hijack.c revision 1.44 1 /* $NetBSD: hijack.c,v 1.44 2011/02/16 19:26:58 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __RCSID("$NetBSD: hijack.c,v 1.44 2011/02/16 19:26:58 pooka Exp $");
30
31 #define __ssp_weak_name(fun) _hijack_ ## fun
32
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/event.h>
36 #include <sys/ioctl.h>
37 #include <sys/socket.h>
38 #include <sys/poll.h>
39
40 #include <rump/rumpclient.h>
41 #include <rump/rump_syscalls.h>
42
43 #include <assert.h>
44 #include <dlfcn.h>
45 #include <err.h>
46 #include <errno.h>
47 #include <fcntl.h>
48 #include <poll.h>
49 #include <pthread.h>
50 #include <signal.h>
51 #include <stdarg.h>
52 #include <stdbool.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <time.h>
57 #include <unistd.h>
58
59 enum dualcall {
60 DUALCALL_WRITE, DUALCALL_WRITEV,
61 DUALCALL_IOCTL, DUALCALL_FCNTL,
62 DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
63 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
64 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
65 DUALCALL_SENDTO, DUALCALL_SENDMSG,
66 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
67 DUALCALL_SHUTDOWN,
68 DUALCALL_READ, DUALCALL_READV,
69 DUALCALL_DUP2,
70 DUALCALL_CLOSE,
71 DUALCALL_POLLTS,
72 DUALCALL_KEVENT,
73 DUALCALL__NUM
74 };
75
76 #define RSYS_STRING(a) __STRING(a)
77 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
78
79 /*
80 * Would be nice to get this automatically in sync with libc.
81 * Also, this does not work for compat-using binaries!
82 */
83 #if !__NetBSD_Prereq__(5,99,7)
84 #define REALSELECT select
85 #define REALPOLLTS pollts
86 #define REALKEVENT kevent
87 #else
88 #define REALSELECT _sys___select50
89 #define REALPOLLTS _sys___pollts50
90 #define REALKEVENT _sys___kevent50
91 #endif
92 #define REALREAD _sys_read
93
94 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
95 int REALPOLLTS(struct pollfd *, nfds_t,
96 const struct timespec *, const sigset_t *);
97 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
98 const struct timespec *);
99 ssize_t REALREAD(int, void *, size_t);
100
101 #define S(a) __STRING(a)
102 struct sysnames {
103 enum dualcall scm_callnum;
104 const char *scm_hostname;
105 const char *scm_rumpname;
106 } syscnames[] = {
107 { DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
108 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
109 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
110 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
111 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
112 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
113 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
114 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
115 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
116 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
117 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
118 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
119 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
120 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
121 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
122 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
123 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
124 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
125 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
126 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
127 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
128 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
129 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
130 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
131 };
132 #undef S
133
134 struct bothsys {
135 void *bs_host;
136 void *bs_rump;
137 } syscalls[DUALCALL__NUM];
138 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
139
140 pid_t (*host_fork)(void);
141 int (*host_daemon)(int, int);
142 int (*host_execve)(const char *, char *const[], char *const[]);
143
144 static uint32_t dup2mask;
145 #define ISDUP2D(fd) (((fd) < 32) && (1<<(fd) & dup2mask))
146 #define SETDUP2(fd) \
147 do { if ((fd) < 32) dup2mask |= (1<<(fd)); } while (/*CONSTCOND*/0)
148 #define CLRDUP2(fd) \
149 do { if ((fd) < 32) dup2mask &= ~(1<<(fd)); } while (/*CONSTCOND*/0)
150
151 //#define DEBUGJACK
152 #ifdef DEBUGJACK
153 #define DPRINTF(x) mydprintf x
154 static void
155 mydprintf(const char *fmt, ...)
156 {
157 va_list ap;
158
159 if (ISDUP2D(STDERR_FILENO))
160 return;
161
162 va_start(ap, fmt);
163 vfprintf(stderr, fmt, ap);
164 va_end(ap);
165 }
166
167 #else
168 #define DPRINTF(x)
169 #endif
170
171 #define FDCALL(type, name, rcname, args, proto, vars) \
172 type name args \
173 { \
174 type (*fun) proto; \
175 \
176 DPRINTF(("%s -> %d\n", __STRING(name), fd)); \
177 if (fd_isrump(fd)) { \
178 fun = syscalls[rcname].bs_rump; \
179 fd = fd_host2rump(fd); \
180 } else { \
181 fun = syscalls[rcname].bs_host; \
182 } \
183 \
184 return fun vars; \
185 }
186
187 /*
188 * This is called from librumpclient in case of LD_PRELOAD.
189 * It ensures correct RTLD_NEXT.
190 *
191 * ... except, it's apparently extremely difficult to force
192 * at least gcc to generate an actual stack frame here. So
193 * sprinkle some volatile foobar and baz to throw the optimizer
194 * off the scent and generate a variable assignment with the
195 * return value. The posterboy for this meltdown is amd64
196 * with -O2. At least with gcc 4.1.3 i386 works regardless of
197 * optimization.
198 */
199 volatile int rumphijack_unrope; /* there, unhang yourself */
200 static void *
201 hijackdlsym(void *handle, const char *symbol)
202 {
203 void *rv;
204
205 rv = dlsym(handle, symbol);
206 rumphijack_unrope = *(volatile int *)rv;
207
208 return (void *)rv;
209 }
210
211 /* low calorie sockets? */
212 static bool hostlocalsockets = true;
213
214 static void __attribute__((constructor))
215 rcinit(void)
216 {
217 char buf[64];
218 extern void *(*rumpclient_dlsym)(void *, const char *);
219 unsigned i, j;
220
221 rumpclient_dlsym = hijackdlsym;
222 host_fork = dlsym(RTLD_NEXT, "fork");
223 host_daemon = dlsym(RTLD_NEXT, "daemon");
224 host_execve = dlsym(RTLD_NEXT, "execve");
225
226 /*
227 * In theory cannot print anything during lookups because
228 * we might not have the call vector set up. so, the errx()
229 * is a bit of a strech, but it might work.
230 */
231
232 for (i = 0; i < DUALCALL__NUM; i++) {
233 /* build runtime O(1) access */
234 for (j = 0; j < __arraycount(syscnames); j++) {
235 if (syscnames[j].scm_callnum == i)
236 break;
237 }
238
239 if (j == __arraycount(syscnames))
240 errx(1, "rumphijack error: syscall pos %d missing", i);
241
242 syscalls[i].bs_host = dlsym(RTLD_NEXT,
243 syscnames[j].scm_hostname);
244 if (syscalls[i].bs_host == NULL)
245 errx(1, "hostcall %s not found missing",
246 syscnames[j].scm_hostname);
247
248 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
249 syscnames[j].scm_rumpname);
250 if (syscalls[i].bs_rump == NULL)
251 errx(1, "rumpcall %s not found missing",
252 syscnames[j].scm_rumpname);
253 }
254
255 if (rumpclient_init() == -1)
256 err(1, "rumpclient init");
257
258 /* set client persistence level */
259 if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
260 if (strcmp(buf, "die") == 0)
261 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
262 else if (strcmp(buf, "inftime") == 0)
263 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
264 else if (strcmp(buf, "once") == 0)
265 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
266 else {
267 time_t timeout;
268 char *ep;
269
270 timeout = (time_t)strtoll(buf, &ep, 10);
271 if (timeout <= 0 || ep != buf + strlen(buf))
272 errx(1, "RUMPHIJACK_RETRYCONNECT must be "
273 "keyword or integer, got: %s", buf);
274
275 rumpclient_setconnretry(timeout);
276 }
277 }
278
279 if (getenv_r("RUMPHIJACK__DUP2MASK", buf, sizeof(buf)) == 0) {
280 dup2mask = strtoul(buf, NULL, 10);
281 }
282 }
283
284 /* XXX: need runtime selection. low for now due to FD_SETSIZE */
285 #define HIJACK_FDOFF 128
286 static int
287 fd_rump2host(int fd)
288 {
289
290 if (fd == -1)
291 return fd;
292
293 if (!ISDUP2D(fd))
294 fd += HIJACK_FDOFF;
295
296 return fd;
297 }
298
299 static int
300 fd_host2rump(int fd)
301 {
302
303 if (!ISDUP2D(fd))
304 fd -= HIJACK_FDOFF;
305 return fd;
306 }
307
308 static bool
309 fd_isrump(int fd)
310 {
311
312 return ISDUP2D(fd) || fd >= HIJACK_FDOFF;
313 }
314
315 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= HIJACK_FDOFF)
316
317 static int
318 dodup(int oldd, int minfd)
319 {
320 int (*op_fcntl)(int, int, ...);
321 int newd;
322 int isrump;
323
324 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
325 if (fd_isrump(oldd)) {
326 op_fcntl = GETSYSCALL(rump, FCNTL);
327 oldd = fd_host2rump(oldd);
328 isrump = 1;
329 } else {
330 op_fcntl = GETSYSCALL(host, FCNTL);
331 isrump = 0;
332 }
333
334 newd = op_fcntl(oldd, F_DUPFD, minfd);
335
336 if (isrump)
337 newd = fd_rump2host(newd);
338 DPRINTF(("dup <- %d\n", newd));
339
340 return newd;
341 }
342
343 int __socket30(int, int, int);
344 int
345 __socket30(int domain, int type, int protocol)
346 {
347 int (*op_socket)(int, int, int);
348 int fd;
349 bool dohost;
350
351 dohost = hostlocalsockets && (domain == AF_LOCAL);
352
353 if (dohost)
354 op_socket = GETSYSCALL(host, SOCKET);
355 else
356 op_socket = GETSYSCALL(rump, SOCKET);
357 fd = op_socket(domain, type, protocol);
358
359 if (!dohost)
360 fd = fd_rump2host(fd);
361 DPRINTF(("socket <- %d\n", fd));
362
363 return fd;
364 }
365
366 int
367 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
368 {
369 int (*op_accept)(int, struct sockaddr *, socklen_t *);
370 int fd;
371 bool isrump;
372
373 isrump = fd_isrump(s);
374
375 DPRINTF(("accept -> %d", s));
376 if (isrump) {
377 op_accept = GETSYSCALL(rump, ACCEPT);
378 s = fd_host2rump(s);
379 } else {
380 op_accept = GETSYSCALL(host, ACCEPT);
381 }
382 fd = op_accept(s, addr, addrlen);
383 if (fd != -1 && isrump)
384 fd = fd_rump2host(fd);
385
386 DPRINTF((" <- %d\n", fd));
387
388 return fd;
389 }
390
391 /*
392 * ioctl and fcntl are varargs calls and need special treatment
393 */
394 int
395 ioctl(int fd, unsigned long cmd, ...)
396 {
397 int (*op_ioctl)(int, unsigned long cmd, ...);
398 va_list ap;
399 int rv;
400
401 DPRINTF(("ioctl -> %d\n", fd));
402 if (fd_isrump(fd)) {
403 fd = fd_host2rump(fd);
404 op_ioctl = GETSYSCALL(rump, IOCTL);
405 } else {
406 op_ioctl = GETSYSCALL(host, IOCTL);
407 }
408
409 va_start(ap, cmd);
410 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
411 va_end(ap);
412 return rv;
413 }
414
415 #include <syslog.h>
416 int
417 fcntl(int fd, int cmd, ...)
418 {
419 int (*op_fcntl)(int, int, ...);
420 va_list ap;
421 int rv, minfd, i;
422
423 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
424
425 switch (cmd) {
426 case F_DUPFD:
427 va_start(ap, cmd);
428 minfd = va_arg(ap, int);
429 va_end(ap);
430 return dodup(fd, minfd);
431
432 case F_CLOSEM:
433 /*
434 * So, if fd < HIJACKOFF, we want to do a host closem.
435 */
436
437 if (fd < HIJACK_FDOFF) {
438 int closemfd = fd;
439
440 if (rumpclient__closenotify(&closemfd,
441 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
442 return -1;
443 op_fcntl = GETSYSCALL(host, FCNTL);
444 rv = op_fcntl(closemfd, cmd);
445 if (rv)
446 return rv;
447 }
448
449 /*
450 * Additionally, we want to do a rump closem, but only
451 * for the file descriptors not within the dup2mask.
452 */
453
454 /* why don't we offer fls()? */
455 for (i = 31; i >= 0; i--) {
456 if (dup2mask & 1<<i)
457 break;
458 }
459
460 if (fd >= HIJACK_FDOFF)
461 fd -= HIJACK_FDOFF;
462 else
463 fd = 0;
464 fd = MAX(i+1, fd);
465
466 /* hmm, maybe we should close rump fd's not within dup2mask? */
467
468 return rump_sys_fcntl(fd, F_CLOSEM);
469
470 case F_MAXFD:
471 /*
472 * For maxfd, if there's a rump kernel fd, return
473 * it hostified. Otherwise, return host's MAXFD
474 * return value.
475 */
476 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
477 /*
478 * This might go a little wrong in case
479 * of dup2 to [012], but I'm not sure if
480 * there's a justification for tracking
481 * that info. Consider e.g.
482 * dup2(rumpfd, 2) followed by rump_sys_open()
483 * returning 1. We should return 1+HIJACKOFF,
484 * not 2+HIJACKOFF. However, if [01] is not
485 * open, the correct return value is 2.
486 */
487 return fd_rump2host(fd);
488 } else {
489 op_fcntl = GETSYSCALL(host, FCNTL);
490 return op_fcntl(fd, F_MAXFD);
491 }
492 /*NOTREACHED*/
493
494 default:
495 if (fd_isrump(fd)) {
496 fd = fd_host2rump(fd);
497 op_fcntl = GETSYSCALL(rump, FCNTL);
498 } else {
499 op_fcntl = GETSYSCALL(host, FCNTL);
500 }
501
502 va_start(ap, cmd);
503 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
504 va_end(ap);
505 return rv;
506 }
507 /*NOTREACHED*/
508 }
509
510 int
511 close(int fd)
512 {
513 int (*op_close)(int);
514 int rv;
515
516 DPRINTF(("close -> %d\n", fd));
517 if (fd_isrump(fd)) {
518 int undup2 = 0;
519
520 if (ISDUP2D(fd))
521 undup2 = 1;
522 fd = fd_host2rump(fd);
523 op_close = GETSYSCALL(rump, CLOSE);
524 rv = op_close(fd);
525 if (rv == 0 && undup2)
526 CLRDUP2(fd);
527 } else {
528 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
529 return -1;
530 op_close = GETSYSCALL(host, CLOSE);
531 rv = op_close(fd);
532 }
533
534 return rv;
535 }
536
537 /*
538 * write cannot issue a standard debug printf due to recursion
539 */
540 ssize_t
541 write(int fd, const void *buf, size_t blen)
542 {
543 ssize_t (*op_write)(int, const void *, size_t);
544
545 if (fd_isrump(fd)) {
546 fd = fd_host2rump(fd);
547 op_write = GETSYSCALL(rump, WRITE);
548 } else {
549 op_write = GETSYSCALL(host, WRITE);
550 }
551
552 return op_write(fd, buf, blen);
553 }
554
555 /*
556 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
557 * many programs do that. dup2 of a rump kernel fd to another value
558 * not >= fdoff is an error.
559 *
560 * Note: cannot rump2host newd, because it is often hardcoded.
561 */
562 int
563 dup2(int oldd, int newd)
564 {
565 int (*host_dup2)(int, int);
566 int rv;
567
568 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
569
570 if (fd_isrump(oldd)) {
571 if (!(newd >= 0 && newd <= 2))
572 return EBADF;
573 oldd = fd_host2rump(oldd);
574 rv = rump_sys_dup2(oldd, newd);
575 if (rv != -1)
576 SETDUP2(newd);
577 } else {
578 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
579 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
580 return -1;
581 rv = host_dup2(oldd, newd);
582 }
583
584 return rv;
585 }
586
587 int
588 dup(int oldd)
589 {
590
591 return dodup(oldd, 0);
592 }
593
594 pid_t
595 fork()
596 {
597 pid_t rv;
598
599 DPRINTF(("fork\n"));
600
601 rv = rumpclient__dofork(host_fork);
602
603 DPRINTF(("fork returns %d\n", rv));
604 return rv;
605 }
606 /* we do not have the luxury of not requiring a stackframe */
607 __strong_alias(__vfork14,fork);
608
609 int
610 daemon(int nochdir, int noclose)
611 {
612 struct rumpclient_fork *rf;
613
614 if ((rf = rumpclient_prefork()) == NULL)
615 return -1;
616
617 if (host_daemon(nochdir, noclose) == -1)
618 return -1;
619
620 if (rumpclient_fork_init(rf) == -1)
621 return -1;
622
623 return 0;
624 }
625
626 int
627 execve(const char *path, char *const argv[], char *const envp[])
628 {
629 char buf[128];
630 char *dup2str;
631 char **newenv;
632 size_t nelem;
633 int rv, sverrno;
634
635 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2MASK=%u", dup2mask);
636 dup2str = malloc(strlen(buf)+1);
637 if (dup2str == NULL)
638 return ENOMEM;
639 strcpy(dup2str, buf);
640
641 for (nelem = 0; envp && envp[nelem]; nelem++)
642 continue;
643 newenv = malloc(sizeof(*newenv) * nelem+2);
644 if (newenv == NULL) {
645 free(dup2str);
646 return ENOMEM;
647 }
648 memcpy(newenv, envp, nelem*sizeof(*newenv));
649 newenv[nelem] = dup2str;
650 newenv[nelem+1] = NULL;
651
652 rv = rumpclient_exec(path, argv, newenv);
653
654 _DIAGASSERT(rv != 0);
655 sverrno = errno;
656 free(newenv);
657 free(dup2str);
658 errno = sverrno;
659 return rv;
660 }
661
662 /*
663 * select is done by calling poll.
664 */
665 int
666 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
667 struct timeval *timeout)
668 {
669 struct pollfd *pfds;
670 struct timespec ts, *tsp = NULL;
671 nfds_t realnfds;
672 int i, j;
673 int rv, incr;
674
675 DPRINTF(("select\n"));
676
677 /*
678 * Well, first we must scan the fds to figure out how many
679 * fds there really are. This is because up to and including
680 * nb5 poll() silently refuses nfds > process_maxopen_fds.
681 * Seems to be fixed in current, thank the maker.
682 * god damn cluster...bomb.
683 */
684
685 for (i = 0, realnfds = 0; i < nfds; i++) {
686 if (readfds && FD_ISSET(i, readfds)) {
687 realnfds++;
688 continue;
689 }
690 if (writefds && FD_ISSET(i, writefds)) {
691 realnfds++;
692 continue;
693 }
694 if (exceptfds && FD_ISSET(i, exceptfds)) {
695 realnfds++;
696 continue;
697 }
698 }
699
700 if (realnfds) {
701 pfds = calloc(realnfds, sizeof(*pfds));
702 if (!pfds)
703 return -1;
704 } else {
705 pfds = NULL;
706 }
707
708 for (i = 0, j = 0; i < nfds; i++) {
709 incr = 0;
710 if (readfds && FD_ISSET(i, readfds)) {
711 pfds[j].fd = i;
712 pfds[j].events |= POLLIN;
713 incr=1;
714 }
715 if (writefds && FD_ISSET(i, writefds)) {
716 pfds[j].fd = i;
717 pfds[j].events |= POLLOUT;
718 incr=1;
719 }
720 if (exceptfds && FD_ISSET(i, exceptfds)) {
721 pfds[j].fd = i;
722 pfds[j].events |= POLLHUP|POLLERR;
723 incr=1;
724 }
725 if (incr)
726 j++;
727 }
728 assert(j == (int)realnfds);
729
730 if (timeout) {
731 TIMEVAL_TO_TIMESPEC(timeout, &ts);
732 tsp = &ts;
733 }
734 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
735 /*
736 * "If select() returns with an error the descriptor sets
737 * will be unmodified"
738 */
739 if (rv < 0)
740 goto out;
741
742 /*
743 * zero out results (can't use FD_ZERO for the
744 * obvious select-me-not reason). whee.
745 *
746 * We do this here since some software ignores the return
747 * value of select, and hence if the timeout expires, it may
748 * assume all input descriptors have activity.
749 */
750 for (i = 0; i < nfds; i++) {
751 if (readfds)
752 FD_CLR(i, readfds);
753 if (writefds)
754 FD_CLR(i, writefds);
755 if (exceptfds)
756 FD_CLR(i, exceptfds);
757 }
758 if (rv == 0)
759 goto out;
760
761 /*
762 * We have >0 fds with activity. Harvest the results.
763 */
764 for (i = 0; i < (int)realnfds; i++) {
765 if (readfds) {
766 if (pfds[i].revents & POLLIN) {
767 FD_SET(pfds[i].fd, readfds);
768 }
769 }
770 if (writefds) {
771 if (pfds[i].revents & POLLOUT) {
772 FD_SET(pfds[i].fd, writefds);
773 }
774 }
775 if (exceptfds) {
776 if (pfds[i].revents & (POLLHUP|POLLERR)) {
777 FD_SET(pfds[i].fd, exceptfds);
778 }
779 }
780 }
781
782 out:
783 free(pfds);
784 return rv;
785 }
786
787 static void
788 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
789 {
790 nfds_t i;
791
792 for (i = 0; i < nfds; i++) {
793 if (fds[i].fd == -1)
794 continue;
795
796 if (fd_isrump(fds[i].fd))
797 (*rumpcall)++;
798 else
799 (*hostcall)++;
800 }
801 }
802
803 static void
804 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
805 {
806 nfds_t i;
807
808 for (i = 0; i < nfds; i++) {
809 fds[i].fd = fdadj(fds[i].fd);
810 }
811 }
812
813 /*
814 * poll is easy as long as the call comes in the fds only in one
815 * kernel. otherwise its quite tricky...
816 */
817 struct pollarg {
818 struct pollfd *pfds;
819 nfds_t nfds;
820 const struct timespec *ts;
821 const sigset_t *sigmask;
822 int pipefd;
823 int errnum;
824 };
825
826 static void *
827 hostpoll(void *arg)
828 {
829 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
830 const sigset_t *);
831 struct pollarg *parg = arg;
832 intptr_t rv;
833
834 op_pollts = GETSYSCALL(host, POLLTS);
835 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
836 if (rv == -1)
837 parg->errnum = errno;
838 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
839
840 return (void *)(intptr_t)rv;
841 }
842
843 int
844 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
845 const sigset_t *sigmask)
846 {
847 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
848 const sigset_t *);
849 int (*host_close)(int);
850 int hostcall = 0, rumpcall = 0;
851 pthread_t pt;
852 nfds_t i;
853 int rv;
854
855 DPRINTF(("poll\n"));
856 checkpoll(fds, nfds, &hostcall, &rumpcall);
857
858 if (hostcall && rumpcall) {
859 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
860 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
861 struct pollarg parg;
862 uintptr_t lrv;
863 int sverrno = 0, trv;
864
865 /*
866 * ok, this is where it gets tricky. We must support
867 * this since it's a very common operation in certain
868 * types of software (telnet, netcat, etc). We allocate
869 * two vectors and run two poll commands in separate
870 * threads. Whichever returns first "wins" and the
871 * other kernel's fds won't show activity.
872 */
873 rv = -1;
874
875 /* allocate full vector for O(n) joining after call */
876 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
877 if (!pfd_host)
878 goto out;
879 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
880 if (!pfd_rump) {
881 goto out;
882 }
883
884 /* split vectors */
885 for (i = 0; i < nfds; i++) {
886 if (fds[i].fd == -1) {
887 pfd_host[i].fd = -1;
888 pfd_rump[i].fd = -1;
889 } else if (fd_isrump(fds[i].fd)) {
890 pfd_host[i].fd = -1;
891 pfd_rump[i].fd = fd_host2rump(fds[i].fd);
892 pfd_rump[i].events = fds[i].events;
893 } else {
894 pfd_rump[i].fd = -1;
895 pfd_host[i].fd = fds[i].fd;
896 pfd_host[i].events = fds[i].events;
897 }
898 pfd_rump[i].revents = pfd_host[i].revents = 0;
899 fds[i].revents = 0;
900 }
901
902 /*
903 * then, open two pipes, one for notifications
904 * to each kernel.
905 */
906 if (rump_sys_pipe(rpipe) == -1)
907 goto out;
908 if (pipe(hpipe) == -1)
909 goto out;
910
911 pfd_host[nfds].fd = hpipe[0];
912 pfd_host[nfds].events = POLLIN;
913 pfd_rump[nfds].fd = rpipe[0];
914 pfd_rump[nfds].events = POLLIN;
915
916 /*
917 * then, create a thread to do host part and meanwhile
918 * do rump kernel part right here
919 */
920
921 parg.pfds = pfd_host;
922 parg.nfds = nfds+1;
923 parg.ts = ts;
924 parg.sigmask = sigmask;
925 parg.pipefd = rpipe[1];
926 pthread_create(&pt, NULL, hostpoll, &parg);
927
928 op_pollts = GETSYSCALL(rump, POLLTS);
929 lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
930 sverrno = errno;
931 write(hpipe[1], &rv, sizeof(rv));
932 pthread_join(pt, (void *)&trv);
933
934 /* check who "won" and merge results */
935 if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
936 rv = trv;
937
938 for (i = 0; i < nfds; i++) {
939 if (pfd_rump[i].fd != -1)
940 fds[i].revents = pfd_rump[i].revents;
941 }
942 sverrno = parg.errnum;
943 } else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
944 rv = trv;
945
946 for (i = 0; i < nfds; i++) {
947 if (pfd_host[i].fd != -1)
948 fds[i].revents = pfd_host[i].revents;
949 }
950 } else {
951 rv = 0;
952 }
953
954 out:
955 host_close = GETSYSCALL(host, CLOSE);
956 if (rpipe[0] != -1)
957 rump_sys_close(rpipe[0]);
958 if (rpipe[1] != -1)
959 rump_sys_close(rpipe[1]);
960 if (hpipe[0] != -1)
961 host_close(hpipe[0]);
962 if (hpipe[1] != -1)
963 host_close(hpipe[1]);
964 free(pfd_host);
965 free(pfd_rump);
966 errno = sverrno;
967 } else {
968 if (hostcall) {
969 op_pollts = GETSYSCALL(host, POLLTS);
970 } else {
971 op_pollts = GETSYSCALL(rump, POLLTS);
972 adjustpoll(fds, nfds, fd_host2rump);
973 }
974
975 rv = op_pollts(fds, nfds, ts, sigmask);
976 if (rumpcall)
977 adjustpoll(fds, nfds, fd_rump2host);
978 }
979
980 return rv;
981 }
982
983 int
984 poll(struct pollfd *fds, nfds_t nfds, int timeout)
985 {
986 struct timespec ts;
987 struct timespec *tsp = NULL;
988
989 if (timeout != INFTIM) {
990 ts.tv_sec = timeout / 1000;
991 ts.tv_nsec = (timeout % 1000) * 1000*1000;
992
993 tsp = &ts;
994 }
995
996 return REALPOLLTS(fds, nfds, tsp, NULL);
997 }
998
999 int
1000 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
1001 struct kevent *eventlist, size_t nevents,
1002 const struct timespec *timeout)
1003 {
1004 int (*op_kevent)(int, const struct kevent *, size_t,
1005 struct kevent *, size_t, const struct timespec *);
1006 const struct kevent *ev;
1007 size_t i;
1008
1009 /*
1010 * Check that we don't attempt to kevent rump kernel fd's.
1011 * That needs similar treatment to select/poll, but is slightly
1012 * trickier since we need to manage to different kq descriptors.
1013 * (TODO, in case you're wondering).
1014 */
1015 for (i = 0; i < nchanges; i++) {
1016 ev = &changelist[i];
1017 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
1018 ev->filter == EVFILT_VNODE) {
1019 if (fd_isrump((int)ev->ident))
1020 return ENOTSUP;
1021 }
1022 }
1023
1024 op_kevent = GETSYSCALL(host, KEVENT);
1025 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
1026 }
1027
1028 /*
1029 * Rest are std type calls.
1030 */
1031
1032 FDCALL(int, bind, DUALCALL_BIND, \
1033 (int fd, const struct sockaddr *name, socklen_t namelen), \
1034 (int, const struct sockaddr *, socklen_t), \
1035 (fd, name, namelen))
1036
1037 FDCALL(int, connect, DUALCALL_CONNECT, \
1038 (int fd, const struct sockaddr *name, socklen_t namelen), \
1039 (int, const struct sockaddr *, socklen_t), \
1040 (fd, name, namelen))
1041
1042 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
1043 (int fd, struct sockaddr *name, socklen_t *namelen), \
1044 (int, struct sockaddr *, socklen_t *), \
1045 (fd, name, namelen))
1046
1047 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
1048 (int fd, struct sockaddr *name, socklen_t *namelen), \
1049 (int, struct sockaddr *, socklen_t *), \
1050 (fd, name, namelen))
1051
1052 FDCALL(int, listen, DUALCALL_LISTEN, \
1053 (int fd, int backlog), \
1054 (int, int), \
1055 (fd, backlog))
1056
1057 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
1058 (int fd, void *buf, size_t len, int flags, \
1059 struct sockaddr *from, socklen_t *fromlen), \
1060 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
1061 (fd, buf, len, flags, from, fromlen))
1062
1063 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
1064 (int fd, const void *buf, size_t len, int flags, \
1065 const struct sockaddr *to, socklen_t tolen), \
1066 (int, const void *, size_t, int, \
1067 const struct sockaddr *, socklen_t), \
1068 (fd, buf, len, flags, to, tolen))
1069
1070 FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
1071 (int fd, struct msghdr *msg, int flags), \
1072 (int, struct msghdr *, int), \
1073 (fd, msg, flags))
1074
1075 FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
1076 (int fd, const struct msghdr *msg, int flags), \
1077 (int, const struct msghdr *, int), \
1078 (fd, msg, flags))
1079
1080 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
1081 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
1082 (int, int, int, void *, socklen_t *), \
1083 (fd, level, optn, optval, optlen))
1084
1085 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
1086 (int fd, int level, int optn, \
1087 const void *optval, socklen_t optlen), \
1088 (int, int, int, const void *, socklen_t), \
1089 (fd, level, optn, optval, optlen))
1090
1091 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
1092 (int fd, int how), \
1093 (int, int), \
1094 (fd, how))
1095
1096 #if _FORTIFY_SOURCE > 0
1097 #define STUB(fun) __ssp_weak_name(fun)
1098 ssize_t _sys_readlink(const char * __restrict, char * __restrict, size_t);
1099 ssize_t
1100 STUB(readlink)(const char * __restrict path, char * __restrict buf,
1101 size_t bufsiz)
1102 {
1103 return _sys_readlink(path, buf, bufsiz);
1104 }
1105
1106 char *_sys_getcwd(char *, size_t);
1107 char *
1108 STUB(getcwd)(char *buf, size_t size)
1109 {
1110 return _sys_getcwd(buf, size);
1111 }
1112 #else
1113 #define STUB(fun) fun
1114 #endif
1115
1116 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
1117 (int fd, void *buf, size_t buflen), \
1118 (int, void *, size_t), \
1119 (fd, buf, buflen))
1120
1121 FDCALL(ssize_t, readv, DUALCALL_READV, \
1122 (int fd, const struct iovec *iov, int iovcnt), \
1123 (int, const struct iovec *, int), \
1124 (fd, iov, iovcnt))
1125
1126 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
1127 (int fd, const struct iovec *iov, int iovcnt), \
1128 (int, const struct iovec *, int), \
1129 (fd, iov, iovcnt))
1130