == -1) {
2256 sverrno = errno_rump;
2257 }
2258 } else {
2259 /* TIMEOUT */
2260
2261 rv = 0;
2262 assert(rv_rump == 0 && rv_host == 0);
2263 }
2264
2265 out:
2266 host_close = GETSYSCALL(host, CLOSE);
2267 if (rpipe[0] != -1)
2268 rump_sys_close(rpipe[0]);
2269 if (rpipe[1] != -1)
2270 rump_sys_close(rpipe[1]);
2271 if (hpipe[0] != -1)
2272 host_close(hpipe[0]);
2273 if (hpipe[1] != -1)
2274 host_close(hpipe[1]);
2275 free(pfd_host);
2276 free(pfd_rump);
2277 errno = sverrno;
2278 } else {
2279 if (hostcall) {
2280 op_pollts = GETSYSCALL(host, POLLTS);
2281 } else {
2282 op_pollts = GETSYSCALL(rump, POLLTS);
2283 adjustpoll(fds, nfds, fd_host2rump);
2284 }
2285
2286 rv = op_pollts(fds, nfds, ts, sigmask);
2287 if (rumpcall)
2288 adjustpoll(fds, nfds, fd_rump2host_withdup);
2289 }
2290
2291 return rv;
2292 }
2293
2294 int
2295 poll(struct pollfd *fds, nfds_t nfds, int timeout)
2296 {
2297 struct timespec ts;
2298 struct timespec *tsp = NULL;
2299
2300 if (timeout != INFTIM) {
2301 ts.tv_sec = timeout / 1000;
2302 ts.tv_nsec = (timeout % 1000) * 1000*1000;
2303
2304 tsp = &ts;
2305 }
2306
2307 return REALPOLLTS(fds, nfds, tsp, NULL);
2308 }
2309
2310 #ifdef HAVE_KQUEUE
2311 int
2312 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
2313 struct kevent *eventlist, size_t nevents,
2314 const struct timespec *timeout)
2315 {
2316 int (*op_kevent)(int, const struct kevent *, size_t,
2317 struct kevent *, size_t, const struct timespec *);
2318 const struct kevent *ev;
2319 size_t i;
2320
2321 /*
2322 * Check that we don't attempt to kevent rump kernel fd's.
2323 * That needs similar treatment to select/poll, but is slightly
2324 * trickier since we need to manage to different kq descriptors.
2325 * (TODO, in case you're wondering).
2326 */
2327 for (i = 0; i < nchanges; i++) {
2328 ev = &changelist[i];
2329 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
2330 ev->filter == EVFILT_VNODE) {
2331 if (fd_isrump((int)ev->ident)) {
2332 errno = ENOTSUP;
2333 return -1;
2334 }
2335 }
2336 }
2337
2338 op_kevent = GETSYSCALL(host, KEVENT);
2339 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
2340 }
2341 #endif /* HAVE_KQUEUE */
2342
2343 /*
2344 * mmapping from a rump kernel is not supported, so disallow it.
2345 */
2346 void *
2347 mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)
2348 {
2349
2350 if (flags & MAP_FILE && fd_isrump(fd)) {
2351 errno = ENOSYS;
2352 return MAP_FAILED;
2353 }
2354 if (__predict_false(host_mmap == NULL)) {
2355 host_mmap = rumphijack_dlsym(RTLD_NEXT, "mmap");
2356 }
2357 return host_mmap(addr, len, prot, flags, fd, offset);
2358 }
2359
2360 #ifdef __NetBSD__
2361 /*
2362 * these go to one or the other on a per-process configuration
2363 */
2364 int __sysctl(const int *, unsigned int, void *, size_t *, const void *, size_t);
2365 int
2366 __sysctl(const int *name, unsigned int namelen, void *old, size_t *oldlenp,
2367 const void *new, size_t newlen)
2368 {
2369 int (*op___sysctl)(const int *, unsigned int, void *, size_t *,
2370 const void *, size_t);
2371
2372 if (rumpsysctl) {
2373 op___sysctl = GETSYSCALL(rump, __SYSCTL);
2374 } else {
2375 op___sysctl = GETSYSCALL(host, __SYSCTL);
2376 /* we haven't inited yet */
2377 if (__predict_false(op___sysctl == NULL)) {
2378 op___sysctl = rumphijack_dlsym(RTLD_NEXT, "__sysctl");
2379 }
2380 }
2381
2382 return op___sysctl(name, namelen, old, oldlenp, new, newlen);
2383 }
2384 int modctl(int, void *);
2385 int
2386 modctl(int operation, void *argp)
2387 {
2388 int (*op_modctl)(int operation, void *argp);
2389
2390 if (rumpmodctl) {
2391 op_modctl = GETSYSCALL(rump, MODCTL);
2392 } else {
2393 op_modctl = GETSYSCALL(host, MODCTL);
2394 }
2395
2396 return op_modctl(operation, argp);
2397 }
2398 #endif
2399
2400 /*
2401 * Rest are std type calls.
2402 */
2403
2404 #ifdef HAVE_UTIMENSAT
2405 ATCALL(int, utimensat, DUALCALL_UTIMENSAT, \
2406 (int fd, const char *path, const struct timespec t[2], int f), \
2407 (int, const char *, const struct timespec [2], int),
2408 (fd, path, t, f))
2409 #endif
2410
2411 FDCALL(int, bind, DUALCALL_BIND, \
2412 (int fd, const struct sockaddr *name, socklen_t namelen), \
2413 (int, const struct sockaddr *, socklen_t), \
2414 (fd, name, namelen))
2415
2416 FDCALL(int, connect, DUALCALL_CONNECT, \
2417 (int fd, const struct sockaddr *name, socklen_t namelen), \
2418 (int, const struct sockaddr *, socklen_t), \
2419 (fd, name, namelen))
2420
2421 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
2422 (int fd, struct sockaddr *name, socklen_t *namelen), \
2423 (int, struct sockaddr *, socklen_t *), \
2424 (fd, name, namelen))
2425
2426 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
2427 (int fd, struct sockaddr *name, socklen_t *namelen), \
2428 (int, struct sockaddr *, socklen_t *), \
2429 (fd, name, namelen))
2430
2431 FDCALL(int, listen, DUALCALL_LISTEN, \
2432 (int fd, int backlog), \
2433 (int, int), \
2434 (fd, backlog))
2435
2436 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
2437 (int fd, void *buf, size_t len, int flags, \
2438 struct sockaddr *from, socklen_t *fromlen), \
2439 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
2440 (fd, buf, len, flags, from, fromlen))
2441
2442 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
2443 (int fd, const void *buf, size_t len, int flags, \
2444 const struct sockaddr *to, socklen_t tolen), \
2445 (int, const void *, size_t, int, \
2446 const struct sockaddr *, socklen_t), \
2447 (fd, buf, len, flags, to, tolen))
2448
2449 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
2450 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
2451 (int, int, int, void *, socklen_t *), \
2452 (fd, level, optn, optval, optlen))
2453
2454 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
2455 (int fd, int level, int optn, \
2456 const void *optval, socklen_t optlen), \
2457 (int, int, int, const void *, socklen_t), \
2458 (fd, level, optn, optval, optlen))
2459
2460 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
2461 (int fd, int how), \
2462 (int, int), \
2463 (fd, how))
2464
2465 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
2466 (int fd, void *buf, size_t buflen), \
2467 (int, void *, size_t), \
2468 (fd, buf, buflen))
2469
2470 #ifdef __linux__
2471 ssize_t __read_chk(int, void *, size_t)
2472 __attribute__((alias("read")));
2473 #endif
2474
2475 FDCALL(ssize_t, readv, DUALCALL_READV, \
2476 (int fd, const struct iovec *iov, int iovcnt), \
2477 (int, const struct iovec *, int), \
2478 (fd, iov, iovcnt))
2479
2480 FDCALL(ssize_t, REALPREAD, DUALCALL_PREAD, \
2481 (int fd, void *buf, size_t nbytes, off_t offset), \
2482 (int, void *, size_t, off_t), \
2483 (fd, buf, nbytes, offset))
2484
2485 FDCALL(ssize_t, preadv, DUALCALL_PREADV, \
2486 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
2487 (int, const struct iovec *, int, off_t), \
2488 (fd, iov, iovcnt, offset))
2489
2490 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
2491 (int fd, const struct iovec *iov, int iovcnt), \
2492 (int, const struct iovec *, int), \
2493 (fd, iov, iovcnt))
2494
2495 FDCALL(ssize_t, REALPWRITE, DUALCALL_PWRITE, \
2496 (int fd, const void *buf, size_t nbytes, off_t offset), \
2497 (int, const void *, size_t, off_t), \
2498 (fd, buf, nbytes, offset))
2499
2500 FDCALL(ssize_t, pwritev, DUALCALL_PWRITEV, \
2501 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
2502 (int, const struct iovec *, int, off_t), \
2503 (fd, iov, iovcnt, offset))
2504
2505 #ifndef __linux__
2506 FDCALL(int, REALFSTAT, DUALCALL_FSTAT, \
2507 (int fd, struct stat *sb), \
2508 (int, struct stat *), \
2509 (fd, sb))
2510 #endif
2511
2512 #ifdef __NetBSD__
2513 FDCALL(int, REALFSTATVFS1, DUALCALL_FSTATVFS1, \
2514 (int fd, struct statvfs *buf, int flags), \
2515 (int, struct statvfs *, int), \
2516 (fd, buf, flags))
2517 #endif
2518
2519 FDCALL(off_t, lseek, DUALCALL_LSEEK, \
2520 (int fd, off_t offset, int whence), \
2521 (int, off_t, int), \
2522 (fd, offset, whence))
2523 #ifdef LSEEK_ALIAS
2524 __strong_alias(LSEEK_ALIAS,lseek);
2525 #endif
2526
2527 #ifndef __linux__
2528 FDCALL(int, REALGETDENTS, DUALCALL_GETDENTS, \
2529 (int fd, char *buf, size_t nbytes), \
2530 (int, char *, size_t), \
2531 (fd, buf, nbytes))
2532 #endif
2533
2534 FDCALL(int, fchown, DUALCALL_FCHOWN, \
2535 (int fd, uid_t owner, gid_t group), \
2536 (int, uid_t, gid_t), \
2537 (fd, owner, group))
2538
2539 FDCALL(int, fchmod, DUALCALL_FCHMOD, \
2540 (int fd, mode_t mode), \
2541 (int, mode_t), \
2542 (fd, mode))
2543
2544 FDCALL(int, ftruncate, DUALCALL_FTRUNCATE, \
2545 (int fd, off_t length), \
2546 (int, off_t), \
2547 (fd, length))
2548
2549 FDCALL(int, fsync, DUALCALL_FSYNC, \
2550 (int fd), \
2551 (int), \
2552 (fd))
2553
2554 #ifdef HAVE_FSYNC_RANGE
2555 FDCALL(int, fsync_range, DUALCALL_FSYNC_RANGE, \
2556 (int fd, int how, off_t start, off_t length), \
2557 (int, int, off_t, off_t), \
2558 (fd, how, start, length))
2559 #endif
2560
2561 FDCALL(int, futimes, DUALCALL_FUTIMES, \
2562 (int fd, const struct timeval *tv), \
2563 (int, const struct timeval *), \
2564 (fd, tv))
2565
2566 FDCALL(int, futimens, DUALCALL_FUTIMENS, \
2567 (int fd, const struct timespec *ts), \
2568 (int, const struct timespec *), \
2569 (fd, ts))
2570
2571 #ifdef HAVE_CHFLAGS
2572 FDCALL(int, fchflags, DUALCALL_FCHFLAGS, \
2573 (int fd, u_long flags), \
2574 (int, u_long), \
2575 (fd, flags))
2576 #endif
2577
2578 /*
2579 * path-based selectors
2580 */
2581
2582 #ifndef __linux__
2583 PATHCALL(int, REALSTAT, DUALCALL_STAT, \
2584 (const char *path, struct stat *sb), \
2585 (const char *, struct stat *), \
2586 (path, sb))
2587
2588 PATHCALL(int, REALLSTAT, DUALCALL_LSTAT, \
2589 (const char *path, struct stat *sb), \
2590 (const char *, struct stat *), \
2591 (path, sb))
2592 #endif
2593
2594 PATHCALL(int, chown, DUALCALL_CHOWN, \
2595 (const char *path, uid_t owner, gid_t group), \
2596 (const char *, uid_t, gid_t), \
2597 (path, owner, group))
2598
2599 PATHCALL(int, lchown, DUALCALL_LCHOWN, \
2600 (const char *path, uid_t owner, gid_t group), \
2601 (const char *, uid_t, gid_t), \
2602 (path, owner, group))
2603
2604 PATHCALL(int, chmod, DUALCALL_CHMOD, \
2605 (const char *path, mode_t mode), \
2606 (const char *, mode_t), \
2607 (path, mode))
2608
2609 PATHCALL(int, lchmod, DUALCALL_LCHMOD, \
2610 (const char *path, mode_t mode), \
2611 (const char *, mode_t), \
2612 (path, mode))
2613
2614 #ifdef __NetBSD__
2615 PATHCALL(int, REALSTATVFS1, DUALCALL_STATVFS1, \
2616 (const char *path, struct statvfs *buf, int flags), \
2617 (const char *, struct statvfs *, int), \
2618 (path, buf, flags))
2619 #endif
2620
2621 PATHCALL(int, unlink, DUALCALL_UNLINK, \
2622 (const char *path), \
2623 (const char *), \
2624 (path))
2625
2626 PATHCALL(int, symlink, DUALCALL_SYMLINK, \
2627 (const char *target, const char *path), \
2628 (const char *, const char *), \
2629 (target, path))
2630
2631 /*
2632 * readlink() can be called from malloc which can be called
2633 * from dlsym() during init
2634 */
2635 ssize_t
2636 readlink(const char *path, char *buf, size_t bufsiz)
2637 {
2638 int (*op_readlink)(const char *, char *, size_t);
2639 enum pathtype pt;
2640
2641 if ((pt = path_isrump(path)) != PATH_HOST) {
2642 op_readlink = GETSYSCALL(rump, READLINK);
2643 if (pt == PATH_RUMP)
2644 path = path_host2rump(path);
2645 } else {
2646 op_readlink = GETSYSCALL(host, READLINK);
2647 }
2648
2649 if (__predict_false(op_readlink == NULL)) {
2650 errno = ENOENT;
2651 return -1;
2652 }
2653
2654 return op_readlink(path, buf, bufsiz);
2655 }
2656
2657 PATHCALL(int, mkdir, DUALCALL_MKDIR, \
2658 (const char *path, mode_t mode), \
2659 (const char *, mode_t), \
2660 (path, mode))
2661
2662 PATHCALL(int, rmdir, DUALCALL_RMDIR, \
2663 (const char *path), \
2664 (const char *), \
2665 (path))
2666
2667 PATHCALL(int, utimes, DUALCALL_UTIMES, \
2668 (const char *path, const struct timeval *tv), \
2669 (const char *, const struct timeval *), \
2670 (path, tv))
2671
2672 PATHCALL(int, lutimes, DUALCALL_LUTIMES, \
2673 (const char *path, const struct timeval *tv), \
2674 (const char *, const struct timeval *), \
2675 (path, tv))
2676
2677 #ifdef HAVE_CHFLAGS
2678 PATHCALL(int, chflags, DUALCALL_CHFLAGS, \
2679 (const char *path, u_long flags), \
2680 (const char *, u_long), \
2681 (path, flags))
2682
2683 PATHCALL(int, lchflags, DUALCALL_LCHFLAGS, \
2684 (const char *path, u_long flags), \
2685 (const char *, u_long), \
2686 (path, flags))
2687 #endif /* HAVE_CHFLAGS */
2688
2689 PATHCALL(int, truncate, DUALCALL_TRUNCATE, \
2690 (const char *path, off_t length), \
2691 (const char *, off_t), \
2692 (path, length))
2693
2694 PATHCALL(int, access, DUALCALL_ACCESS, \
2695 (const char *path, int mode), \
2696 (const char *, int), \
2697 (path, mode))
2698
2699 #ifndef __linux__
2700 PATHCALL(int, REALMKNOD, DUALCALL_MKNOD, \
2701 (const char *path, mode_t mode, dev_t dev), \
2702 (const char *, mode_t, dev_t), \
2703 (path, mode, dev))
2704 #endif
2705
2706 /*
2707 * Note: with mount the decisive parameter is the mount
2708 * destination directory. This is because we don't really know
2709 * about the "source" directory in a generic call (and besides,
2710 * it might not even exist, cf. nfs).
2711 */
2712 #ifdef __NetBSD__
2713 PATHCALL(int, REALMOUNT, DUALCALL_MOUNT, \
2714 (const char *type, const char *path, int flags, \
2715 void *data, size_t dlen), \
2716 (const char *, const char *, int, void *, size_t), \
2717 (type, path, flags, data, dlen))
2718
2719 PATHCALL(int, unmount, DUALCALL_UNMOUNT, \
2720 (const char *path, int flags), \
2721 (const char *, int), \
2722 (path, flags))
2723 #endif /* __NetBSD__ */
2724
2725 #ifdef HAVE___QUOTACTL
2726 PATHCALL(int, __quotactl, DUALCALL_QUOTACTL, \
2727 (const char *path, struct quotactl_args *args), \
2728 (const char *, struct quotactl_args *), \
2729 (path, args))
2730 #endif /* HAVE___QUOTACTL */
2731
2732 #ifdef __NetBSD__
2733 PATHCALL(int, REALGETFH, DUALCALL_GETFH, \
2734 (const char *path, void *fhp, size_t *fh_size), \
2735 (const char *, void *, size_t *), \
2736 (path, fhp, fh_size))
2737 #endif
2738
2739 /*
2740 * These act different on a per-process vfs configuration
2741 */
2742
2743 #ifdef __NetBSD__
2744 VFSCALL(VFSBIT_GETVFSSTAT, int, REALGETVFSSTAT, DUALCALL_GETVFSSTAT, \
2745 (struct statvfs *buf, size_t buflen, int flags), \
2746 (struct statvfs *, size_t, int), \
2747 (buf, buflen, flags))
2748 #endif
2749
2750 #ifdef __NetBSD__
2751 VFSCALL(VFSBIT_FHCALLS, int, REALFHOPEN, DUALCALL_FHOPEN, \
2752 (const void *fhp, size_t fh_size, int flags), \
2753 (const char *, size_t, int), \
2754 (fhp, fh_size, flags))
2755
2756 VFSCALL(VFSBIT_FHCALLS, int, REALFHSTAT, DUALCALL_FHSTAT, \
2757 (const void *fhp, size_t fh_size, struct stat *sb), \
2758 (const char *, size_t, struct stat *), \
2759 (fhp, fh_size, sb))
2760
2761 VFSCALL(VFSBIT_FHCALLS, int, REALFHSTATVFS1, DUALCALL_FHSTATVFS1, \
2762 (const void *fhp, size_t fh_size, struct statvfs *sb, int flgs),\
2763 (const char *, size_t, struct statvfs *, int), \
2764 (fhp, fh_size, sb, flgs))
2765 #endif
2766
2767
2768 #ifdef __NetBSD__
2769
2770 /* finally, put nfssvc here. "keep the namespace clean" */
2771 #include <nfs/rpcv2.h>
2772 #include <nfs/nfs.h>
2773
2774 int
2775 nfssvc(int flags, void *argstructp)
2776 {
2777 int (*op_nfssvc)(int, void *);
2778
2779 if (vfsbits & VFSBIT_NFSSVC){
2780 struct nfsd_args *nfsdargs;
2781
2782 /* massage the socket descriptor if necessary */
2783 if (flags == NFSSVC_ADDSOCK) {
2784 nfsdargs = argstructp;
2785 nfsdargs->sock = fd_host2rump(nfsdargs->sock);
2786 }
2787 op_nfssvc = GETSYSCALL(rump, NFSSVC);
2788 } else
2789 op_nfssvc = GETSYSCALL(host, NFSSVC);
2790
2791 return op_nfssvc(flags, argstructp);
2792 }
2793 #endif /* __NetBSD__ */
2794