hijack.c revision 1.61 1 /* $NetBSD: hijack.c,v 1.61 2011/02/21 12:55:21 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __RCSID("$NetBSD: hijack.c,v 1.61 2011/02/21 12:55:21 pooka Exp $");
30
31 #define __ssp_weak_name(fun) _hijack_ ## fun
32
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/event.h>
36 #include <sys/ioctl.h>
37 #include <sys/mount.h>
38 #include <sys/poll.h>
39 #include <sys/socket.h>
40 #include <sys/statvfs.h>
41
42 #include <rump/rumpclient.h>
43 #include <rump/rump_syscalls.h>
44
45 #include <assert.h>
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <poll.h>
51 #include <pthread.h>
52 #include <signal.h>
53 #include <stdarg.h>
54 #include <stdbool.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <time.h>
59 #include <unistd.h>
60
61 enum dualcall {
62 DUALCALL_WRITE, DUALCALL_WRITEV, DUALCALL_PWRITE, DUALCALL_PWRITEV,
63 DUALCALL_IOCTL, DUALCALL_FCNTL,
64 DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
65 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
66 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
67 DUALCALL_SENDTO, DUALCALL_SENDMSG,
68 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
69 DUALCALL_SHUTDOWN,
70 DUALCALL_READ, DUALCALL_READV, DUALCALL_PREAD, DUALCALL_PREADV,
71 DUALCALL_DUP2,
72 DUALCALL_CLOSE,
73 DUALCALL_POLLTS,
74 DUALCALL_KEVENT,
75 DUALCALL_STAT, DUALCALL_LSTAT, DUALCALL_FSTAT,
76 DUALCALL_CHMOD, DUALCALL_LCHMOD, DUALCALL_FCHMOD,
77 DUALCALL_CHOWN, DUALCALL_LCHOWN, DUALCALL_FCHOWN,
78 DUALCALL_OPEN,
79 DUALCALL_STATVFS1, DUALCALL_FSTATVFS1,
80 DUALCALL_CHDIR, DUALCALL_FCHDIR,
81 DUALCALL_LSEEK,
82 DUALCALL_GETDENTS,
83 DUALCALL_UNLINK, DUALCALL_SYMLINK, DUALCALL_READLINK,
84 DUALCALL_RENAME,
85 DUALCALL_MKDIR, DUALCALL_RMDIR,
86 DUALCALL_UTIMES, DUALCALL_LUTIMES, DUALCALL_FUTIMES,
87 DUALCALL_TRUNCATE, DUALCALL_FTRUNCATE,
88 DUALCALL_FSYNC, DUALCALL_FSYNC_RANGE,
89 DUALCALL_MOUNT, DUALCALL_UNMOUNT,
90 DUALCALL___GETCWD,
91 DUALCALL_CHFLAGS, DUALCALL_LCHFLAGS, DUALCALL_FCHFLAGS,
92 DUALCALL__NUM
93 };
94
95 #define RSYS_STRING(a) __STRING(a)
96 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
97
98 /*
99 * Would be nice to get this automatically in sync with libc.
100 * Also, this does not work for compat-using binaries!
101 */
102 #if !__NetBSD_Prereq__(5,99,7)
103 #define REALSELECT select
104 #define REALPOLLTS pollts
105 #define REALKEVENT kevent
106 #define REALSTAT __stat30
107 #define REALLSTAT __lstat30
108 #define REALFSTAT __fstat30
109 #define REALUTIMES utimes
110 #define REALLUTIMES lutimes
111 #define REALFUTIMES futimes
112 #else
113 #define REALSELECT _sys___select50
114 #define REALPOLLTS _sys___pollts50
115 #define REALKEVENT _sys___kevent50
116 #define REALSTAT __stat50
117 #define REALLSTAT __lstat50
118 #define REALFSTAT __fstat50
119 #define REALUTIMES __utimes50
120 #define REALLUTIMES __lutimes50
121 #define REALFUTIMES __futimes50
122 #endif
123 #define REALREAD _sys_read
124 #define REALPREAD _sys_pread
125 #define REALPWRITE _sys_pwrite
126 #define REALGETDENTS __getdents30
127 #define REALMOUNT __mount50
128
129 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
130 int REALPOLLTS(struct pollfd *, nfds_t,
131 const struct timespec *, const sigset_t *);
132 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
133 const struct timespec *);
134 ssize_t REALREAD(int, void *, size_t);
135 ssize_t REALPREAD(int, void *, size_t, off_t);
136 ssize_t REALPWRITE(int, const void *, size_t, off_t);
137 int REALSTAT(const char *, struct stat *);
138 int REALLSTAT(const char *, struct stat *);
139 int REALFSTAT(int, struct stat *);
140 int REALGETDENTS(int, char *, size_t);
141 int REALUTIMES(const char *, const struct timeval [2]);
142 int REALLUTIMES(const char *, const struct timeval [2]);
143 int REALFUTIMES(int, const struct timeval [2]);
144 int REALMOUNT(const char *, const char *, int, void *, size_t);
145 int __getcwd(char *, size_t);
146
147 #define S(a) __STRING(a)
148 struct sysnames {
149 enum dualcall scm_callnum;
150 const char *scm_hostname;
151 const char *scm_rumpname;
152 } syscnames[] = {
153 { DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
154 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
155 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
156 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
157 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
158 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
159 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
160 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
161 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
162 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
163 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
164 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
165 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
166 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
167 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
168 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
169 { DUALCALL_PREAD, S(REALPREAD), RSYS_NAME(PREAD) },
170 { DUALCALL_PREADV, "preadv", RSYS_NAME(PREADV) },
171 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
172 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
173 { DUALCALL_PWRITE, S(REALPWRITE), RSYS_NAME(PWRITE) },
174 { DUALCALL_PWRITEV, "pwritev", RSYS_NAME(PWRITEV) },
175 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
176 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
177 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
178 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
179 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
180 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
181 { DUALCALL_STAT, S(REALSTAT), RSYS_NAME(STAT) },
182 { DUALCALL_LSTAT, S(REALLSTAT), RSYS_NAME(LSTAT) },
183 { DUALCALL_FSTAT, S(REALFSTAT), RSYS_NAME(FSTAT) },
184 { DUALCALL_CHOWN, "chown", RSYS_NAME(CHOWN) },
185 { DUALCALL_LCHOWN, "lchown", RSYS_NAME(LCHOWN) },
186 { DUALCALL_FCHOWN, "fchown", RSYS_NAME(FCHOWN) },
187 { DUALCALL_CHMOD, "chmod", RSYS_NAME(CHMOD) },
188 { DUALCALL_LCHMOD, "lchmod", RSYS_NAME(LCHMOD) },
189 { DUALCALL_FCHMOD, "fchmod", RSYS_NAME(FCHMOD) },
190 { DUALCALL_UTIMES, S(REALUTIMES), RSYS_NAME(UTIMES) },
191 { DUALCALL_LUTIMES, S(REALLUTIMES), RSYS_NAME(LUTIMES) },
192 { DUALCALL_FUTIMES, S(REALFUTIMES), RSYS_NAME(FUTIMES) },
193 { DUALCALL_OPEN, "open", RSYS_NAME(OPEN) },
194 { DUALCALL_STATVFS1, "statvfs1", RSYS_NAME(STATVFS1) },
195 { DUALCALL_FSTATVFS1, "fstatvfs1", RSYS_NAME(FSTATVFS1) },
196 { DUALCALL_CHDIR, "chdir", RSYS_NAME(CHDIR) },
197 { DUALCALL_FCHDIR, "fchdir", RSYS_NAME(FCHDIR) },
198 { DUALCALL_LSEEK, "lseek", RSYS_NAME(LSEEK) },
199 { DUALCALL_GETDENTS, "__getdents30", RSYS_NAME(GETDENTS) },
200 { DUALCALL_UNLINK, "unlink", RSYS_NAME(UNLINK) },
201 { DUALCALL_SYMLINK, "symlink", RSYS_NAME(SYMLINK) },
202 { DUALCALL_READLINK, "readlink", RSYS_NAME(READLINK) },
203 { DUALCALL_RENAME, "rename", RSYS_NAME(RENAME) },
204 { DUALCALL_MKDIR, "mkdir", RSYS_NAME(MKDIR) },
205 { DUALCALL_RMDIR, "rmdir", RSYS_NAME(RMDIR) },
206 { DUALCALL_TRUNCATE, "truncate", RSYS_NAME(TRUNCATE) },
207 { DUALCALL_FTRUNCATE, "ftruncate", RSYS_NAME(FTRUNCATE) },
208 { DUALCALL_FSYNC, "fsync", RSYS_NAME(FSYNC) },
209 { DUALCALL_FSYNC_RANGE, "fsync_range", RSYS_NAME(FSYNC_RANGE) },
210 { DUALCALL_MOUNT, S(REALMOUNT), RSYS_NAME(MOUNT) },
211 { DUALCALL_UNMOUNT, "unmount", RSYS_NAME(UNMOUNT) },
212 { DUALCALL___GETCWD, "__getcwd", RSYS_NAME(__GETCWD) },
213 { DUALCALL_CHFLAGS, "chflags", RSYS_NAME(CHFLAGS) },
214 { DUALCALL_LCHFLAGS, "lchflags", RSYS_NAME(LCHFLAGS) },
215 { DUALCALL_FCHFLAGS, "fchflags", RSYS_NAME(FCHFLAGS) },
216 };
217 #undef S
218
219 struct bothsys {
220 void *bs_host;
221 void *bs_rump;
222 } syscalls[DUALCALL__NUM];
223 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
224
225 pid_t (*host_fork)(void);
226 int (*host_daemon)(int, int);
227 int (*host_execve)(const char *, char *const[], char *const[]);
228
229 /* ok, we need *two* bits per dup2'd fd to track fd+HIJACKOFF aliases */
230 static uint32_t dup2mask;
231 #define ISDUP2D(fd) (((fd) < 16) && (1<<(fd) & dup2mask))
232 #define SETDUP2(fd) \
233 do { if ((fd) < 16) dup2mask |= (1<<(fd)); } while (/*CONSTCOND*/0)
234 #define CLRDUP2(fd) \
235 do { if ((fd) < 16) dup2mask &= ~(1<<(fd)); } while (/*CONSTCOND*/0)
236 #define ISDUP2ALIAS(fd) (((fd) < 16) && (1<<((fd)+16) & dup2mask))
237 #define SETDUP2ALIAS(fd) \
238 do { if ((fd) < 16) dup2mask |= (1<<((fd)+16)); } while (/*CONSTCOND*/0)
239 #define CLRDUP2ALIAS(fd) \
240 do { if ((fd) < 16) dup2mask &= ~(1<<((fd)+16)); } while (/*CONSTCOND*/0)
241
242 //#define DEBUGJACK
243 #ifdef DEBUGJACK
244 #define DPRINTF(x) mydprintf x
245 static void
246 mydprintf(const char *fmt, ...)
247 {
248 va_list ap;
249
250 if (ISDUP2D(STDERR_FILENO))
251 return;
252
253 va_start(ap, fmt);
254 vfprintf(stderr, fmt, ap);
255 va_end(ap);
256 }
257
258 #else
259 #define DPRINTF(x)
260 #endif
261
262 #define FDCALL(type, name, rcname, args, proto, vars) \
263 type name args \
264 { \
265 type (*fun) proto; \
266 \
267 DPRINTF(("%s -> %d\n", __STRING(name), fd)); \
268 if (fd_isrump(fd)) { \
269 fun = syscalls[rcname].bs_rump; \
270 fd = fd_host2rump(fd); \
271 } else { \
272 fun = syscalls[rcname].bs_host; \
273 } \
274 \
275 return fun vars; \
276 }
277
278 #define PATHCALL(type, name, rcname, args, proto, vars) \
279 type name args \
280 { \
281 type (*fun) proto; \
282 \
283 DPRINTF(("%s -> %s\n", __STRING(name), path)); \
284 if (path_isrump(path)) { \
285 fun = syscalls[rcname].bs_rump; \
286 path = path_host2rump(path); \
287 } else { \
288 fun = syscalls[rcname].bs_host; \
289 } \
290 \
291 return fun vars; \
292 }
293
294 /*
295 * This is called from librumpclient in case of LD_PRELOAD.
296 * It ensures correct RTLD_NEXT.
297 *
298 * ... except, it's apparently extremely difficult to force
299 * at least gcc to generate an actual stack frame here. So
300 * sprinkle some volatile foobar and baz to throw the optimizer
301 * off the scent and generate a variable assignment with the
302 * return value. The posterboy for this meltdown is amd64
303 * with -O2. At least with gcc 4.1.3 i386 works regardless of
304 * optimization.
305 */
306 volatile int rumphijack_unrope; /* there, unhang yourself */
307 static void *
308 hijackdlsym(void *handle, const char *symbol)
309 {
310 void *rv;
311
312 rv = dlsym(handle, symbol);
313 rumphijack_unrope = *(volatile int *)rv;
314
315 return (void *)rv;
316 }
317
318 /*
319 * This tracks if our process is in a subdirectory of /rump.
320 * It's preserved over exec.
321 */
322 static bool pwdinrump = false;
323
324 /*
325 * These variables are set from the RUMPHIJACK string and control
326 * which operations can product rump kernel file descriptors.
327 * This should be easily extendable for future needs.
328 */
329 #define RUMPHIJACK_DEFAULT "path=/rump,socket=all:nolocal"
330 static bool rumpsockets[PF_MAX];
331 static const char *rumpprefix;
332 static size_t rumpprefixlen;
333
334 static struct {
335 int pf;
336 const char *name;
337 } socketmap[] = {
338 { PF_LOCAL, "local" },
339 { PF_INET, "inet" },
340 { PF_LINK, "link" },
341 #ifdef PF_OROUTE
342 { PF_OROUTE, "oroute" },
343 #endif
344 { PF_ROUTE, "route" },
345 { PF_INET6, "inet6" },
346 #ifdef PF_MPLS
347 { PF_MPLS, "mpls" },
348 #endif
349 { -1, NULL }
350 };
351
352 static void
353 sockparser(char *buf)
354 {
355 char *p, *l;
356 bool value;
357 int i;
358
359 /* if "all" is present, it must be specified first */
360 if (strncmp(buf, "all", strlen("all")) == 0) {
361 for (i = 0; i < (int)__arraycount(rumpsockets); i++) {
362 rumpsockets[i] = true;
363 }
364 buf += strlen("all");
365 if (*buf == ':')
366 buf++;
367 }
368
369 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
370 value = true;
371 if (strncmp(p, "no", strlen("no")) == 0) {
372 value = false;
373 p += strlen("no");
374 }
375
376 for (i = 0; socketmap[i].name; i++) {
377 if (strcmp(p, socketmap[i].name) == 0) {
378 rumpsockets[socketmap[i].pf] = value;
379 break;
380 }
381 }
382 if (socketmap[i].name == NULL) {
383 warnx("invalid socket specifier %s", p);
384 }
385 }
386 }
387
388 static void
389 pathparser(char *buf)
390 {
391
392 /* sanity-check */
393 if (*buf != '/')
394 errx(1, "hijack path specifier must begin with ``/''");
395 rumpprefixlen = strlen(buf);
396 if (rumpprefixlen < 2)
397 errx(1, "invalid hijack prefix: %s", buf);
398 if (buf[rumpprefixlen-1] == '/' && strspn(buf, "/") != rumpprefixlen)
399 errx(1, "hijack prefix may end in slash only if pure "
400 "slash, gave %s", buf);
401
402 if ((rumpprefix = strdup(buf)) == NULL)
403 err(1, "strdup");
404 rumpprefixlen = strlen(rumpprefix);
405 }
406
407 static struct {
408 void (*parsefn)(char *);
409 const char *name;
410 } hijackparse[] = {
411 { sockparser, "socket" },
412 { pathparser, "path" },
413 { NULL, NULL },
414 };
415
416 static void
417 parsehijack(char *hijack)
418 {
419 char *p, *p2, *l;
420 const char *hijackcopy;
421 int i;
422
423 if ((hijackcopy = strdup(hijack)) == NULL)
424 err(1, "strdup");
425
426 /* disable everything explicitly */
427 for (i = 0; i < PF_MAX; i++)
428 rumpsockets[i] = false;
429
430 for (p = strtok_r(hijack, ",", &l); p; p = strtok_r(NULL, ",", &l)) {
431 p2 = strchr(p, '=');
432 if (!p2)
433 errx(1, "invalid hijack specifier: %s", hijackcopy);
434
435 for (i = 0; hijackparse[i].parsefn; i++) {
436 if (strncmp(hijackparse[i].name, p,
437 (size_t)(p2-p)) == 0) {
438 hijackparse[i].parsefn(p2+1);
439 break;
440 }
441 }
442 }
443
444 }
445
446 static void __attribute__((constructor))
447 rcinit(void)
448 {
449 char buf[1024];
450 extern void *(*rumpclient_dlsym)(void *, const char *);
451 unsigned i, j;
452
453 rumpclient_dlsym = hijackdlsym;
454 host_fork = dlsym(RTLD_NEXT, "fork");
455 host_daemon = dlsym(RTLD_NEXT, "daemon");
456 host_execve = dlsym(RTLD_NEXT, "execve");
457
458 /*
459 * In theory cannot print anything during lookups because
460 * we might not have the call vector set up. so, the errx()
461 * is a bit of a strech, but it might work.
462 */
463
464 for (i = 0; i < DUALCALL__NUM; i++) {
465 /* build runtime O(1) access */
466 for (j = 0; j < __arraycount(syscnames); j++) {
467 if (syscnames[j].scm_callnum == i)
468 break;
469 }
470
471 if (j == __arraycount(syscnames))
472 errx(1, "rumphijack error: syscall pos %d missing", i);
473
474 syscalls[i].bs_host = dlsym(RTLD_NEXT,
475 syscnames[j].scm_hostname);
476 if (syscalls[i].bs_host == NULL)
477 errx(1, "hostcall %s not found missing",
478 syscnames[j].scm_hostname);
479
480 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
481 syscnames[j].scm_rumpname);
482 if (syscalls[i].bs_rump == NULL)
483 errx(1, "rumpcall %s not found missing",
484 syscnames[j].scm_rumpname);
485 }
486
487 if (rumpclient_init() == -1)
488 err(1, "rumpclient init");
489
490 /* check which syscalls we're supposed to hijack */
491 if (getenv_r("RUMPHIJACK", buf, sizeof(buf)) == -1) {
492 strcpy(buf, RUMPHIJACK_DEFAULT);
493 }
494 parsehijack(buf);
495
496 /* set client persistence level */
497 if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
498 if (strcmp(buf, "die") == 0)
499 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
500 else if (strcmp(buf, "inftime") == 0)
501 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
502 else if (strcmp(buf, "once") == 0)
503 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
504 else {
505 time_t timeout;
506 char *ep;
507
508 timeout = (time_t)strtoll(buf, &ep, 10);
509 if (timeout <= 0 || ep != buf + strlen(buf))
510 errx(1, "RUMPHIJACK_RETRYCONNECT must be "
511 "keyword or integer, got: %s", buf);
512
513 rumpclient_setconnretry(timeout);
514 }
515 }
516
517 if (getenv_r("RUMPHIJACK__DUP2MASK", buf, sizeof(buf)) == 0) {
518 dup2mask = strtoul(buf, NULL, 10);
519 unsetenv("RUMPHIJACK__DUP2MASK");
520 }
521 if (getenv_r("RUMPHIJACK__PWDINRUMP", buf, sizeof(buf)) == 0) {
522 pwdinrump = true;
523 unsetenv("RUMPHIJACK__PWDINRUMP");
524 }
525 }
526
527 /* XXX: need runtime selection. low for now due to FD_SETSIZE */
528 #define HIJACK_FDOFF 128
529 static int
530 fd_rump2host(int fd)
531 {
532
533 if (fd == -1)
534 return fd;
535
536 if (!ISDUP2D(fd))
537 fd += HIJACK_FDOFF;
538
539 return fd;
540 }
541
542 static int
543 fd_host2rump(int fd)
544 {
545
546 if (!ISDUP2D(fd))
547 fd -= HIJACK_FDOFF;
548 return fd;
549 }
550
551 static bool
552 fd_isrump(int fd)
553 {
554
555 return ISDUP2D(fd) || fd >= HIJACK_FDOFF;
556 }
557
558 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= HIJACK_FDOFF)
559
560 static bool
561 path_isrump(const char *path)
562 {
563
564 if (rumpprefix == NULL)
565 return false;
566
567 if (*path == '/') {
568 if (strncmp(path, rumpprefix, rumpprefixlen) == 0)
569 return true;
570 return false;
571 } else {
572 return pwdinrump;
573 }
574 }
575
576 static const char *rootpath = "/";
577 static const char *
578 path_host2rump(const char *path)
579 {
580 const char *rv;
581
582 if (*path == '/') {
583 rv = path + rumpprefixlen;
584 if (*rv == '\0')
585 rv = rootpath;
586 } else {
587 rv = path;
588 }
589
590 return rv;
591 }
592
593 static int
594 dodup(int oldd, int minfd)
595 {
596 int (*op_fcntl)(int, int, ...);
597 int newd;
598 int isrump;
599
600 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
601 if (fd_isrump(oldd)) {
602 op_fcntl = GETSYSCALL(rump, FCNTL);
603 oldd = fd_host2rump(oldd);
604 isrump = 1;
605 } else {
606 op_fcntl = GETSYSCALL(host, FCNTL);
607 isrump = 0;
608 }
609
610 newd = op_fcntl(oldd, F_DUPFD, minfd);
611
612 if (isrump)
613 newd = fd_rump2host(newd);
614 DPRINTF(("dup <- %d\n", newd));
615
616 return newd;
617 }
618
619 /*
620 * dup a host file descriptor so that it doesn't collide with the dup2mask
621 */
622 static int
623 fd_dupgood(int fd)
624 {
625 int (*op_fcntl)(int, int, ...) = GETSYSCALL(host, FCNTL);
626 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
627 int ofd, i;
628
629 for (i = 1; ISDUP2D(fd); i++) {
630 ofd = fd;
631 fd = op_fcntl(ofd, F_DUPFD, i);
632 op_close(ofd);
633 }
634
635 return fd;
636 }
637
638 int
639 open(const char *path, int flags, ...)
640 {
641 int (*op_open)(const char *, int, ...);
642 bool isrump;
643 va_list ap;
644 int fd;
645
646 if (path_isrump(path)) {
647 path = path_host2rump(path);
648 op_open = GETSYSCALL(rump, OPEN);
649 isrump = true;
650 } else {
651 op_open = GETSYSCALL(host, OPEN);
652 isrump = false;
653 }
654
655 va_start(ap, flags);
656 fd = op_open(path, flags, va_arg(ap, mode_t));
657 va_end(ap);
658
659 if (isrump)
660 fd = fd_rump2host(fd);
661 else
662 fd = fd_dupgood(fd);
663 return fd;
664 }
665
666 int
667 chdir(const char *path)
668 {
669 int (*op_chdir)(const char *);
670 bool isrump;
671 int rv;
672
673 if (path_isrump(path)) {
674 op_chdir = GETSYSCALL(rump, CHDIR);
675 isrump = true;
676 path = path_host2rump(path);
677 } else {
678 op_chdir = GETSYSCALL(host, CHDIR);
679 isrump = false;
680 }
681
682 rv = op_chdir(path);
683 if (rv == 0) {
684 if (isrump)
685 pwdinrump = true;
686 else
687 pwdinrump = false;
688 }
689
690 return rv;
691 }
692
693 int
694 fchdir(int fd)
695 {
696 int (*op_fchdir)(int);
697 bool isrump;
698 int rv;
699
700 if (fd_isrump(fd)) {
701 op_fchdir = GETSYSCALL(rump, FCHDIR);
702 isrump = true;
703 fd = fd_host2rump(fd);
704 } else {
705 op_fchdir = GETSYSCALL(host, FCHDIR);
706 isrump = false;
707 }
708
709 rv = op_fchdir(fd);
710 if (rv == 0) {
711 if (isrump)
712 pwdinrump = true;
713 else
714 pwdinrump = false;
715 }
716
717 return rv;
718 }
719
720 int
721 __getcwd(char *bufp, size_t len)
722 {
723 int (*op___getcwd)(char *, size_t);
724 int rv;
725
726 if (pwdinrump) {
727 size_t prefixgap;
728 bool iamslash;
729
730 if (rumpprefix[rumpprefixlen-1] == '/')
731 iamslash = true;
732 else
733 iamslash = false;
734
735 if (iamslash)
736 prefixgap = rumpprefixlen - 1; /* ``//+path'' */
737 else
738 prefixgap = rumpprefixlen; /* ``/pfx+/path'' */
739 if (len <= prefixgap) {
740 return ERANGE;
741 }
742
743 op___getcwd = GETSYSCALL(rump, __GETCWD);
744 rv = op___getcwd(bufp + prefixgap, len - prefixgap);
745 if (rv == -1)
746 return rv;
747
748 /* augment the "/" part only for a non-root path */
749 memcpy(bufp, rumpprefix, rumpprefixlen);
750
751 /* append / only to non-root cwd */
752 if (rv != 2)
753 bufp[prefixgap] = '/';
754
755 /* don't append extra slash in the purely-slash case */
756 if (rv == 2 && !iamslash)
757 bufp[rumpprefixlen] = '\0';
758
759 return rv;
760 } else {
761 op___getcwd = GETSYSCALL(host, __GETCWD);
762 return op___getcwd(bufp, len);
763 }
764 }
765
766 int
767 rename(const char *from, const char *to)
768 {
769 int (*op_rename)(const char *, const char *);
770
771 if (path_isrump(from)) {
772 if (!path_isrump(to))
773 return EXDEV;
774
775 from = path_host2rump(from);
776 to = path_host2rump(to);
777 op_rename = GETSYSCALL(rump, RENAME);
778 } else {
779 if (path_isrump(to))
780 return EXDEV;
781
782 op_rename = GETSYSCALL(host, RENAME);
783 }
784
785 return op_rename(from, to);
786 }
787
788 int __socket30(int, int, int);
789 int
790 __socket30(int domain, int type, int protocol)
791 {
792 int (*op_socket)(int, int, int);
793 int fd;
794 bool isrump;
795
796 isrump = domain < PF_MAX && rumpsockets[domain];
797
798 if (isrump)
799 op_socket = GETSYSCALL(rump, SOCKET);
800 else
801 op_socket = GETSYSCALL(host, SOCKET);
802 fd = op_socket(domain, type, protocol);
803
804 if (isrump)
805 fd = fd_rump2host(fd);
806 else
807 fd = fd_dupgood(fd);
808 DPRINTF(("socket <- %d\n", fd));
809
810 return fd;
811 }
812
813 int
814 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
815 {
816 int (*op_accept)(int, struct sockaddr *, socklen_t *);
817 int fd;
818 bool isrump;
819
820 isrump = fd_isrump(s);
821
822 DPRINTF(("accept -> %d", s));
823 if (isrump) {
824 op_accept = GETSYSCALL(rump, ACCEPT);
825 s = fd_host2rump(s);
826 } else {
827 op_accept = GETSYSCALL(host, ACCEPT);
828 }
829 fd = op_accept(s, addr, addrlen);
830 if (fd != -1 && isrump)
831 fd = fd_rump2host(fd);
832 else
833 fd = fd_dupgood(fd);
834
835 DPRINTF((" <- %d\n", fd));
836
837 return fd;
838 }
839
840 /*
841 * ioctl and fcntl are varargs calls and need special treatment
842 */
843 int
844 ioctl(int fd, unsigned long cmd, ...)
845 {
846 int (*op_ioctl)(int, unsigned long cmd, ...);
847 va_list ap;
848 int rv;
849
850 DPRINTF(("ioctl -> %d\n", fd));
851 if (fd_isrump(fd)) {
852 fd = fd_host2rump(fd);
853 op_ioctl = GETSYSCALL(rump, IOCTL);
854 } else {
855 op_ioctl = GETSYSCALL(host, IOCTL);
856 }
857
858 va_start(ap, cmd);
859 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
860 va_end(ap);
861 return rv;
862 }
863
864 #include <syslog.h>
865 int
866 fcntl(int fd, int cmd, ...)
867 {
868 int (*op_fcntl)(int, int, ...);
869 va_list ap;
870 int rv, minfd, i;
871
872 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
873
874 switch (cmd) {
875 case F_DUPFD:
876 va_start(ap, cmd);
877 minfd = va_arg(ap, int);
878 va_end(ap);
879 return dodup(fd, minfd);
880
881 case F_CLOSEM:
882 /*
883 * So, if fd < HIJACKOFF, we want to do a host closem.
884 */
885
886 if (fd < HIJACK_FDOFF) {
887 int closemfd = fd;
888
889 if (rumpclient__closenotify(&closemfd,
890 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
891 return -1;
892 op_fcntl = GETSYSCALL(host, FCNTL);
893 rv = op_fcntl(closemfd, cmd);
894 if (rv)
895 return rv;
896 }
897
898 /*
899 * Additionally, we want to do a rump closem, but only
900 * for the file descriptors not within the dup2mask.
901 */
902
903 /* why don't we offer fls()? */
904 for (i = 15; i >= 0; i--) {
905 if (ISDUP2D(i))
906 break;
907 }
908
909 if (fd >= HIJACK_FDOFF)
910 fd -= HIJACK_FDOFF;
911 else
912 fd = 0;
913 fd = MAX(i+1, fd);
914
915 /* hmm, maybe we should close rump fd's not within dup2mask? */
916
917 return rump_sys_fcntl(fd, F_CLOSEM);
918
919 case F_MAXFD:
920 /*
921 * For maxfd, if there's a rump kernel fd, return
922 * it hostified. Otherwise, return host's MAXFD
923 * return value.
924 */
925 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
926 /*
927 * This might go a little wrong in case
928 * of dup2 to [012], but I'm not sure if
929 * there's a justification for tracking
930 * that info. Consider e.g.
931 * dup2(rumpfd, 2) followed by rump_sys_open()
932 * returning 1. We should return 1+HIJACKOFF,
933 * not 2+HIJACKOFF. However, if [01] is not
934 * open, the correct return value is 2.
935 */
936 return fd_rump2host(fd);
937 } else {
938 op_fcntl = GETSYSCALL(host, FCNTL);
939 return op_fcntl(fd, F_MAXFD);
940 }
941 /*NOTREACHED*/
942
943 default:
944 if (fd_isrump(fd)) {
945 fd = fd_host2rump(fd);
946 op_fcntl = GETSYSCALL(rump, FCNTL);
947 } else {
948 op_fcntl = GETSYSCALL(host, FCNTL);
949 }
950
951 va_start(ap, cmd);
952 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
953 va_end(ap);
954 return rv;
955 }
956 /*NOTREACHED*/
957 }
958
959 int
960 close(int fd)
961 {
962 int (*op_close)(int);
963 int rv;
964
965 DPRINTF(("close -> %d\n", fd));
966 if (fd_isrump(fd)) {
967 int undup2 = 0;
968
969 fd = fd_host2rump(fd);
970 if (ISDUP2ALIAS(fd)) {
971 _DIAGASSERT(ISDUP2D(fd));
972 CLRDUP2ALIAS(fd);
973 return 0;
974 }
975
976 if (ISDUP2D(fd))
977 undup2 = 1;
978 op_close = GETSYSCALL(rump, CLOSE);
979 rv = op_close(fd);
980 if (rv == 0 && undup2)
981 CLRDUP2(fd);
982 } else {
983 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
984 return -1;
985 op_close = GETSYSCALL(host, CLOSE);
986 rv = op_close(fd);
987 }
988
989 return rv;
990 }
991
992 /*
993 * write cannot issue a standard debug printf due to recursion
994 */
995 ssize_t
996 write(int fd, const void *buf, size_t blen)
997 {
998 ssize_t (*op_write)(int, const void *, size_t);
999
1000 if (fd_isrump(fd)) {
1001 fd = fd_host2rump(fd);
1002 op_write = GETSYSCALL(rump, WRITE);
1003 } else {
1004 op_write = GETSYSCALL(host, WRITE);
1005 }
1006
1007 return op_write(fd, buf, blen);
1008 }
1009
1010 /*
1011 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
1012 * many programs do that. dup2 of a rump kernel fd to another value
1013 * not >= fdoff is an error.
1014 *
1015 * Note: cannot rump2host newd, because it is often hardcoded.
1016 */
1017 int
1018 dup2(int oldd, int newd)
1019 {
1020 int (*host_dup2)(int, int);
1021 int rv;
1022
1023 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
1024
1025 if (fd_isrump(oldd)) {
1026 if (!(newd >= 0 && newd <= 2))
1027 return EBADF;
1028 oldd = fd_host2rump(oldd);
1029 if (oldd == newd) {
1030 SETDUP2(newd);
1031 SETDUP2ALIAS(newd);
1032 return newd;
1033 }
1034 rv = rump_sys_dup2(oldd, newd);
1035 if (rv != -1)
1036 SETDUP2(newd);
1037 } else {
1038 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
1039 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
1040 return -1;
1041 rv = host_dup2(oldd, newd);
1042 }
1043
1044 return rv;
1045 }
1046
1047 int
1048 dup(int oldd)
1049 {
1050
1051 return dodup(oldd, 0);
1052 }
1053
1054 pid_t
1055 fork()
1056 {
1057 pid_t rv;
1058
1059 DPRINTF(("fork\n"));
1060
1061 rv = rumpclient__dofork(host_fork);
1062
1063 DPRINTF(("fork returns %d\n", rv));
1064 return rv;
1065 }
1066 /* we do not have the luxury of not requiring a stackframe */
1067 __strong_alias(__vfork14,fork);
1068
1069 int
1070 daemon(int nochdir, int noclose)
1071 {
1072 struct rumpclient_fork *rf;
1073
1074 if ((rf = rumpclient_prefork()) == NULL)
1075 return -1;
1076
1077 if (host_daemon(nochdir, noclose) == -1)
1078 return -1;
1079
1080 if (rumpclient_fork_init(rf) == -1)
1081 return -1;
1082
1083 return 0;
1084 }
1085
1086 int
1087 execve(const char *path, char *const argv[], char *const envp[])
1088 {
1089 char buf[128];
1090 char *dup2str;
1091 const char *pwdinrumpstr;
1092 char **newenv;
1093 size_t nelem;
1094 int rv, sverrno;
1095 int bonus = 1, i = 0;
1096
1097 if (dup2mask) {
1098 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2MASK=%u", dup2mask);
1099 dup2str = malloc(strlen(buf)+1);
1100 if (dup2str == NULL)
1101 return ENOMEM;
1102 strcpy(dup2str, buf);
1103 bonus++;
1104 } else {
1105 dup2str = NULL;
1106 }
1107
1108 if (pwdinrump) {
1109 pwdinrumpstr = "RUMPHIJACK__PWDINRUMP=true";
1110 bonus++;
1111 } else {
1112 pwdinrumpstr = NULL;
1113 }
1114
1115 for (nelem = 0; envp && envp[nelem]; nelem++)
1116 continue;
1117 newenv = malloc(sizeof(*newenv) * nelem+bonus);
1118 if (newenv == NULL) {
1119 free(dup2str);
1120 return ENOMEM;
1121 }
1122 memcpy(newenv, envp, nelem*sizeof(*newenv));
1123 if (dup2str) {
1124 newenv[nelem+i] = dup2str;
1125 i++;
1126 }
1127 if (pwdinrumpstr) {
1128 newenv[nelem+i] = __UNCONST(pwdinrumpstr);
1129 i++;
1130 }
1131 newenv[nelem+i] = NULL;
1132 _DIAGASSERT(i < bonus);
1133
1134 rv = rumpclient_exec(path, argv, newenv);
1135
1136 _DIAGASSERT(rv != 0);
1137 sverrno = errno;
1138 free(newenv);
1139 free(dup2str);
1140 errno = sverrno;
1141 return rv;
1142 }
1143
1144 /*
1145 * select is done by calling poll.
1146 */
1147 int
1148 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1149 struct timeval *timeout)
1150 {
1151 struct pollfd *pfds;
1152 struct timespec ts, *tsp = NULL;
1153 nfds_t realnfds;
1154 int i, j;
1155 int rv, incr;
1156
1157 DPRINTF(("select\n"));
1158
1159 /*
1160 * Well, first we must scan the fds to figure out how many
1161 * fds there really are. This is because up to and including
1162 * nb5 poll() silently refuses nfds > process_maxopen_fds.
1163 * Seems to be fixed in current, thank the maker.
1164 * god damn cluster...bomb.
1165 */
1166
1167 for (i = 0, realnfds = 0; i < nfds; i++) {
1168 if (readfds && FD_ISSET(i, readfds)) {
1169 realnfds++;
1170 continue;
1171 }
1172 if (writefds && FD_ISSET(i, writefds)) {
1173 realnfds++;
1174 continue;
1175 }
1176 if (exceptfds && FD_ISSET(i, exceptfds)) {
1177 realnfds++;
1178 continue;
1179 }
1180 }
1181
1182 if (realnfds) {
1183 pfds = calloc(realnfds, sizeof(*pfds));
1184 if (!pfds)
1185 return -1;
1186 } else {
1187 pfds = NULL;
1188 }
1189
1190 for (i = 0, j = 0; i < nfds; i++) {
1191 incr = 0;
1192 if (readfds && FD_ISSET(i, readfds)) {
1193 pfds[j].fd = i;
1194 pfds[j].events |= POLLIN;
1195 incr=1;
1196 }
1197 if (writefds && FD_ISSET(i, writefds)) {
1198 pfds[j].fd = i;
1199 pfds[j].events |= POLLOUT;
1200 incr=1;
1201 }
1202 if (exceptfds && FD_ISSET(i, exceptfds)) {
1203 pfds[j].fd = i;
1204 pfds[j].events |= POLLHUP|POLLERR;
1205 incr=1;
1206 }
1207 if (incr)
1208 j++;
1209 }
1210 assert(j == (int)realnfds);
1211
1212 if (timeout) {
1213 TIMEVAL_TO_TIMESPEC(timeout, &ts);
1214 tsp = &ts;
1215 }
1216 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
1217 /*
1218 * "If select() returns with an error the descriptor sets
1219 * will be unmodified"
1220 */
1221 if (rv < 0)
1222 goto out;
1223
1224 /*
1225 * zero out results (can't use FD_ZERO for the
1226 * obvious select-me-not reason). whee.
1227 *
1228 * We do this here since some software ignores the return
1229 * value of select, and hence if the timeout expires, it may
1230 * assume all input descriptors have activity.
1231 */
1232 for (i = 0; i < nfds; i++) {
1233 if (readfds)
1234 FD_CLR(i, readfds);
1235 if (writefds)
1236 FD_CLR(i, writefds);
1237 if (exceptfds)
1238 FD_CLR(i, exceptfds);
1239 }
1240 if (rv == 0)
1241 goto out;
1242
1243 /*
1244 * We have >0 fds with activity. Harvest the results.
1245 */
1246 for (i = 0; i < (int)realnfds; i++) {
1247 if (readfds) {
1248 if (pfds[i].revents & POLLIN) {
1249 FD_SET(pfds[i].fd, readfds);
1250 }
1251 }
1252 if (writefds) {
1253 if (pfds[i].revents & POLLOUT) {
1254 FD_SET(pfds[i].fd, writefds);
1255 }
1256 }
1257 if (exceptfds) {
1258 if (pfds[i].revents & (POLLHUP|POLLERR)) {
1259 FD_SET(pfds[i].fd, exceptfds);
1260 }
1261 }
1262 }
1263
1264 out:
1265 free(pfds);
1266 return rv;
1267 }
1268
1269 static void
1270 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
1271 {
1272 nfds_t i;
1273
1274 for (i = 0; i < nfds; i++) {
1275 if (fds[i].fd == -1)
1276 continue;
1277
1278 if (fd_isrump(fds[i].fd))
1279 (*rumpcall)++;
1280 else
1281 (*hostcall)++;
1282 }
1283 }
1284
1285 static void
1286 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
1287 {
1288 nfds_t i;
1289
1290 for (i = 0; i < nfds; i++) {
1291 fds[i].fd = fdadj(fds[i].fd);
1292 }
1293 }
1294
1295 /*
1296 * poll is easy as long as the call comes in the fds only in one
1297 * kernel. otherwise its quite tricky...
1298 */
1299 struct pollarg {
1300 struct pollfd *pfds;
1301 nfds_t nfds;
1302 const struct timespec *ts;
1303 const sigset_t *sigmask;
1304 int pipefd;
1305 int errnum;
1306 };
1307
1308 static void *
1309 hostpoll(void *arg)
1310 {
1311 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1312 const sigset_t *);
1313 struct pollarg *parg = arg;
1314 intptr_t rv;
1315
1316 op_pollts = GETSYSCALL(host, POLLTS);
1317 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
1318 if (rv == -1)
1319 parg->errnum = errno;
1320 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
1321
1322 return (void *)(intptr_t)rv;
1323 }
1324
1325 int
1326 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
1327 const sigset_t *sigmask)
1328 {
1329 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1330 const sigset_t *);
1331 int (*host_close)(int);
1332 int hostcall = 0, rumpcall = 0;
1333 pthread_t pt;
1334 nfds_t i;
1335 int rv;
1336
1337 DPRINTF(("poll\n"));
1338 checkpoll(fds, nfds, &hostcall, &rumpcall);
1339
1340 if (hostcall && rumpcall) {
1341 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
1342 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
1343 struct pollarg parg;
1344 uintptr_t lrv;
1345 int sverrno = 0, trv;
1346
1347 /*
1348 * ok, this is where it gets tricky. We must support
1349 * this since it's a very common operation in certain
1350 * types of software (telnet, netcat, etc). We allocate
1351 * two vectors and run two poll commands in separate
1352 * threads. Whichever returns first "wins" and the
1353 * other kernel's fds won't show activity.
1354 */
1355 rv = -1;
1356
1357 /* allocate full vector for O(n) joining after call */
1358 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
1359 if (!pfd_host)
1360 goto out;
1361 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
1362 if (!pfd_rump) {
1363 goto out;
1364 }
1365
1366 /*
1367 * then, open two pipes, one for notifications
1368 * to each kernel.
1369 */
1370 if ((rv = rump_sys_pipe(rpipe)) == -1) {
1371 sverrno = errno;
1372 }
1373 if (rv == 0 && (rv = pipe(hpipe)) == -1) {
1374 sverrno = errno;
1375 }
1376
1377 /* split vectors (or signal errors) */
1378 for (i = 0; i < nfds; i++) {
1379 int fd;
1380
1381 fds[i].revents = 0;
1382 if (fds[i].fd == -1) {
1383 pfd_host[i].fd = -1;
1384 pfd_rump[i].fd = -1;
1385 } else if (fd_isrump(fds[i].fd)) {
1386 pfd_host[i].fd = -1;
1387 fd = fd_host2rump(fds[i].fd);
1388 if (fd == rpipe[0] || fd == rpipe[1]) {
1389 fds[i].revents = POLLNVAL;
1390 if (rv != -1)
1391 rv++;
1392 }
1393 pfd_rump[i].fd = fd;
1394 pfd_rump[i].events = fds[i].events;
1395 } else {
1396 pfd_rump[i].fd = -1;
1397 fd = fds[i].fd;
1398 if (fd == hpipe[0] || fd == hpipe[1]) {
1399 fds[i].revents = POLLNVAL;
1400 if (rv != -1)
1401 rv++;
1402 }
1403 pfd_host[i].fd = fd;
1404 pfd_host[i].events = fds[i].events;
1405 }
1406 pfd_rump[i].revents = pfd_host[i].revents = 0;
1407 }
1408 if (rv) {
1409 goto out;
1410 }
1411
1412 pfd_host[nfds].fd = hpipe[0];
1413 pfd_host[nfds].events = POLLIN;
1414 pfd_rump[nfds].fd = rpipe[0];
1415 pfd_rump[nfds].events = POLLIN;
1416
1417 /*
1418 * then, create a thread to do host part and meanwhile
1419 * do rump kernel part right here
1420 */
1421
1422 parg.pfds = pfd_host;
1423 parg.nfds = nfds+1;
1424 parg.ts = ts;
1425 parg.sigmask = sigmask;
1426 parg.pipefd = rpipe[1];
1427 pthread_create(&pt, NULL, hostpoll, &parg);
1428
1429 op_pollts = GETSYSCALL(rump, POLLTS);
1430 lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
1431 sverrno = errno;
1432 write(hpipe[1], &rv, sizeof(rv));
1433 pthread_join(pt, (void *)&trv);
1434
1435 /* check who "won" and merge results */
1436 if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
1437 rv = trv;
1438
1439 for (i = 0; i < nfds; i++) {
1440 if (pfd_rump[i].fd != -1)
1441 fds[i].revents = pfd_rump[i].revents;
1442 }
1443 sverrno = parg.errnum;
1444 } else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
1445 rv = trv;
1446
1447 for (i = 0; i < nfds; i++) {
1448 if (pfd_host[i].fd != -1)
1449 fds[i].revents = pfd_host[i].revents;
1450 }
1451 } else {
1452 rv = 0;
1453 }
1454
1455 out:
1456 host_close = GETSYSCALL(host, CLOSE);
1457 if (rpipe[0] != -1)
1458 rump_sys_close(rpipe[0]);
1459 if (rpipe[1] != -1)
1460 rump_sys_close(rpipe[1]);
1461 if (hpipe[0] != -1)
1462 host_close(hpipe[0]);
1463 if (hpipe[1] != -1)
1464 host_close(hpipe[1]);
1465 free(pfd_host);
1466 free(pfd_rump);
1467 errno = sverrno;
1468 } else {
1469 if (hostcall) {
1470 op_pollts = GETSYSCALL(host, POLLTS);
1471 } else {
1472 op_pollts = GETSYSCALL(rump, POLLTS);
1473 adjustpoll(fds, nfds, fd_host2rump);
1474 }
1475
1476 rv = op_pollts(fds, nfds, ts, sigmask);
1477 if (rumpcall)
1478 adjustpoll(fds, nfds, fd_rump2host);
1479 }
1480
1481 return rv;
1482 }
1483
1484 int
1485 poll(struct pollfd *fds, nfds_t nfds, int timeout)
1486 {
1487 struct timespec ts;
1488 struct timespec *tsp = NULL;
1489
1490 if (timeout != INFTIM) {
1491 ts.tv_sec = timeout / 1000;
1492 ts.tv_nsec = (timeout % 1000) * 1000*1000;
1493
1494 tsp = &ts;
1495 }
1496
1497 return REALPOLLTS(fds, nfds, tsp, NULL);
1498 }
1499
1500 int
1501 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
1502 struct kevent *eventlist, size_t nevents,
1503 const struct timespec *timeout)
1504 {
1505 int (*op_kevent)(int, const struct kevent *, size_t,
1506 struct kevent *, size_t, const struct timespec *);
1507 const struct kevent *ev;
1508 size_t i;
1509
1510 /*
1511 * Check that we don't attempt to kevent rump kernel fd's.
1512 * That needs similar treatment to select/poll, but is slightly
1513 * trickier since we need to manage to different kq descriptors.
1514 * (TODO, in case you're wondering).
1515 */
1516 for (i = 0; i < nchanges; i++) {
1517 ev = &changelist[i];
1518 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
1519 ev->filter == EVFILT_VNODE) {
1520 if (fd_isrump((int)ev->ident))
1521 return ENOTSUP;
1522 }
1523 }
1524
1525 op_kevent = GETSYSCALL(host, KEVENT);
1526 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
1527 }
1528
1529 /*
1530 * Rest are std type calls.
1531 */
1532
1533 FDCALL(int, bind, DUALCALL_BIND, \
1534 (int fd, const struct sockaddr *name, socklen_t namelen), \
1535 (int, const struct sockaddr *, socklen_t), \
1536 (fd, name, namelen))
1537
1538 FDCALL(int, connect, DUALCALL_CONNECT, \
1539 (int fd, const struct sockaddr *name, socklen_t namelen), \
1540 (int, const struct sockaddr *, socklen_t), \
1541 (fd, name, namelen))
1542
1543 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
1544 (int fd, struct sockaddr *name, socklen_t *namelen), \
1545 (int, struct sockaddr *, socklen_t *), \
1546 (fd, name, namelen))
1547
1548 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
1549 (int fd, struct sockaddr *name, socklen_t *namelen), \
1550 (int, struct sockaddr *, socklen_t *), \
1551 (fd, name, namelen))
1552
1553 FDCALL(int, listen, DUALCALL_LISTEN, \
1554 (int fd, int backlog), \
1555 (int, int), \
1556 (fd, backlog))
1557
1558 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
1559 (int fd, void *buf, size_t len, int flags, \
1560 struct sockaddr *from, socklen_t *fromlen), \
1561 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
1562 (fd, buf, len, flags, from, fromlen))
1563
1564 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
1565 (int fd, const void *buf, size_t len, int flags, \
1566 const struct sockaddr *to, socklen_t tolen), \
1567 (int, const void *, size_t, int, \
1568 const struct sockaddr *, socklen_t), \
1569 (fd, buf, len, flags, to, tolen))
1570
1571 FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
1572 (int fd, struct msghdr *msg, int flags), \
1573 (int, struct msghdr *, int), \
1574 (fd, msg, flags))
1575
1576 FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
1577 (int fd, const struct msghdr *msg, int flags), \
1578 (int, const struct msghdr *, int), \
1579 (fd, msg, flags))
1580
1581 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
1582 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
1583 (int, int, int, void *, socklen_t *), \
1584 (fd, level, optn, optval, optlen))
1585
1586 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
1587 (int fd, int level, int optn, \
1588 const void *optval, socklen_t optlen), \
1589 (int, int, int, const void *, socklen_t), \
1590 (fd, level, optn, optval, optlen))
1591
1592 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
1593 (int fd, int how), \
1594 (int, int), \
1595 (fd, how))
1596
1597 #if _FORTIFY_SOURCE > 0
1598 #define STUB(fun) __ssp_weak_name(fun)
1599 ssize_t _sys_readlink(const char * __restrict, char * __restrict, size_t);
1600 ssize_t
1601 STUB(readlink)(const char * __restrict path, char * __restrict buf,
1602 size_t bufsiz)
1603 {
1604 return _sys_readlink(path, buf, bufsiz);
1605 }
1606
1607 char *_sys_getcwd(char *, size_t);
1608 char *
1609 STUB(getcwd)(char *buf, size_t size)
1610 {
1611 return _sys_getcwd(buf, size);
1612 }
1613 #else
1614 #define STUB(fun) fun
1615 #endif
1616
1617 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
1618 (int fd, void *buf, size_t buflen), \
1619 (int, void *, size_t), \
1620 (fd, buf, buflen))
1621
1622 FDCALL(ssize_t, readv, DUALCALL_READV, \
1623 (int fd, const struct iovec *iov, int iovcnt), \
1624 (int, const struct iovec *, int), \
1625 (fd, iov, iovcnt))
1626
1627 FDCALL(ssize_t, REALPREAD, DUALCALL_PREAD, \
1628 (int fd, void *buf, size_t nbytes, off_t offset), \
1629 (int, void *, size_t, off_t), \
1630 (fd, buf, nbytes, offset))
1631
1632 FDCALL(ssize_t, preadv, DUALCALL_PREADV, \
1633 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
1634 (int, const struct iovec *, int, off_t), \
1635 (fd, iov, iovcnt, offset))
1636
1637 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
1638 (int fd, const struct iovec *iov, int iovcnt), \
1639 (int, const struct iovec *, int), \
1640 (fd, iov, iovcnt))
1641
1642 FDCALL(ssize_t, REALPWRITE, DUALCALL_PWRITE, \
1643 (int fd, const void *buf, size_t nbytes, off_t offset), \
1644 (int, const void *, size_t, off_t), \
1645 (fd, buf, nbytes, offset))
1646
1647 FDCALL(ssize_t, pwritev, DUALCALL_PWRITEV, \
1648 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
1649 (int, const struct iovec *, int, off_t), \
1650 (fd, iov, iovcnt, offset))
1651
1652 FDCALL(int, REALFSTAT, DUALCALL_FSTAT, \
1653 (int fd, struct stat *sb), \
1654 (int, struct stat *), \
1655 (fd, sb))
1656
1657 FDCALL(int, fstatvfs1, DUALCALL_FSTATVFS1, \
1658 (int fd, struct statvfs *buf, int flags), \
1659 (int, struct statvfs *, int), \
1660 (fd, buf, flags))
1661
1662 FDCALL(off_t, lseek, DUALCALL_LSEEK, \
1663 (int fd, off_t offset, int whence), \
1664 (int, off_t, int), \
1665 (fd, offset, whence))
1666 __strong_alias(_lseek,lseek);
1667
1668 FDCALL(int, REALGETDENTS, DUALCALL_GETDENTS, \
1669 (int fd, char *buf, size_t nbytes), \
1670 (int, char *, size_t), \
1671 (fd, buf, nbytes))
1672
1673 FDCALL(int, fchown, DUALCALL_FCHOWN, \
1674 (int fd, uid_t owner, gid_t group), \
1675 (int, uid_t, gid_t), \
1676 (fd, owner, group))
1677
1678 FDCALL(int, fchmod, DUALCALL_FCHMOD, \
1679 (int fd, mode_t mode), \
1680 (int, mode_t), \
1681 (fd, mode))
1682
1683 FDCALL(int, ftruncate, DUALCALL_FTRUNCATE, \
1684 (int fd, off_t length), \
1685 (int, off_t), \
1686 (fd, length))
1687
1688 FDCALL(int, fsync, DUALCALL_FSYNC, \
1689 (int fd), \
1690 (int), \
1691 (fd))
1692
1693 FDCALL(int, fsync_range, DUALCALL_FSYNC_RANGE, \
1694 (int fd, int how, off_t start, off_t length), \
1695 (int, int, off_t, off_t), \
1696 (fd, how, start, length))
1697
1698 FDCALL(int, futimes, DUALCALL_FUTIMES, \
1699 (int fd, const struct timeval *tv), \
1700 (int, const struct timeval *), \
1701 (fd, tv))
1702
1703 FDCALL(int, fchflags, DUALCALL_FCHFLAGS, \
1704 (int fd, u_long flags), \
1705 (int, u_long), \
1706 (fd, flags))
1707
1708 /*
1709 * path-based selectors
1710 */
1711
1712 PATHCALL(int, REALSTAT, DUALCALL_STAT, \
1713 (const char *path, struct stat *sb), \
1714 (const char *, struct stat *), \
1715 (path, sb))
1716
1717 PATHCALL(int, REALLSTAT, DUALCALL_LSTAT, \
1718 (const char *path, struct stat *sb), \
1719 (const char *, struct stat *), \
1720 (path, sb))
1721
1722 PATHCALL(int, chown, DUALCALL_CHOWN, \
1723 (const char *path, uid_t owner, gid_t group), \
1724 (const char *, uid_t, gid_t), \
1725 (path, owner, group))
1726
1727 PATHCALL(int, lchown, DUALCALL_LCHOWN, \
1728 (const char *path, uid_t owner, gid_t group), \
1729 (const char *, uid_t, gid_t), \
1730 (path, owner, group))
1731
1732 PATHCALL(int, chmod, DUALCALL_CHMOD, \
1733 (const char *path, mode_t mode), \
1734 (const char *, mode_t), \
1735 (path, mode))
1736
1737 PATHCALL(int, lchmod, DUALCALL_LCHMOD, \
1738 (const char *path, mode_t mode), \
1739 (const char *, mode_t), \
1740 (path, mode))
1741
1742 PATHCALL(int, statvfs1, DUALCALL_STATVFS1, \
1743 (const char *path, struct statvfs *buf, int flags), \
1744 (const char *, struct statvfs *, int), \
1745 (path, buf, flags))
1746
1747 PATHCALL(int, unlink, DUALCALL_UNLINK, \
1748 (const char *path), \
1749 (const char *), \
1750 (path))
1751
1752 PATHCALL(int, symlink, DUALCALL_SYMLINK, \
1753 (const char *target, const char *path), \
1754 (const char *, const char *), \
1755 (target, path))
1756
1757 PATHCALL(ssize_t, readlink, DUALCALL_READLINK, \
1758 (const char *path, char *buf, size_t bufsiz), \
1759 (const char *, char *, size_t), \
1760 (path, buf, bufsiz))
1761
1762 PATHCALL(int, mkdir, DUALCALL_MKDIR, \
1763 (const char *path, mode_t mode), \
1764 (const char *, mode_t), \
1765 (path, mode))
1766
1767 PATHCALL(int, rmdir, DUALCALL_RMDIR, \
1768 (const char *path), \
1769 (const char *), \
1770 (path))
1771
1772 PATHCALL(int, utimes, DUALCALL_UTIMES, \
1773 (const char *path, const struct timeval *tv), \
1774 (const char *, const struct timeval *), \
1775 (path, tv))
1776
1777 PATHCALL(int, lutimes, DUALCALL_LUTIMES, \
1778 (const char *path, const struct timeval *tv), \
1779 (const char *, const struct timeval *), \
1780 (path, tv))
1781
1782 PATHCALL(int, chflags, DUALCALL_CHFLAGS, \
1783 (const char *path, u_long flags), \
1784 (const char *, u_long), \
1785 (path, flags))
1786
1787 PATHCALL(int, lchflags, DUALCALL_LCHFLAGS, \
1788 (const char *path, u_long flags), \
1789 (const char *, u_long), \
1790 (path, flags))
1791
1792 PATHCALL(int, truncate, DUALCALL_TRUNCATE, \
1793 (const char *path, off_t length), \
1794 (const char *, off_t), \
1795 (path, length))
1796
1797 /*
1798 * Note: with mount the decisive parameter is the mount
1799 * destination directory. This is because we don't really know
1800 * about the "source" directory in a generic call (and besides,
1801 * it might not even exist, cf. nfs).
1802 */
1803 PATHCALL(int, REALMOUNT, DUALCALL_MOUNT, \
1804 (const char *type, const char *path, int flags, \
1805 void *data, size_t dlen), \
1806 (const char *, const char *, int, void *, size_t), \
1807 (type, path, flags, data, dlen))
1808
1809 PATHCALL(int, unmount, DUALCALL_UNMOUNT, \
1810 (const char *path, int flags), \
1811 (const char *, int), \
1812 (path, flags))
1813