hijack.c revision 1.40 1 /* $NetBSD: hijack.c,v 1.40 2011/02/15 13:59:28 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __RCSID("$NetBSD: hijack.c,v 1.40 2011/02/15 13:59:28 pooka Exp $");
30
31 #define __ssp_weak_name(fun) _hijack_ ## fun
32
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/event.h>
36 #include <sys/ioctl.h>
37 #include <sys/socket.h>
38 #include <sys/poll.h>
39
40 #include <rump/rumpclient.h>
41 #include <rump/rump_syscalls.h>
42
43 #include <assert.h>
44 #include <dlfcn.h>
45 #include <err.h>
46 #include <errno.h>
47 #include <fcntl.h>
48 #include <poll.h>
49 #include <pthread.h>
50 #include <signal.h>
51 #include <stdarg.h>
52 #include <stdbool.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <time.h>
57 #include <unistd.h>
58
59 enum dualcall {
60 DUALCALL_WRITE, DUALCALL_WRITEV,
61 DUALCALL_IOCTL, DUALCALL_FCNTL,
62 DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
63 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
64 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
65 DUALCALL_SENDTO, DUALCALL_SENDMSG,
66 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
67 DUALCALL_SHUTDOWN,
68 DUALCALL_READ, DUALCALL_READV,
69 DUALCALL_DUP, DUALCALL_DUP2,
70 DUALCALL_CLOSE,
71 DUALCALL_POLLTS,
72 DUALCALL_KEVENT,
73 DUALCALL__NUM
74 };
75
76 #define RSYS_STRING(a) __STRING(a)
77 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
78
79 /*
80 * Would be nice to get this automatically in sync with libc.
81 * Also, this does not work for compat-using binaries!
82 */
83 #if !__NetBSD_Prereq__(5,99,7)
84 #define REALSELECT select
85 #define REALPOLLTS pollts
86 #define REALKEVENT kevent
87 #else
88 #define REALSELECT _sys___select50
89 #define REALPOLLTS _sys___pollts50
90 #define REALKEVENT _sys___kevent50
91 #endif
92 #define REALREAD _sys_read
93
94 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
95 int REALPOLLTS(struct pollfd *, nfds_t,
96 const struct timespec *, const sigset_t *);
97 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
98 const struct timespec *);
99 ssize_t REALREAD(int, void *, size_t);
100
101 #define S(a) __STRING(a)
102 struct sysnames {
103 enum dualcall scm_callnum;
104 const char *scm_hostname;
105 const char *scm_rumpname;
106 } syscnames[] = {
107 { DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
108 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
109 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
110 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
111 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
112 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
113 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
114 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
115 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
116 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
117 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
118 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
119 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
120 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
121 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
122 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
123 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
124 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
125 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
126 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
127 { DUALCALL_DUP, "dup", RSYS_NAME(DUP) },
128 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
129 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
130 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
131 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
132 };
133 #undef S
134
135 struct bothsys {
136 void *bs_host;
137 void *bs_rump;
138 } syscalls[DUALCALL__NUM];
139 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
140
141 pid_t (*host_fork)(void);
142 int (*host_daemon)(int, int);
143 int (*host_execve)(const char *, char *const[], char *const[]);
144
145 static uint32_t dup2mask;
146 #define ISDUP2D(fd) (((fd) < 32) && (1<<(fd) & dup2mask))
147 #define SETDUP2(fd) \
148 do { if ((fd) < 32) dup2mask |= (1<<(fd)); } while (/*CONSTCOND*/0)
149 #define CLRDUP2(fd) \
150 do { if ((fd) < 32) dup2mask &= ~(1<<(fd)); } while (/*CONSTCOND*/0)
151
152 //#define DEBUGJACK
153 #ifdef DEBUGJACK
154 #define DPRINTF(x) mydprintf x
155 static void
156 mydprintf(const char *fmt, ...)
157 {
158 va_list ap;
159
160 if (ISDUP2D(STDERR_FILENO))
161 return;
162
163 va_start(ap, fmt);
164 vfprintf(stderr, fmt, ap);
165 va_end(ap);
166 }
167
168 #else
169 #define DPRINTF(x)
170 #endif
171
172 #define FDCALL(type, name, rcname, args, proto, vars) \
173 type name args \
174 { \
175 type (*fun) proto; \
176 \
177 DPRINTF(("%s -> %d\n", __STRING(name), fd)); \
178 if (fd_isrump(fd)) { \
179 fun = syscalls[rcname].bs_rump; \
180 fd = fd_host2rump(fd); \
181 } else { \
182 fun = syscalls[rcname].bs_host; \
183 } \
184 \
185 return fun vars; \
186 }
187
188 /*
189 * This is called from librumpclient in case of LD_PRELOAD.
190 * It ensures correct RTLD_NEXT.
191 *
192 * ... except, it's apparently extremely difficult to force
193 * at least gcc to generate an actual stack frame here. So
194 * sprinkle some volatile foobar and baz to throw the optimizer
195 * off the scent and generate a variable assignment with the
196 * return value. The posterboy for this meltdown is amd64
197 * with -O2. At least with gcc 4.1.3 i386 works regardless of
198 * optimization.
199 */
200 volatile int rumphijack_unrope; /* there, unhang yourself */
201 static void *
202 hijackdlsym(void *handle, const char *symbol)
203 {
204 void *rv;
205
206 rv = dlsym(handle, symbol);
207 rumphijack_unrope = *(volatile int *)rv;
208
209 return (void *)rv;
210 }
211
212 /* low calorie sockets? */
213 static bool hostlocalsockets = true;
214
215 static void __attribute__((constructor))
216 rcinit(void)
217 {
218 char buf[64];
219 extern void *(*rumpclient_dlsym)(void *, const char *);
220 unsigned i, j;
221
222 rumpclient_dlsym = hijackdlsym;
223 host_fork = dlsym(RTLD_NEXT, "fork");
224 host_daemon = dlsym(RTLD_NEXT, "daemon");
225 host_execve = dlsym(RTLD_NEXT, "execve");
226
227 /*
228 * In theory cannot print anything during lookups because
229 * we might not have the call vector set up. so, the errx()
230 * is a bit of a strech, but it might work.
231 */
232
233 for (i = 0; i < DUALCALL__NUM; i++) {
234 /* build runtime O(1) access */
235 for (j = 0; j < __arraycount(syscnames); j++) {
236 if (syscnames[j].scm_callnum == i)
237 break;
238 }
239
240 if (j == __arraycount(syscnames))
241 errx(1, "rumphijack error: syscall pos %d missing", i);
242
243 syscalls[i].bs_host = dlsym(RTLD_NEXT,
244 syscnames[j].scm_hostname);
245 if (syscalls[i].bs_host == NULL)
246 errx(1, "hostcall %s not found missing",
247 syscnames[j].scm_hostname);
248
249 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
250 syscnames[j].scm_rumpname);
251 if (syscalls[i].bs_rump == NULL)
252 errx(1, "rumpcall %s not found missing",
253 syscnames[j].scm_rumpname);
254 }
255
256 if (rumpclient_init() == -1)
257 err(1, "rumpclient init");
258
259 /* set client persistence level */
260 if (getenv_r("RUMPHIJACK_RETRY", buf, sizeof(buf)) == -1) {
261 if (errno == ERANGE)
262 err(1, "invalid RUMPHIJACK_RETRY");
263 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
264 } else {
265 if (strcmp(buf, "die") == 0)
266 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
267 else if (strcmp(buf, "inftime") == 0)
268 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
269 else if (strcmp(buf, "once") == 0)
270 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
271 else {
272 time_t timeout;
273
274 timeout = (time_t)strtoll(buf, NULL, 10);
275 if (timeout <= 0)
276 errx(1, "RUMPHIJACK_RETRY must be keyword "
277 "or a positive integer, got: %s", buf);
278
279 rumpclient_setconnretry(timeout);
280 }
281 }
282
283 if (getenv_r("RUMPHIJACK__DUP2MASK", buf, sizeof(buf)) == 0) {
284 dup2mask = strtoul(buf, NULL, 10);
285 }
286 }
287
288 /* XXX: need runtime selection. low for now due to FD_SETSIZE */
289 #define HIJACK_FDOFF 128
290 static int
291 fd_rump2host(int fd)
292 {
293
294 if (fd == -1)
295 return fd;
296
297 if (!ISDUP2D(fd))
298 fd += HIJACK_FDOFF;
299
300 return fd;
301 }
302
303 static int
304 fd_host2rump(int fd)
305 {
306
307 if (!ISDUP2D(fd))
308 fd -= HIJACK_FDOFF;
309 return fd;
310 }
311
312 static bool
313 fd_isrump(int fd)
314 {
315
316 return ISDUP2D(fd) || fd >= HIJACK_FDOFF;
317 }
318
319 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= HIJACK_FDOFF)
320
321 static int
322 dodup(int oldd, int minfd)
323 {
324 int (*op_fcntl)(int, int, ...);
325 int newd;
326 int isrump;
327
328 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
329 if (fd_isrump(oldd)) {
330 op_fcntl = GETSYSCALL(rump, FCNTL);
331 oldd = fd_host2rump(oldd);
332 isrump = 1;
333 } else {
334 op_fcntl = GETSYSCALL(host, FCNTL);
335 isrump = 0;
336 }
337
338 newd = op_fcntl(oldd, F_DUPFD, minfd);
339
340 if (isrump)
341 newd = fd_rump2host(newd);
342 DPRINTF(("dup <- %d\n", newd));
343
344 return newd;
345 }
346
347 int __socket30(int, int, int);
348 int
349 __socket30(int domain, int type, int protocol)
350 {
351 int (*op_socket)(int, int, int);
352 int fd;
353 bool dohost;
354
355 dohost = hostlocalsockets && (domain == AF_LOCAL);
356
357 if (dohost)
358 op_socket = GETSYSCALL(host, SOCKET);
359 else
360 op_socket = GETSYSCALL(rump, SOCKET);
361 fd = op_socket(domain, type, protocol);
362
363 if (!dohost)
364 fd = fd_rump2host(fd);
365 DPRINTF(("socket <- %d\n", fd));
366
367 return fd;
368 }
369
370 int
371 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
372 {
373 int (*op_accept)(int, struct sockaddr *, socklen_t *);
374 int fd;
375 bool isrump;
376
377 isrump = fd_isrump(s);
378
379 DPRINTF(("accept -> %d", s));
380 if (isrump) {
381 op_accept = GETSYSCALL(rump, ACCEPT);
382 s = fd_host2rump(s);
383 } else {
384 op_accept = GETSYSCALL(host, ACCEPT);
385 }
386 fd = op_accept(s, addr, addrlen);
387 if (fd != -1 && isrump)
388 fd = fd_rump2host(fd);
389
390 DPRINTF((" <- %d\n", fd));
391
392 return fd;
393 }
394
395 /*
396 * ioctl and fcntl are varargs calls and need special treatment
397 */
398 int
399 ioctl(int fd, unsigned long cmd, ...)
400 {
401 int (*op_ioctl)(int, unsigned long cmd, ...);
402 va_list ap;
403 int rv;
404
405 DPRINTF(("ioctl -> %d\n", fd));
406 if (fd_isrump(fd)) {
407 fd = fd_host2rump(fd);
408 op_ioctl = GETSYSCALL(rump, IOCTL);
409 } else {
410 op_ioctl = GETSYSCALL(host, IOCTL);
411 }
412
413 va_start(ap, cmd);
414 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
415 va_end(ap);
416 return rv;
417 }
418
419 #include <syslog.h>
420 int
421 fcntl(int fd, int cmd, ...)
422 {
423 int (*op_fcntl)(int, int, ...);
424 va_list ap;
425 int rv, minfd, i;
426
427 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
428
429 switch (cmd) {
430 case F_DUPFD:
431 va_start(ap, cmd);
432 minfd = va_arg(ap, int);
433 va_end(ap);
434 return dodup(fd, minfd);
435
436 case F_CLOSEM:
437 /*
438 * So, if fd < HIJACKOFF, we want to do a host closem.
439 */
440
441 if (fd < HIJACK_FDOFF) {
442 int closemfd = fd;
443
444 if (rumpclient__closenotify(&closemfd,
445 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
446 return -1;
447 op_fcntl = GETSYSCALL(host, FCNTL);
448 rv = op_fcntl(closemfd, cmd);
449 if (rv)
450 return rv;
451 }
452
453 /*
454 * Additionally, we want to do a rump closem, but only
455 * for the file descriptors not within the dup2mask.
456 */
457
458 /* why don't we offer fls()? */
459 for (i = 31; i >= 0; i--) {
460 if (dup2mask & 1<<i)
461 break;
462 }
463
464 if (fd >= HIJACK_FDOFF)
465 fd -= HIJACK_FDOFF;
466 else
467 fd = 0;
468 fd = MAX(i+1, fd);
469
470 /* hmm, maybe we should close rump fd's not within dup2mask? */
471
472 return rump_sys_fcntl(fd, F_CLOSEM);
473
474 case F_MAXFD:
475 /*
476 * For maxfd, if there's a rump kernel fd, return
477 * it hostified. Otherwise, return host's MAXFD
478 * return value.
479 */
480 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
481 /*
482 * This might go a little wrong in case
483 * of dup2 to [012], but I'm not sure if
484 * there's a justification for tracking
485 * that info. Consider e.g.
486 * dup2(rumpfd, 2) followed by rump_sys_open()
487 * returning 1. We should return 1+HIJACKOFF,
488 * not 2+HIJACKOFF. However, if [01] is not
489 * open, the correct return value is 2.
490 */
491 return fd_rump2host(fd);
492 } else {
493 op_fcntl = GETSYSCALL(host, FCNTL);
494 return op_fcntl(fd, F_MAXFD);
495 }
496 /*NOTREACHED*/
497
498 default:
499 if (fd_isrump(fd)) {
500 fd = fd_host2rump(fd);
501 op_fcntl = GETSYSCALL(rump, FCNTL);
502 } else {
503 op_fcntl = GETSYSCALL(host, FCNTL);
504 }
505
506 va_start(ap, cmd);
507 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
508 va_end(ap);
509 return rv;
510 }
511 /*NOTREACHED*/
512 }
513
514 int
515 close(int fd)
516 {
517 int (*op_close)(int);
518 int rv;
519
520 DPRINTF(("close -> %d\n", fd));
521 if (fd_isrump(fd)) {
522 int undup2 = 0;
523
524 if (ISDUP2D(fd))
525 undup2 = 1;
526 fd = fd_host2rump(fd);
527 op_close = GETSYSCALL(rump, CLOSE);
528 rv = op_close(fd);
529 if (rv == 0 && undup2)
530 CLRDUP2(fd);
531 } else {
532 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
533 return -1;
534 op_close = GETSYSCALL(host, CLOSE);
535 rv = op_close(fd);
536 }
537
538 return rv;
539 }
540
541 /*
542 * write cannot issue a standard debug printf due to recursion
543 */
544 ssize_t
545 write(int fd, const void *buf, size_t blen)
546 {
547 ssize_t (*op_write)(int, const void *, size_t);
548
549 if (fd_isrump(fd)) {
550 fd = fd_host2rump(fd);
551 op_write = GETSYSCALL(rump, WRITE);
552 } else {
553 op_write = GETSYSCALL(host, WRITE);
554 }
555
556 return op_write(fd, buf, blen);
557 }
558
559 /*
560 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
561 * many programs do that. dup2 of a rump kernel fd to another value
562 * not >= fdoff is an error.
563 *
564 * Note: cannot rump2host newd, because it is often hardcoded.
565 */
566 int
567 dup2(int oldd, int newd)
568 {
569 int (*host_dup2)(int, int);
570 int rv;
571
572 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
573
574 if (fd_isrump(oldd)) {
575 if (!(newd >= 0 && newd <= 2))
576 return EBADF;
577 oldd = fd_host2rump(oldd);
578 rv = rump_sys_dup2(oldd, newd);
579 if (rv != -1)
580 SETDUP2(newd);
581 } else {
582 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
583 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
584 return -1;
585 rv = host_dup2(oldd, newd);
586 }
587
588 return rv;
589 }
590
591 int
592 dup(int oldd)
593 {
594
595 return dodup(oldd, 0);
596 }
597
598 /*
599 * We just wrap fork the appropriate rump client calls to preserve
600 * the file descriptors of the forked parent in the child, but
601 * prevent double use of connection fd.
602 */
603 pid_t
604 fork()
605 {
606 struct rumpclient_fork *rf;
607 pid_t rv;
608
609 DPRINTF(("fork\n"));
610
611 if ((rf = rumpclient_prefork()) == NULL)
612 return -1;
613
614 switch ((rv = host_fork())) {
615 case -1:
616 /* XXX: cancel rf */
617 break;
618 case 0:
619 if (rumpclient_fork_init(rf) == -1)
620 rv = -1;
621 break;
622 default:
623 break;
624 }
625
626 DPRINTF(("fork returns %d\n", rv));
627 return rv;
628 }
629
630 int
631 daemon(int nochdir, int noclose)
632 {
633 struct rumpclient_fork *rf;
634
635 if ((rf = rumpclient_prefork()) == NULL)
636 return -1;
637
638 if (host_daemon(nochdir, noclose) == -1)
639 return -1;
640
641 if (rumpclient_fork_init(rf) == -1)
642 return -1;
643
644 return 0;
645 }
646
647 int
648 execve(const char *path, char *const argv[], char *const oenvp[])
649 {
650 char buf[128];
651 char **env;
652 char *dup2maskenv[2];
653 char *dup2str;
654 int rv;
655
656 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2MASK=%u", dup2mask);
657 dup2str = malloc(strlen(buf)+1);
658 if (dup2str == NULL)
659 return ENOMEM;
660 strcpy(dup2str, buf);
661 dup2maskenv[0] = dup2str;
662 dup2maskenv[1] = NULL;
663
664 rv = rumpclient__exec_augmentenv(oenvp, dup2maskenv, &env);
665 if (rv)
666 return rv;
667
668 rv = host_execve(path, argv, env);
669 if (rv != 0) {
670 free(dup2str);
671 free(env); /* XXX missing some strings within env */
672 }
673 return rv;
674 }
675
676 /*
677 * select is done by calling poll.
678 */
679 int
680 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
681 struct timeval *timeout)
682 {
683 struct pollfd *pfds;
684 struct timespec ts, *tsp = NULL;
685 nfds_t realnfds;
686 int i, j;
687 int rv, incr;
688
689 DPRINTF(("select\n"));
690
691 /*
692 * Well, first we must scan the fds to figure out how many
693 * fds there really are. This is because up to and including
694 * nb5 poll() silently refuses nfds > process_maxopen_fds.
695 * Seems to be fixed in current, thank the maker.
696 * god damn cluster...bomb.
697 */
698
699 for (i = 0, realnfds = 0; i < nfds; i++) {
700 if (readfds && FD_ISSET(i, readfds)) {
701 realnfds++;
702 continue;
703 }
704 if (writefds && FD_ISSET(i, writefds)) {
705 realnfds++;
706 continue;
707 }
708 if (exceptfds && FD_ISSET(i, exceptfds)) {
709 realnfds++;
710 continue;
711 }
712 }
713
714 if (realnfds) {
715 pfds = calloc(realnfds, sizeof(*pfds));
716 if (!pfds)
717 return -1;
718 } else {
719 pfds = NULL;
720 }
721
722 for (i = 0, j = 0; i < nfds; i++) {
723 incr = 0;
724 if (readfds && FD_ISSET(i, readfds)) {
725 pfds[j].fd = i;
726 pfds[j].events |= POLLIN;
727 incr=1;
728 }
729 if (writefds && FD_ISSET(i, writefds)) {
730 pfds[j].fd = i;
731 pfds[j].events |= POLLOUT;
732 incr=1;
733 }
734 if (exceptfds && FD_ISSET(i, exceptfds)) {
735 pfds[j].fd = i;
736 pfds[j].events |= POLLHUP|POLLERR;
737 incr=1;
738 }
739 if (incr)
740 j++;
741 }
742 assert(j == (int)realnfds);
743
744 if (timeout) {
745 TIMEVAL_TO_TIMESPEC(timeout, &ts);
746 tsp = &ts;
747 }
748 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
749 /*
750 * "If select() returns with an error the descriptor sets
751 * will be unmodified"
752 */
753 if (rv < 0)
754 goto out;
755
756 /*
757 * zero out results (can't use FD_ZERO for the
758 * obvious select-me-not reason). whee.
759 *
760 * We do this here since some software ignores the return
761 * value of select, and hence if the timeout expires, it may
762 * assume all input descriptors have activity.
763 */
764 for (i = 0; i < nfds; i++) {
765 if (readfds)
766 FD_CLR(i, readfds);
767 if (writefds)
768 FD_CLR(i, writefds);
769 if (exceptfds)
770 FD_CLR(i, exceptfds);
771 }
772 if (rv == 0)
773 goto out;
774
775 /*
776 * We have >0 fds with activity. Harvest the results.
777 */
778 for (i = 0; i < (int)realnfds; i++) {
779 if (readfds) {
780 if (pfds[i].revents & POLLIN) {
781 FD_SET(pfds[i].fd, readfds);
782 }
783 }
784 if (writefds) {
785 if (pfds[i].revents & POLLOUT) {
786 FD_SET(pfds[i].fd, writefds);
787 }
788 }
789 if (exceptfds) {
790 if (pfds[i].revents & (POLLHUP|POLLERR)) {
791 FD_SET(pfds[i].fd, exceptfds);
792 }
793 }
794 }
795
796 out:
797 free(pfds);
798 return rv;
799 }
800
801 static void
802 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
803 {
804 nfds_t i;
805
806 for (i = 0; i < nfds; i++) {
807 if (fds[i].fd == -1)
808 continue;
809
810 if (fd_isrump(fds[i].fd))
811 (*rumpcall)++;
812 else
813 (*hostcall)++;
814 }
815 }
816
817 static void
818 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
819 {
820 nfds_t i;
821
822 for (i = 0; i < nfds; i++) {
823 fds[i].fd = fdadj(fds[i].fd);
824 }
825 }
826
827 /*
828 * poll is easy as long as the call comes in the fds only in one
829 * kernel. otherwise its quite tricky...
830 */
831 struct pollarg {
832 struct pollfd *pfds;
833 nfds_t nfds;
834 const struct timespec *ts;
835 const sigset_t *sigmask;
836 int pipefd;
837 int errnum;
838 };
839
840 static void *
841 hostpoll(void *arg)
842 {
843 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
844 const sigset_t *);
845 struct pollarg *parg = arg;
846 intptr_t rv;
847
848 op_pollts = GETSYSCALL(host, POLLTS);
849 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
850 if (rv == -1)
851 parg->errnum = errno;
852 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
853
854 return (void *)(intptr_t)rv;
855 }
856
857 int
858 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
859 const sigset_t *sigmask)
860 {
861 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
862 const sigset_t *);
863 int (*host_close)(int);
864 int hostcall = 0, rumpcall = 0;
865 pthread_t pt;
866 nfds_t i;
867 int rv;
868
869 DPRINTF(("poll\n"));
870 checkpoll(fds, nfds, &hostcall, &rumpcall);
871
872 if (hostcall && rumpcall) {
873 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
874 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
875 struct pollarg parg;
876 uintptr_t lrv;
877 int sverrno = 0, trv;
878
879 /*
880 * ok, this is where it gets tricky. We must support
881 * this since it's a very common operation in certain
882 * types of software (telnet, netcat, etc). We allocate
883 * two vectors and run two poll commands in separate
884 * threads. Whichever returns first "wins" and the
885 * other kernel's fds won't show activity.
886 */
887 rv = -1;
888
889 /* allocate full vector for O(n) joining after call */
890 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
891 if (!pfd_host)
892 goto out;
893 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
894 if (!pfd_rump) {
895 goto out;
896 }
897
898 /* split vectors */
899 for (i = 0; i < nfds; i++) {
900 if (fds[i].fd == -1) {
901 pfd_host[i].fd = -1;
902 pfd_rump[i].fd = -1;
903 } else if (fd_isrump(fds[i].fd)) {
904 pfd_host[i].fd = -1;
905 pfd_rump[i].fd = fd_host2rump(fds[i].fd);
906 pfd_rump[i].events = fds[i].events;
907 } else {
908 pfd_rump[i].fd = -1;
909 pfd_host[i].fd = fds[i].fd;
910 pfd_host[i].events = fds[i].events;
911 }
912 pfd_rump[i].revents = pfd_host[i].revents = 0;
913 fds[i].revents = 0;
914 }
915
916 /*
917 * then, open two pipes, one for notifications
918 * to each kernel.
919 */
920 if (rump_sys_pipe(rpipe) == -1)
921 goto out;
922 if (pipe(hpipe) == -1)
923 goto out;
924
925 pfd_host[nfds].fd = hpipe[0];
926 pfd_host[nfds].events = POLLIN;
927 pfd_rump[nfds].fd = rpipe[0];
928 pfd_rump[nfds].events = POLLIN;
929
930 /*
931 * then, create a thread to do host part and meanwhile
932 * do rump kernel part right here
933 */
934
935 parg.pfds = pfd_host;
936 parg.nfds = nfds+1;
937 parg.ts = ts;
938 parg.sigmask = sigmask;
939 parg.pipefd = rpipe[1];
940 pthread_create(&pt, NULL, hostpoll, &parg);
941
942 op_pollts = GETSYSCALL(rump, POLLTS);
943 lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
944 sverrno = errno;
945 write(hpipe[1], &rv, sizeof(rv));
946 pthread_join(pt, (void *)&trv);
947
948 /* check who "won" and merge results */
949 if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
950 rv = trv;
951
952 for (i = 0; i < nfds; i++) {
953 if (pfd_rump[i].fd != -1)
954 fds[i].revents = pfd_rump[i].revents;
955 }
956 sverrno = parg.errnum;
957 } else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
958 rv = trv;
959
960 for (i = 0; i < nfds; i++) {
961 if (pfd_host[i].fd != -1)
962 fds[i].revents = pfd_host[i].revents;
963 }
964 } else {
965 rv = 0;
966 }
967
968 out:
969 host_close = GETSYSCALL(host, CLOSE);
970 if (rpipe[0] != -1)
971 rump_sys_close(rpipe[0]);
972 if (rpipe[1] != -1)
973 rump_sys_close(rpipe[1]);
974 if (hpipe[0] != -1)
975 host_close(hpipe[0]);
976 if (hpipe[1] != -1)
977 host_close(hpipe[1]);
978 free(pfd_host);
979 free(pfd_rump);
980 errno = sverrno;
981 } else {
982 if (hostcall) {
983 op_pollts = GETSYSCALL(host, POLLTS);
984 } else {
985 op_pollts = GETSYSCALL(rump, POLLTS);
986 adjustpoll(fds, nfds, fd_host2rump);
987 }
988
989 rv = op_pollts(fds, nfds, ts, sigmask);
990 if (rumpcall)
991 adjustpoll(fds, nfds, fd_rump2host);
992 }
993
994 return rv;
995 }
996
997 int
998 poll(struct pollfd *fds, nfds_t nfds, int timeout)
999 {
1000 struct timespec ts;
1001 struct timespec *tsp = NULL;
1002
1003 if (timeout != INFTIM) {
1004 ts.tv_sec = timeout / 1000;
1005 ts.tv_nsec = (timeout % 1000) * 1000*1000;
1006
1007 tsp = &ts;
1008 }
1009
1010 return REALPOLLTS(fds, nfds, tsp, NULL);
1011 }
1012
1013 int
1014 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
1015 struct kevent *eventlist, size_t nevents,
1016 const struct timespec *timeout)
1017 {
1018 int (*op_kevent)(int, const struct kevent *, size_t,
1019 struct kevent *, size_t, const struct timespec *);
1020 const struct kevent *ev;
1021 size_t i;
1022
1023 /*
1024 * Check that we don't attempt to kevent rump kernel fd's.
1025 * That needs similar treatment to select/poll, but is slightly
1026 * trickier since we need to manage to different kq descriptors.
1027 * (TODO, in case you're wondering).
1028 */
1029 for (i = 0; i < nchanges; i++) {
1030 ev = &changelist[i];
1031 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
1032 ev->filter == EVFILT_VNODE) {
1033 if (fd_isrump((int)ev->ident))
1034 return ENOTSUP;
1035 }
1036 }
1037
1038 op_kevent = GETSYSCALL(host, KEVENT);
1039 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
1040 }
1041
1042 /*
1043 * Rest are std type calls.
1044 */
1045
1046 FDCALL(int, bind, DUALCALL_BIND, \
1047 (int fd, const struct sockaddr *name, socklen_t namelen), \
1048 (int, const struct sockaddr *, socklen_t), \
1049 (fd, name, namelen))
1050
1051 FDCALL(int, connect, DUALCALL_CONNECT, \
1052 (int fd, const struct sockaddr *name, socklen_t namelen), \
1053 (int, const struct sockaddr *, socklen_t), \
1054 (fd, name, namelen))
1055
1056 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
1057 (int fd, struct sockaddr *name, socklen_t *namelen), \
1058 (int, struct sockaddr *, socklen_t *), \
1059 (fd, name, namelen))
1060
1061 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
1062 (int fd, struct sockaddr *name, socklen_t *namelen), \
1063 (int, struct sockaddr *, socklen_t *), \
1064 (fd, name, namelen))
1065
1066 FDCALL(int, listen, DUALCALL_LISTEN, \
1067 (int fd, int backlog), \
1068 (int, int), \
1069 (fd, backlog))
1070
1071 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
1072 (int fd, void *buf, size_t len, int flags, \
1073 struct sockaddr *from, socklen_t *fromlen), \
1074 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
1075 (fd, buf, len, flags, from, fromlen))
1076
1077 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
1078 (int fd, const void *buf, size_t len, int flags, \
1079 const struct sockaddr *to, socklen_t tolen), \
1080 (int, const void *, size_t, int, \
1081 const struct sockaddr *, socklen_t), \
1082 (fd, buf, len, flags, to, tolen))
1083
1084 FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
1085 (int fd, struct msghdr *msg, int flags), \
1086 (int, struct msghdr *, int), \
1087 (fd, msg, flags))
1088
1089 FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
1090 (int fd, const struct msghdr *msg, int flags), \
1091 (int, const struct msghdr *, int), \
1092 (fd, msg, flags))
1093
1094 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
1095 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
1096 (int, int, int, void *, socklen_t *), \
1097 (fd, level, optn, optval, optlen))
1098
1099 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
1100 (int fd, int level, int optn, \
1101 const void *optval, socklen_t optlen), \
1102 (int, int, int, const void *, socklen_t), \
1103 (fd, level, optn, optval, optlen))
1104
1105 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
1106 (int fd, int how), \
1107 (int, int), \
1108 (fd, how))
1109
1110 #if _FORTIFY_SOURCE > 0
1111 #define STUB(fun) __ssp_weak_name(fun)
1112 ssize_t _sys_readlink(const char * __restrict, char * __restrict, size_t);
1113 ssize_t
1114 STUB(readlink)(const char * __restrict path, char * __restrict buf,
1115 size_t bufsiz)
1116 {
1117 return _sys_readlink(path, buf, bufsiz);
1118 }
1119
1120 char *_sys_getcwd(char *, size_t);
1121 char *
1122 STUB(getcwd)(char *buf, size_t size)
1123 {
1124 return _sys_getcwd(buf, size);
1125 }
1126 #else
1127 #define STUB(fun) fun
1128 #endif
1129
1130 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
1131 (int fd, void *buf, size_t buflen), \
1132 (int, void *, size_t), \
1133 (fd, buf, buflen))
1134
1135 FDCALL(ssize_t, readv, DUALCALL_READV, \
1136 (int fd, const struct iovec *iov, int iovcnt), \
1137 (int, const struct iovec *, int), \
1138 (fd, iov, iovcnt))
1139
1140 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
1141 (int fd, const struct iovec *iov, int iovcnt), \
1142 (int, const struct iovec *, int), \
1143 (fd, iov, iovcnt))
1144