hijack.c revision 1.77 1 /* $NetBSD: hijack.c,v 1.77 2011/03/09 09:17:12 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __RCSID("$NetBSD: hijack.c,v 1.77 2011/03/09 09:17:12 pooka Exp $");
30
31 #define __ssp_weak_name(fun) _hijack_ ## fun
32
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/event.h>
36 #include <sys/ioctl.h>
37 #include <sys/mman.h>
38 #include <sys/mount.h>
39 #include <sys/poll.h>
40 #include <sys/socket.h>
41 #include <sys/statvfs.h>
42
43 #include <rump/rumpclient.h>
44 #include <rump/rump_syscalls.h>
45
46 #include <assert.h>
47 #include <dlfcn.h>
48 #include <err.h>
49 #include <errno.h>
50 #include <fcntl.h>
51 #include <poll.h>
52 #include <pthread.h>
53 #include <signal.h>
54 #include <stdarg.h>
55 #include <stdbool.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60 #include <unistd.h>
61
62 #include "hijack.h"
63
64 enum dualcall {
65 DUALCALL_WRITE, DUALCALL_WRITEV, DUALCALL_PWRITE, DUALCALL_PWRITEV,
66 DUALCALL_IOCTL, DUALCALL_FCNTL,
67 DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
68 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
69 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
70 DUALCALL_SENDTO, DUALCALL_SENDMSG,
71 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
72 DUALCALL_SHUTDOWN,
73 DUALCALL_READ, DUALCALL_READV, DUALCALL_PREAD, DUALCALL_PREADV,
74 DUALCALL_DUP2,
75 DUALCALL_CLOSE,
76 DUALCALL_POLLTS,
77 DUALCALL_KEVENT,
78 DUALCALL_STAT, DUALCALL_LSTAT, DUALCALL_FSTAT,
79 DUALCALL_CHMOD, DUALCALL_LCHMOD, DUALCALL_FCHMOD,
80 DUALCALL_CHOWN, DUALCALL_LCHOWN, DUALCALL_FCHOWN,
81 DUALCALL_OPEN,
82 DUALCALL_STATVFS1, DUALCALL_FSTATVFS1,
83 DUALCALL_CHDIR, DUALCALL_FCHDIR,
84 DUALCALL_LSEEK,
85 DUALCALL_GETDENTS,
86 DUALCALL_UNLINK, DUALCALL_SYMLINK, DUALCALL_READLINK,
87 DUALCALL_RENAME,
88 DUALCALL_MKDIR, DUALCALL_RMDIR,
89 DUALCALL_UTIMES, DUALCALL_LUTIMES, DUALCALL_FUTIMES,
90 DUALCALL_TRUNCATE, DUALCALL_FTRUNCATE,
91 DUALCALL_FSYNC, DUALCALL_FSYNC_RANGE,
92 DUALCALL_MOUNT, DUALCALL_UNMOUNT,
93 DUALCALL___GETCWD,
94 DUALCALL_CHFLAGS, DUALCALL_LCHFLAGS, DUALCALL_FCHFLAGS,
95 DUALCALL_ACCESS,
96 DUALCALL_MKNOD,
97 DUALCALL__NUM
98 };
99
100 #define RSYS_STRING(a) __STRING(a)
101 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
102
103 /*
104 * Would be nice to get this automatically in sync with libc.
105 * Also, this does not work for compat-using binaries!
106 */
107 #if !__NetBSD_Prereq__(5,99,7)
108 #define REALSELECT select
109 #define REALPOLLTS pollts
110 #define REALKEVENT kevent
111 #define REALSTAT __stat30
112 #define REALLSTAT __lstat30
113 #define REALFSTAT __fstat30
114 #define REALUTIMES utimes
115 #define REALLUTIMES lutimes
116 #define REALFUTIMES futimes
117 #define REALMKNOD mknod
118 #else
119 #define REALSELECT _sys___select50
120 #define REALPOLLTS _sys___pollts50
121 #define REALKEVENT _sys___kevent50
122 #define REALSTAT __stat50
123 #define REALLSTAT __lstat50
124 #define REALFSTAT __fstat50
125 #define REALUTIMES __utimes50
126 #define REALLUTIMES __lutimes50
127 #define REALFUTIMES __futimes50
128 #define REALMKNOD __mknod50
129 #endif
130 #define REALREAD _sys_read
131 #define REALPREAD _sys_pread
132 #define REALPWRITE _sys_pwrite
133 #define REALGETDENTS __getdents30
134 #define REALMOUNT __mount50
135
136 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
137 int REALPOLLTS(struct pollfd *, nfds_t,
138 const struct timespec *, const sigset_t *);
139 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
140 const struct timespec *);
141 ssize_t REALREAD(int, void *, size_t);
142 ssize_t REALPREAD(int, void *, size_t, off_t);
143 ssize_t REALPWRITE(int, const void *, size_t, off_t);
144 int REALSTAT(const char *, struct stat *);
145 int REALLSTAT(const char *, struct stat *);
146 int REALFSTAT(int, struct stat *);
147 int REALGETDENTS(int, char *, size_t);
148 int REALUTIMES(const char *, const struct timeval [2]);
149 int REALLUTIMES(const char *, const struct timeval [2]);
150 int REALFUTIMES(int, const struct timeval [2]);
151 int REALMOUNT(const char *, const char *, int, void *, size_t);
152 int __getcwd(char *, size_t);
153 int REALMKNOD(const char *, mode_t, dev_t);
154
155 #define S(a) __STRING(a)
156 struct sysnames {
157 enum dualcall scm_callnum;
158 const char *scm_hostname;
159 const char *scm_rumpname;
160 } syscnames[] = {
161 { DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
162 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
163 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
164 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
165 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
166 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
167 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
168 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
169 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
170 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
171 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
172 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
173 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
174 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
175 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
176 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
177 { DUALCALL_PREAD, S(REALPREAD), RSYS_NAME(PREAD) },
178 { DUALCALL_PREADV, "preadv", RSYS_NAME(PREADV) },
179 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
180 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
181 { DUALCALL_PWRITE, S(REALPWRITE), RSYS_NAME(PWRITE) },
182 { DUALCALL_PWRITEV, "pwritev", RSYS_NAME(PWRITEV) },
183 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
184 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
185 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
186 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
187 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
188 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
189 { DUALCALL_STAT, S(REALSTAT), RSYS_NAME(STAT) },
190 { DUALCALL_LSTAT, S(REALLSTAT), RSYS_NAME(LSTAT) },
191 { DUALCALL_FSTAT, S(REALFSTAT), RSYS_NAME(FSTAT) },
192 { DUALCALL_CHOWN, "chown", RSYS_NAME(CHOWN) },
193 { DUALCALL_LCHOWN, "lchown", RSYS_NAME(LCHOWN) },
194 { DUALCALL_FCHOWN, "fchown", RSYS_NAME(FCHOWN) },
195 { DUALCALL_CHMOD, "chmod", RSYS_NAME(CHMOD) },
196 { DUALCALL_LCHMOD, "lchmod", RSYS_NAME(LCHMOD) },
197 { DUALCALL_FCHMOD, "fchmod", RSYS_NAME(FCHMOD) },
198 { DUALCALL_UTIMES, S(REALUTIMES), RSYS_NAME(UTIMES) },
199 { DUALCALL_LUTIMES, S(REALLUTIMES), RSYS_NAME(LUTIMES) },
200 { DUALCALL_FUTIMES, S(REALFUTIMES), RSYS_NAME(FUTIMES) },
201 { DUALCALL_OPEN, "open", RSYS_NAME(OPEN) },
202 { DUALCALL_STATVFS1, "statvfs1", RSYS_NAME(STATVFS1) },
203 { DUALCALL_FSTATVFS1, "fstatvfs1", RSYS_NAME(FSTATVFS1) },
204 { DUALCALL_CHDIR, "chdir", RSYS_NAME(CHDIR) },
205 { DUALCALL_FCHDIR, "fchdir", RSYS_NAME(FCHDIR) },
206 { DUALCALL_LSEEK, "lseek", RSYS_NAME(LSEEK) },
207 { DUALCALL_GETDENTS, "__getdents30", RSYS_NAME(GETDENTS) },
208 { DUALCALL_UNLINK, "unlink", RSYS_NAME(UNLINK) },
209 { DUALCALL_SYMLINK, "symlink", RSYS_NAME(SYMLINK) },
210 { DUALCALL_READLINK, "readlink", RSYS_NAME(READLINK) },
211 { DUALCALL_RENAME, "rename", RSYS_NAME(RENAME) },
212 { DUALCALL_MKDIR, "mkdir", RSYS_NAME(MKDIR) },
213 { DUALCALL_RMDIR, "rmdir", RSYS_NAME(RMDIR) },
214 { DUALCALL_TRUNCATE, "truncate", RSYS_NAME(TRUNCATE) },
215 { DUALCALL_FTRUNCATE, "ftruncate", RSYS_NAME(FTRUNCATE) },
216 { DUALCALL_FSYNC, "fsync", RSYS_NAME(FSYNC) },
217 { DUALCALL_FSYNC_RANGE, "fsync_range", RSYS_NAME(FSYNC_RANGE) },
218 { DUALCALL_MOUNT, S(REALMOUNT), RSYS_NAME(MOUNT) },
219 { DUALCALL_UNMOUNT, "unmount", RSYS_NAME(UNMOUNT) },
220 { DUALCALL___GETCWD, "__getcwd", RSYS_NAME(__GETCWD) },
221 { DUALCALL_CHFLAGS, "chflags", RSYS_NAME(CHFLAGS) },
222 { DUALCALL_LCHFLAGS, "lchflags", RSYS_NAME(LCHFLAGS) },
223 { DUALCALL_FCHFLAGS, "fchflags", RSYS_NAME(FCHFLAGS) },
224 { DUALCALL_ACCESS, "access", RSYS_NAME(ACCESS) },
225 { DUALCALL_MKNOD, S(REALMKNOD), RSYS_NAME(MKNOD) },
226 };
227 #undef S
228
229 struct bothsys {
230 void *bs_host;
231 void *bs_rump;
232 } syscalls[DUALCALL__NUM];
233 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
234
235 static pid_t (*host_fork)(void);
236 static int (*host_daemon)(int, int);
237 static void * (*host_mmap)(void *, size_t, int, int, int, off_t);
238
239 /*
240 * This tracks if our process is in a subdirectory of /rump.
241 * It's preserved over exec.
242 */
243 static bool pwdinrump;
244
245 enum pathtype { PATH_HOST, PATH_RUMP, PATH_RUMPBLANKET };
246
247 static bool fd_isrump(int);
248 static enum pathtype path_isrump(const char *);
249
250 /*
251 * Maintain a mapping table for the usual dup2 suspects.
252 * Could use atomic ops to operate on dup2vec, but an application
253 * racing there is not well-defined, so don't bother.
254 */
255 /* note: you cannot change this without editing the env-passing code */
256 #define DUP2HIGH 2
257 static uint32_t dup2vec[DUP2HIGH+1];
258 #define DUP2BIT (1<<31)
259 #define DUP2ALIAS (1<<30)
260 #define DUP2FDMASK ((1<<30)-1)
261
262 static bool
263 isdup2d(int fd)
264 {
265
266 return fd <= DUP2HIGH && fd >= 0 && dup2vec[fd] & DUP2BIT;
267 }
268
269 static int
270 mapdup2(int hostfd)
271 {
272
273 _DIAGASSERT(isdup2d(hostfd));
274 return dup2vec[hostfd] & DUP2FDMASK;
275 }
276
277 static int
278 unmapdup2(int rumpfd)
279 {
280 int i;
281
282 for (i = 0; i <= DUP2HIGH; i++) {
283 if (dup2vec[i] & DUP2BIT &&
284 (dup2vec[i] & DUP2FDMASK) == (unsigned)rumpfd)
285 return i;
286 }
287 return -1;
288 }
289
290 static void
291 setdup2(int hostfd, int rumpfd)
292 {
293
294 if (hostfd > DUP2HIGH) {
295 _DIAGASSERT(0);
296 return;
297 }
298
299 dup2vec[hostfd] = DUP2BIT | DUP2ALIAS | rumpfd;
300 }
301
302 static void
303 clrdup2(int hostfd)
304 {
305
306 if (hostfd > DUP2HIGH) {
307 _DIAGASSERT(0);
308 return;
309 }
310
311 dup2vec[hostfd] = 0;
312 }
313
314 static bool
315 killdup2alias(int rumpfd)
316 {
317 int hostfd;
318
319 if ((hostfd = unmapdup2(rumpfd)) == -1)
320 return false;
321
322 if (dup2vec[hostfd] & DUP2ALIAS) {
323 dup2vec[hostfd] &= ~DUP2ALIAS;
324 return true;
325 }
326 return false;
327 }
328
329 //#define DEBUGJACK
330 #ifdef DEBUGJACK
331 #define DPRINTF(x) mydprintf x
332 static void
333 mydprintf(const char *fmt, ...)
334 {
335 va_list ap;
336
337 if (isdup2d(STDERR_FILENO))
338 return;
339
340 va_start(ap, fmt);
341 vfprintf(stderr, fmt, ap);
342 va_end(ap);
343 }
344
345 static const char *
346 whichfd(int fd)
347 {
348
349 if (fd == -1)
350 return "-1";
351 else if (fd_isrump(fd))
352 return "rump";
353 else
354 return "host";
355 }
356
357 static const char *
358 whichpath(const char *path)
359 {
360
361 if (path_isrump(path))
362 return "rump";
363 else
364 return "host";
365 }
366
367 #else
368 #define DPRINTF(x)
369 #endif
370
371 #define FDCALL(type, name, rcname, args, proto, vars) \
372 type name args \
373 { \
374 type (*fun) proto; \
375 \
376 DPRINTF(("%s -> %d (%s)\n", __STRING(name), fd, whichfd(fd))); \
377 if (fd_isrump(fd)) { \
378 fun = syscalls[rcname].bs_rump; \
379 fd = fd_host2rump(fd); \
380 } else { \
381 fun = syscalls[rcname].bs_host; \
382 } \
383 \
384 return fun vars; \
385 }
386
387 #define PATHCALL(type, name, rcname, args, proto, vars) \
388 type name args \
389 { \
390 type (*fun) proto; \
391 enum pathtype pt; \
392 \
393 DPRINTF(("%s -> %s (%s)\n", __STRING(name), path, \
394 whichpath(path))); \
395 if ((pt = path_isrump(path)) != PATH_HOST) { \
396 fun = syscalls[rcname].bs_rump; \
397 if (pt == PATH_RUMP) \
398 path = path_host2rump(path); \
399 } else { \
400 fun = syscalls[rcname].bs_host; \
401 } \
402 \
403 return fun vars; \
404 }
405
406 /*
407 * These variables are set from the RUMPHIJACK string and control
408 * which operations can product rump kernel file descriptors.
409 * This should be easily extendable for future needs.
410 */
411 #define RUMPHIJACK_DEFAULT "path=/rump,socket=all:nolocal"
412 static bool rumpsockets[PF_MAX];
413 static const char *rumpprefix;
414 static size_t rumpprefixlen;
415
416 static struct {
417 int pf;
418 const char *name;
419 } socketmap[] = {
420 { PF_LOCAL, "local" },
421 { PF_INET, "inet" },
422 { PF_LINK, "link" },
423 #ifdef PF_OROUTE
424 { PF_OROUTE, "oroute" },
425 #endif
426 { PF_ROUTE, "route" },
427 { PF_INET6, "inet6" },
428 #ifdef PF_MPLS
429 { PF_MPLS, "mpls" },
430 #endif
431 { -1, NULL }
432 };
433
434 static void
435 sockparser(char *buf)
436 {
437 char *p, *l;
438 bool value;
439 int i;
440
441 /* if "all" is present, it must be specified first */
442 if (strncmp(buf, "all", strlen("all")) == 0) {
443 for (i = 0; i < (int)__arraycount(rumpsockets); i++) {
444 rumpsockets[i] = true;
445 }
446 buf += strlen("all");
447 if (*buf == ':')
448 buf++;
449 }
450
451 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
452 value = true;
453 if (strncmp(p, "no", strlen("no")) == 0) {
454 value = false;
455 p += strlen("no");
456 }
457
458 for (i = 0; socketmap[i].name; i++) {
459 if (strcmp(p, socketmap[i].name) == 0) {
460 rumpsockets[socketmap[i].pf] = value;
461 break;
462 }
463 }
464 if (socketmap[i].name == NULL) {
465 warnx("invalid socket specifier %s", p);
466 }
467 }
468 }
469
470 static void
471 pathparser(char *buf)
472 {
473
474 /* sanity-check */
475 if (*buf != '/')
476 errx(1, "hijack path specifier must begin with ``/''");
477 rumpprefixlen = strlen(buf);
478 if (rumpprefixlen < 2)
479 errx(1, "invalid hijack prefix: %s", buf);
480 if (buf[rumpprefixlen-1] == '/' && strspn(buf, "/") != rumpprefixlen)
481 errx(1, "hijack prefix may end in slash only if pure "
482 "slash, gave %s", buf);
483
484 if ((rumpprefix = strdup(buf)) == NULL)
485 err(1, "strdup");
486 rumpprefixlen = strlen(rumpprefix);
487 }
488
489 static struct blanket {
490 const char *pfx;
491 size_t len;
492 } *blanket;
493 static int nblanket;
494
495 static void
496 blanketparser(char *buf)
497 {
498 char *p, *l;
499 int i;
500
501 for (nblanket = 0, p = buf; p; p = strchr(p+1, ':'), nblanket++)
502 continue;
503
504 blanket = malloc(nblanket * sizeof(*blanket));
505 if (blanket == NULL)
506 err(1, "alloc blanket %d", nblanket);
507
508 for (p = strtok_r(buf, ":", &l), i = 0; p;
509 p = strtok_r(NULL, ":", &l), i++) {
510 blanket[i].pfx = strdup(p);
511 if (blanket[i].pfx == NULL)
512 err(1, "strdup blanket");
513 blanket[i].len = strlen(p);
514
515 if (blanket[i].len == 0 || *blanket[i].pfx != '/')
516 errx(1, "invalid blanket specifier %s", p);
517 if (*(blanket[i].pfx + blanket[i].len-1) == '/')
518 errx(1, "invalid blanket specifier %s", p);
519 }
520 }
521
522 static struct {
523 void (*parsefn)(char *);
524 const char *name;
525 } hijackparse[] = {
526 { sockparser, "socket" },
527 { pathparser, "path" },
528 { blanketparser, "blanket" },
529 { NULL, NULL },
530 };
531
532 static void
533 parsehijack(char *hijack)
534 {
535 char *p, *p2, *l;
536 const char *hijackcopy;
537 int i;
538
539 if ((hijackcopy = strdup(hijack)) == NULL)
540 err(1, "strdup");
541
542 /* disable everything explicitly */
543 for (i = 0; i < PF_MAX; i++)
544 rumpsockets[i] = false;
545
546 for (p = strtok_r(hijack, ",", &l); p; p = strtok_r(NULL, ",", &l)) {
547 p2 = strchr(p, '=');
548 if (!p2)
549 errx(1, "invalid hijack specifier: %s", hijackcopy);
550
551 for (i = 0; hijackparse[i].parsefn; i++) {
552 if (strncmp(hijackparse[i].name, p,
553 (size_t)(p2-p)) == 0) {
554 hijackparse[i].parsefn(p2+1);
555 break;
556 }
557 }
558 }
559
560 }
561
562 static void __attribute__((constructor))
563 rcinit(void)
564 {
565 char buf[1024];
566 unsigned i, j;
567
568 host_fork = dlsym(RTLD_NEXT, "fork");
569 host_daemon = dlsym(RTLD_NEXT, "daemon");
570 host_mmap = dlsym(RTLD_NEXT, "mmap");
571
572 /*
573 * In theory cannot print anything during lookups because
574 * we might not have the call vector set up. so, the errx()
575 * is a bit of a strech, but it might work.
576 */
577
578 for (i = 0; i < DUALCALL__NUM; i++) {
579 /* build runtime O(1) access */
580 for (j = 0; j < __arraycount(syscnames); j++) {
581 if (syscnames[j].scm_callnum == i)
582 break;
583 }
584
585 if (j == __arraycount(syscnames))
586 errx(1, "rumphijack error: syscall pos %d missing", i);
587
588 syscalls[i].bs_host = dlsym(RTLD_NEXT,
589 syscnames[j].scm_hostname);
590 if (syscalls[i].bs_host == NULL)
591 errx(1, "hostcall %s not found!",
592 syscnames[j].scm_hostname);
593
594 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
595 syscnames[j].scm_rumpname);
596 if (syscalls[i].bs_rump == NULL)
597 errx(1, "rumpcall %s not found!",
598 syscnames[j].scm_rumpname);
599 }
600
601 if (rumpclient_init() == -1)
602 err(1, "rumpclient init");
603
604 /* check which syscalls we're supposed to hijack */
605 if (getenv_r("RUMPHIJACK", buf, sizeof(buf)) == -1) {
606 strcpy(buf, RUMPHIJACK_DEFAULT);
607 }
608 parsehijack(buf);
609
610 /* set client persistence level */
611 if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
612 if (strcmp(buf, "die") == 0)
613 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
614 else if (strcmp(buf, "inftime") == 0)
615 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
616 else if (strcmp(buf, "once") == 0)
617 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
618 else {
619 time_t timeout;
620 char *ep;
621
622 timeout = (time_t)strtoll(buf, &ep, 10);
623 if (timeout <= 0 || ep != buf + strlen(buf))
624 errx(1, "RUMPHIJACK_RETRYCONNECT must be "
625 "keyword or integer, got: %s", buf);
626
627 rumpclient_setconnretry(timeout);
628 }
629 }
630
631 if (getenv_r("RUMPHIJACK__DUP2INFO", buf, sizeof(buf)) == 0) {
632 if (sscanf(buf, "%u,%u,%u",
633 &dup2vec[0], &dup2vec[1], &dup2vec[2]) != 3) {
634 warnx("invalid dup2mask: %s", buf);
635 memset(dup2vec, 0, sizeof(dup2vec));
636 }
637 unsetenv("RUMPHIJACK__DUP2INFO");
638 }
639 if (getenv_r("RUMPHIJACK__PWDINRUMP", buf, sizeof(buf)) == 0) {
640 pwdinrump = true;
641 unsetenv("RUMPHIJACK__PWDINRUMP");
642 }
643 }
644
645 /* Need runtime selection. low for now due to FD_SETSIZE */
646 #define HIJACK_FDOFF 128
647
648 static int
649 fd_rump2host(int fd)
650 {
651
652 if (fd == -1)
653 return fd;
654 return fd + HIJACK_FDOFF;
655 }
656
657 static int
658 fd_rump2host_withdup(int fd)
659 {
660 int hfd;
661
662 _DIAGASSERT(fd != -1);
663 hfd = unmapdup2(fd);
664 if (hfd != -1) {
665 _DIAGASSERT(hfd <= DUP2HIGH);
666 return hfd;
667 }
668 return fd_rump2host(fd);
669 }
670
671 static int
672 fd_host2rump(int fd)
673 {
674
675 if (!isdup2d(fd))
676 return fd - HIJACK_FDOFF;
677 else
678 return mapdup2(fd);
679 }
680
681 static bool
682 fd_isrump(int fd)
683 {
684
685 return isdup2d(fd) || fd >= HIJACK_FDOFF;
686 }
687
688 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= HIJACK_FDOFF)
689
690 static enum pathtype
691 path_isrump(const char *path)
692 {
693 size_t plen;
694 int i;
695
696 if (rumpprefix == NULL && nblanket == 0)
697 return PATH_HOST;
698
699 if (*path == '/') {
700 plen = strlen(path);
701 if (rumpprefix && plen >= rumpprefixlen) {
702 if (strncmp(path, rumpprefix, rumpprefixlen) == 0
703 && (plen == rumpprefixlen
704 || *(path + rumpprefixlen) == '/')) {
705 return PATH_RUMP;
706 }
707 }
708 for (i = 0; i < nblanket; i++) {
709 if (strncmp(path, blanket[i].pfx, blanket[i].len) == 0)
710 return PATH_RUMPBLANKET;
711 }
712
713 return PATH_HOST;
714 } else {
715 return pwdinrump ? PATH_RUMP : PATH_HOST;
716 }
717 }
718
719 static const char *rootpath = "/";
720 static const char *
721 path_host2rump(const char *path)
722 {
723 const char *rv;
724
725 if (*path == '/') {
726 rv = path + rumpprefixlen;
727 if (*rv == '\0')
728 rv = rootpath;
729 } else {
730 rv = path;
731 }
732
733 return rv;
734 }
735
736 static int
737 dodup(int oldd, int minfd)
738 {
739 int (*op_fcntl)(int, int, ...);
740 int newd;
741 int isrump;
742
743 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
744 if (fd_isrump(oldd)) {
745 op_fcntl = GETSYSCALL(rump, FCNTL);
746 oldd = fd_host2rump(oldd);
747 if (minfd >= HIJACK_FDOFF)
748 minfd -= HIJACK_FDOFF;
749 isrump = 1;
750 } else {
751 op_fcntl = GETSYSCALL(host, FCNTL);
752 isrump = 0;
753 }
754
755 newd = op_fcntl(oldd, F_DUPFD, minfd);
756
757 if (isrump)
758 newd = fd_rump2host(newd);
759 DPRINTF(("dup <- %d\n", newd));
760
761 return newd;
762 }
763
764 /*
765 * dup a host file descriptor so that it doesn't collide with the dup2mask
766 */
767 static int
768 fd_dupgood(int fd)
769 {
770 int (*op_fcntl)(int, int, ...) = GETSYSCALL(host, FCNTL);
771 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
772 int ofd, i;
773
774 for (i = 1; isdup2d(fd); i++) {
775 ofd = fd;
776 fd = op_fcntl(ofd, F_DUPFD, i);
777 op_close(ofd);
778 }
779
780 return fd;
781 }
782
783 int
784 open(const char *path, int flags, ...)
785 {
786 int (*op_open)(const char *, int, ...);
787 bool isrump;
788 va_list ap;
789 enum pathtype pt;
790 int fd;
791
792 DPRINTF(("open -> %s (%s)\n", path, whichpath(path)));
793
794 if ((pt = path_isrump(path)) != PATH_HOST) {
795 if (pt == PATH_RUMP)
796 path = path_host2rump(path);
797 op_open = GETSYSCALL(rump, OPEN);
798 isrump = true;
799 } else {
800 op_open = GETSYSCALL(host, OPEN);
801 isrump = false;
802 }
803
804 va_start(ap, flags);
805 fd = op_open(path, flags, va_arg(ap, mode_t));
806 va_end(ap);
807
808 if (isrump)
809 fd = fd_rump2host(fd);
810 else
811 fd = fd_dupgood(fd);
812
813 DPRINTF(("open <- %d (%s)\n", fd, whichfd(fd)));
814 return fd;
815 }
816
817 int
818 chdir(const char *path)
819 {
820 int (*op_chdir)(const char *);
821 enum pathtype pt;
822 int rv;
823
824 if ((pt = path_isrump(path)) != PATH_HOST) {
825 op_chdir = GETSYSCALL(rump, CHDIR);
826 if (pt == PATH_RUMP)
827 path = path_host2rump(path);
828 } else {
829 op_chdir = GETSYSCALL(host, CHDIR);
830 }
831
832 rv = op_chdir(path);
833 if (rv == 0)
834 pwdinrump = pt != PATH_HOST;
835
836 return rv;
837 }
838
839 int
840 fchdir(int fd)
841 {
842 int (*op_fchdir)(int);
843 bool isrump;
844 int rv;
845
846 if (fd_isrump(fd)) {
847 op_fchdir = GETSYSCALL(rump, FCHDIR);
848 isrump = true;
849 fd = fd_host2rump(fd);
850 } else {
851 op_fchdir = GETSYSCALL(host, FCHDIR);
852 isrump = false;
853 }
854
855 rv = op_fchdir(fd);
856 if (rv == 0) {
857 pwdinrump = isrump;
858 }
859
860 return rv;
861 }
862
863 int
864 __getcwd(char *bufp, size_t len)
865 {
866 int (*op___getcwd)(char *, size_t);
867 size_t prefixgap;
868 bool iamslash;
869 int rv;
870
871 if (pwdinrump && rumpprefix) {
872 if (rumpprefix[rumpprefixlen-1] == '/')
873 iamslash = true;
874 else
875 iamslash = false;
876
877 if (iamslash)
878 prefixgap = rumpprefixlen - 1; /* ``//+path'' */
879 else
880 prefixgap = rumpprefixlen; /* ``/pfx+/path'' */
881 if (len <= prefixgap) {
882 errno = ERANGE;
883 return -1;
884 }
885
886 op___getcwd = GETSYSCALL(rump, __GETCWD);
887 rv = op___getcwd(bufp + prefixgap, len - prefixgap);
888 if (rv == -1)
889 return rv;
890
891 /* augment the "/" part only for a non-root path */
892 memcpy(bufp, rumpprefix, rumpprefixlen);
893
894 /* append / only to non-root cwd */
895 if (rv != 2)
896 bufp[prefixgap] = '/';
897
898 /* don't append extra slash in the purely-slash case */
899 if (rv == 2 && !iamslash)
900 bufp[rumpprefixlen] = '\0';
901 } else if (pwdinrump) {
902 /* assume blanket. we can't provide a prefix here */
903 op___getcwd = GETSYSCALL(rump, __GETCWD);
904 rv = op___getcwd(bufp, len);
905 } else {
906 op___getcwd = GETSYSCALL(host, __GETCWD);
907 rv = op___getcwd(bufp, len);
908 }
909
910 return rv;
911 }
912
913 int
914 rename(const char *from, const char *to)
915 {
916 int (*op_rename)(const char *, const char *);
917 enum pathtype ptf, ptt;
918
919 if ((ptf = path_isrump(from)) != PATH_HOST) {
920 if ((ptt = path_isrump(to)) == PATH_HOST) {
921 errno = EXDEV;
922 return -1;
923 }
924
925 if (ptf == PATH_RUMP)
926 from = path_host2rump(from);
927 if (ptt == PATH_RUMP)
928 to = path_host2rump(to);
929 op_rename = GETSYSCALL(rump, RENAME);
930 } else {
931 if (path_isrump(to) != PATH_HOST) {
932 errno = EXDEV;
933 return -1;
934 }
935
936 op_rename = GETSYSCALL(host, RENAME);
937 }
938
939 return op_rename(from, to);
940 }
941
942 int __socket30(int, int, int);
943 int
944 __socket30(int domain, int type, int protocol)
945 {
946 int (*op_socket)(int, int, int);
947 int fd;
948 bool isrump;
949
950 isrump = domain < PF_MAX && rumpsockets[domain];
951
952 if (isrump)
953 op_socket = GETSYSCALL(rump, SOCKET);
954 else
955 op_socket = GETSYSCALL(host, SOCKET);
956 fd = op_socket(domain, type, protocol);
957
958 if (isrump)
959 fd = fd_rump2host(fd);
960 else
961 fd = fd_dupgood(fd);
962 DPRINTF(("socket <- %d\n", fd));
963
964 return fd;
965 }
966
967 int
968 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
969 {
970 int (*op_accept)(int, struct sockaddr *, socklen_t *);
971 int fd;
972 bool isrump;
973
974 isrump = fd_isrump(s);
975
976 DPRINTF(("accept -> %d", s));
977 if (isrump) {
978 op_accept = GETSYSCALL(rump, ACCEPT);
979 s = fd_host2rump(s);
980 } else {
981 op_accept = GETSYSCALL(host, ACCEPT);
982 }
983 fd = op_accept(s, addr, addrlen);
984 if (fd != -1 && isrump)
985 fd = fd_rump2host(fd);
986 else
987 fd = fd_dupgood(fd);
988
989 DPRINTF((" <- %d\n", fd));
990
991 return fd;
992 }
993
994 /*
995 * ioctl and fcntl are varargs calls and need special treatment
996 */
997 int
998 ioctl(int fd, unsigned long cmd, ...)
999 {
1000 int (*op_ioctl)(int, unsigned long cmd, ...);
1001 va_list ap;
1002 int rv;
1003
1004 DPRINTF(("ioctl -> %d\n", fd));
1005 if (fd_isrump(fd)) {
1006 fd = fd_host2rump(fd);
1007 op_ioctl = GETSYSCALL(rump, IOCTL);
1008 } else {
1009 op_ioctl = GETSYSCALL(host, IOCTL);
1010 }
1011
1012 va_start(ap, cmd);
1013 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
1014 va_end(ap);
1015 return rv;
1016 }
1017
1018 int
1019 fcntl(int fd, int cmd, ...)
1020 {
1021 int (*op_fcntl)(int, int, ...);
1022 va_list ap;
1023 int rv, minfd, i, maxdup2;
1024
1025 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
1026
1027 switch (cmd) {
1028 case F_DUPFD:
1029 va_start(ap, cmd);
1030 minfd = va_arg(ap, int);
1031 va_end(ap);
1032 return dodup(fd, minfd);
1033
1034 case F_CLOSEM:
1035 /*
1036 * So, if fd < HIJACKOFF, we want to do a host closem.
1037 */
1038
1039 if (fd < HIJACK_FDOFF) {
1040 int closemfd = fd;
1041
1042 if (rumpclient__closenotify(&closemfd,
1043 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
1044 return -1;
1045 op_fcntl = GETSYSCALL(host, FCNTL);
1046 rv = op_fcntl(closemfd, cmd);
1047 if (rv)
1048 return rv;
1049 }
1050
1051 /*
1052 * Additionally, we want to do a rump closem, but only
1053 * for the file descriptors not dup2'd.
1054 */
1055
1056 for (i = 0, maxdup2 = 0; i <= DUP2HIGH; i++) {
1057 if (dup2vec[i] & DUP2BIT) {
1058 int val;
1059
1060 val = dup2vec[i] & DUP2FDMASK;
1061 maxdup2 = MAX(val, maxdup2);
1062 }
1063 }
1064
1065 if (fd >= HIJACK_FDOFF)
1066 fd -= HIJACK_FDOFF;
1067 else
1068 fd = 0;
1069 fd = MAX(maxdup2+1, fd);
1070
1071 /* hmm, maybe we should close rump fd's not within dup2mask? */
1072 return rump_sys_fcntl(fd, F_CLOSEM);
1073
1074 case F_MAXFD:
1075 /*
1076 * For maxfd, if there's a rump kernel fd, return
1077 * it hostified. Otherwise, return host's MAXFD
1078 * return value.
1079 */
1080 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
1081 /*
1082 * This might go a little wrong in case
1083 * of dup2 to [012], but I'm not sure if
1084 * there's a justification for tracking
1085 * that info. Consider e.g.
1086 * dup2(rumpfd, 2) followed by rump_sys_open()
1087 * returning 1. We should return 1+HIJACKOFF,
1088 * not 2+HIJACKOFF. However, if [01] is not
1089 * open, the correct return value is 2.
1090 */
1091 return fd_rump2host(fd);
1092 } else {
1093 op_fcntl = GETSYSCALL(host, FCNTL);
1094 return op_fcntl(fd, F_MAXFD);
1095 }
1096 /*NOTREACHED*/
1097
1098 default:
1099 if (fd_isrump(fd)) {
1100 fd = fd_host2rump(fd);
1101 op_fcntl = GETSYSCALL(rump, FCNTL);
1102 } else {
1103 op_fcntl = GETSYSCALL(host, FCNTL);
1104 }
1105
1106 va_start(ap, cmd);
1107 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
1108 va_end(ap);
1109 return rv;
1110 }
1111 /*NOTREACHED*/
1112 }
1113
1114 int
1115 close(int fd)
1116 {
1117 int (*op_close)(int);
1118 int rv;
1119
1120 DPRINTF(("close -> %d\n", fd));
1121 if (fd_isrump(fd)) {
1122 bool undup2 = false;
1123 int ofd;
1124
1125 if (isdup2d(ofd = fd)) {
1126 undup2 = true;
1127 }
1128
1129 fd = fd_host2rump(fd);
1130 if (!undup2 && killdup2alias(fd)) {
1131 return 0;
1132 }
1133
1134 op_close = GETSYSCALL(rump, CLOSE);
1135 rv = op_close(fd);
1136 if (rv == 0 && undup2) {
1137 clrdup2(ofd);
1138 }
1139 } else {
1140 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
1141 return -1;
1142 op_close = GETSYSCALL(host, CLOSE);
1143 rv = op_close(fd);
1144 }
1145
1146 return rv;
1147 }
1148
1149 /*
1150 * write cannot issue a standard debug printf due to recursion
1151 */
1152 ssize_t
1153 write(int fd, const void *buf, size_t blen)
1154 {
1155 ssize_t (*op_write)(int, const void *, size_t);
1156
1157 if (fd_isrump(fd)) {
1158 fd = fd_host2rump(fd);
1159 op_write = GETSYSCALL(rump, WRITE);
1160 } else {
1161 op_write = GETSYSCALL(host, WRITE);
1162 }
1163
1164 return op_write(fd, buf, blen);
1165 }
1166
1167 /*
1168 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
1169 * many programs do that. dup2 of a rump kernel fd to another value
1170 * not >= fdoff is an error.
1171 *
1172 * Note: cannot rump2host newd, because it is often hardcoded.
1173 */
1174 int
1175 dup2(int oldd, int newd)
1176 {
1177 int (*host_dup2)(int, int);
1178 int rv;
1179
1180 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
1181
1182 if (fd_isrump(oldd)) {
1183 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
1184
1185 /* only allow fd 0-2 for cross-kernel dup */
1186 if (!(newd >= 0 && newd <= 2 && !fd_isrump(newd))) {
1187 errno = EBADF;
1188 return -1;
1189 }
1190
1191 /* regular dup2? */
1192 if (fd_isrump(newd)) {
1193 newd = fd_host2rump(newd);
1194 rv = rump_sys_dup2(oldd, newd);
1195 return fd_rump2host(rv);
1196 }
1197
1198 /*
1199 * dup2 rump => host? just establish an
1200 * entry in the mapping table.
1201 */
1202 op_close(newd);
1203 setdup2(newd, fd_host2rump(oldd));
1204 rv = 0;
1205 } else {
1206 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
1207 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
1208 return -1;
1209 rv = host_dup2(oldd, newd);
1210 }
1211
1212 return rv;
1213 }
1214
1215 int
1216 dup(int oldd)
1217 {
1218
1219 return dodup(oldd, 0);
1220 }
1221
1222 pid_t
1223 fork()
1224 {
1225 pid_t rv;
1226
1227 DPRINTF(("fork\n"));
1228
1229 rv = rumpclient__dofork(host_fork);
1230
1231 DPRINTF(("fork returns %d\n", rv));
1232 return rv;
1233 }
1234 /* we do not have the luxury of not requiring a stackframe */
1235 __strong_alias(__vfork14,fork);
1236
1237 int
1238 daemon(int nochdir, int noclose)
1239 {
1240 struct rumpclient_fork *rf;
1241
1242 if ((rf = rumpclient_prefork()) == NULL)
1243 return -1;
1244
1245 if (host_daemon(nochdir, noclose) == -1)
1246 return -1;
1247
1248 if (rumpclient_fork_init(rf) == -1)
1249 return -1;
1250
1251 return 0;
1252 }
1253
1254 int
1255 execve(const char *path, char *const argv[], char *const envp[])
1256 {
1257 char buf[128];
1258 char *dup2str;
1259 const char *pwdinrumpstr;
1260 char **newenv;
1261 size_t nelem;
1262 int rv, sverrno;
1263 int bonus = 2, i = 0;
1264
1265 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2INFO=%u,%u,%u",
1266 dup2vec[0], dup2vec[1], dup2vec[2]);
1267 dup2str = strdup(buf);
1268 if (dup2str == NULL) {
1269 errno = ENOMEM;
1270 return -1;
1271 }
1272
1273 if (pwdinrump) {
1274 pwdinrumpstr = "RUMPHIJACK__PWDINRUMP=true";
1275 bonus++;
1276 } else {
1277 pwdinrumpstr = NULL;
1278 }
1279
1280 for (nelem = 0; envp && envp[nelem]; nelem++)
1281 continue;
1282 newenv = malloc(sizeof(*newenv) * (nelem+bonus));
1283 if (newenv == NULL) {
1284 free(dup2str);
1285 errno = ENOMEM;
1286 return -1;
1287 }
1288 memcpy(newenv, envp, nelem*sizeof(*newenv));
1289 newenv[nelem+i] = dup2str;
1290 i++;
1291
1292 if (pwdinrumpstr) {
1293 newenv[nelem+i] = __UNCONST(pwdinrumpstr);
1294 i++;
1295 }
1296 newenv[nelem+i] = NULL;
1297 _DIAGASSERT(i < bonus);
1298
1299 rv = rumpclient_exec(path, argv, newenv);
1300
1301 _DIAGASSERT(rv != 0);
1302 sverrno = errno;
1303 free(newenv);
1304 free(dup2str);
1305 errno = sverrno;
1306 return rv;
1307 }
1308
1309 /*
1310 * select is done by calling poll.
1311 */
1312 int
1313 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1314 struct timeval *timeout)
1315 {
1316 struct pollfd *pfds;
1317 struct timespec ts, *tsp = NULL;
1318 nfds_t realnfds;
1319 int i, j;
1320 int rv, incr;
1321
1322 DPRINTF(("select\n"));
1323
1324 /*
1325 * Well, first we must scan the fds to figure out how many
1326 * fds there really are. This is because up to and including
1327 * nb5 poll() silently refuses nfds > process_maxopen_fds.
1328 * Seems to be fixed in current, thank the maker.
1329 * god damn cluster...bomb.
1330 */
1331
1332 for (i = 0, realnfds = 0; i < nfds; i++) {
1333 if (readfds && FD_ISSET(i, readfds)) {
1334 realnfds++;
1335 continue;
1336 }
1337 if (writefds && FD_ISSET(i, writefds)) {
1338 realnfds++;
1339 continue;
1340 }
1341 if (exceptfds && FD_ISSET(i, exceptfds)) {
1342 realnfds++;
1343 continue;
1344 }
1345 }
1346
1347 if (realnfds) {
1348 pfds = calloc(realnfds, sizeof(*pfds));
1349 if (!pfds)
1350 return -1;
1351 } else {
1352 pfds = NULL;
1353 }
1354
1355 for (i = 0, j = 0; i < nfds; i++) {
1356 incr = 0;
1357 if (readfds && FD_ISSET(i, readfds)) {
1358 pfds[j].fd = i;
1359 pfds[j].events |= POLLIN;
1360 incr=1;
1361 }
1362 if (writefds && FD_ISSET(i, writefds)) {
1363 pfds[j].fd = i;
1364 pfds[j].events |= POLLOUT;
1365 incr=1;
1366 }
1367 if (exceptfds && FD_ISSET(i, exceptfds)) {
1368 pfds[j].fd = i;
1369 pfds[j].events |= POLLHUP|POLLERR;
1370 incr=1;
1371 }
1372 if (incr)
1373 j++;
1374 }
1375 assert(j == (int)realnfds);
1376
1377 if (timeout) {
1378 TIMEVAL_TO_TIMESPEC(timeout, &ts);
1379 tsp = &ts;
1380 }
1381 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
1382 /*
1383 * "If select() returns with an error the descriptor sets
1384 * will be unmodified"
1385 */
1386 if (rv < 0)
1387 goto out;
1388
1389 /*
1390 * zero out results (can't use FD_ZERO for the
1391 * obvious select-me-not reason). whee.
1392 *
1393 * We do this here since some software ignores the return
1394 * value of select, and hence if the timeout expires, it may
1395 * assume all input descriptors have activity.
1396 */
1397 for (i = 0; i < nfds; i++) {
1398 if (readfds)
1399 FD_CLR(i, readfds);
1400 if (writefds)
1401 FD_CLR(i, writefds);
1402 if (exceptfds)
1403 FD_CLR(i, exceptfds);
1404 }
1405 if (rv == 0)
1406 goto out;
1407
1408 /*
1409 * We have >0 fds with activity. Harvest the results.
1410 */
1411 for (i = 0; i < (int)realnfds; i++) {
1412 if (readfds) {
1413 if (pfds[i].revents & POLLIN) {
1414 FD_SET(pfds[i].fd, readfds);
1415 }
1416 }
1417 if (writefds) {
1418 if (pfds[i].revents & POLLOUT) {
1419 FD_SET(pfds[i].fd, writefds);
1420 }
1421 }
1422 if (exceptfds) {
1423 if (pfds[i].revents & (POLLHUP|POLLERR)) {
1424 FD_SET(pfds[i].fd, exceptfds);
1425 }
1426 }
1427 }
1428
1429 out:
1430 free(pfds);
1431 return rv;
1432 }
1433
1434 static void
1435 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
1436 {
1437 nfds_t i;
1438
1439 for (i = 0; i < nfds; i++) {
1440 if (fds[i].fd == -1)
1441 continue;
1442
1443 if (fd_isrump(fds[i].fd))
1444 (*rumpcall)++;
1445 else
1446 (*hostcall)++;
1447 }
1448 }
1449
1450 static void
1451 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
1452 {
1453 nfds_t i;
1454
1455 for (i = 0; i < nfds; i++) {
1456 fds[i].fd = fdadj(fds[i].fd);
1457 }
1458 }
1459
1460 /*
1461 * poll is easy as long as the call comes in the fds only in one
1462 * kernel. otherwise its quite tricky...
1463 */
1464 struct pollarg {
1465 struct pollfd *pfds;
1466 nfds_t nfds;
1467 const struct timespec *ts;
1468 const sigset_t *sigmask;
1469 int pipefd;
1470 int errnum;
1471 };
1472
1473 static void *
1474 hostpoll(void *arg)
1475 {
1476 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1477 const sigset_t *);
1478 struct pollarg *parg = arg;
1479 intptr_t rv;
1480
1481 op_pollts = GETSYSCALL(host, POLLTS);
1482 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
1483 if (rv == -1)
1484 parg->errnum = errno;
1485 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
1486
1487 return (void *)(intptr_t)rv;
1488 }
1489
1490 int
1491 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
1492 const sigset_t *sigmask)
1493 {
1494 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1495 const sigset_t *);
1496 int (*host_close)(int);
1497 int hostcall = 0, rumpcall = 0;
1498 pthread_t pt;
1499 nfds_t i;
1500 int rv;
1501
1502 DPRINTF(("poll\n"));
1503 checkpoll(fds, nfds, &hostcall, &rumpcall);
1504
1505 if (hostcall && rumpcall) {
1506 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
1507 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
1508 struct pollarg parg;
1509 uintptr_t lrv;
1510 int sverrno = 0, trv;
1511
1512 /*
1513 * ok, this is where it gets tricky. We must support
1514 * this since it's a very common operation in certain
1515 * types of software (telnet, netcat, etc). We allocate
1516 * two vectors and run two poll commands in separate
1517 * threads. Whichever returns first "wins" and the
1518 * other kernel's fds won't show activity.
1519 */
1520 rv = -1;
1521
1522 /* allocate full vector for O(n) joining after call */
1523 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
1524 if (!pfd_host)
1525 goto out;
1526 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
1527 if (!pfd_rump) {
1528 goto out;
1529 }
1530
1531 /*
1532 * then, open two pipes, one for notifications
1533 * to each kernel.
1534 *
1535 * At least the rump pipe should probably be
1536 * cached, along with the helper threads. This
1537 * should give a microbenchmark improvement (haven't
1538 * experienced a macro-level problem yet, though).
1539 */
1540 if ((rv = rump_sys_pipe(rpipe)) == -1) {
1541 sverrno = errno;
1542 }
1543 if (rv == 0 && (rv = pipe(hpipe)) == -1) {
1544 sverrno = errno;
1545 }
1546
1547 /* split vectors (or signal errors) */
1548 for (i = 0; i < nfds; i++) {
1549 int fd;
1550
1551 fds[i].revents = 0;
1552 if (fds[i].fd == -1) {
1553 pfd_host[i].fd = -1;
1554 pfd_rump[i].fd = -1;
1555 } else if (fd_isrump(fds[i].fd)) {
1556 pfd_host[i].fd = -1;
1557 fd = fd_host2rump(fds[i].fd);
1558 if (fd == rpipe[0] || fd == rpipe[1]) {
1559 fds[i].revents = POLLNVAL;
1560 if (rv != -1)
1561 rv++;
1562 }
1563 pfd_rump[i].fd = fd;
1564 pfd_rump[i].events = fds[i].events;
1565 } else {
1566 pfd_rump[i].fd = -1;
1567 fd = fds[i].fd;
1568 if (fd == hpipe[0] || fd == hpipe[1]) {
1569 fds[i].revents = POLLNVAL;
1570 if (rv != -1)
1571 rv++;
1572 }
1573 pfd_host[i].fd = fd;
1574 pfd_host[i].events = fds[i].events;
1575 }
1576 pfd_rump[i].revents = pfd_host[i].revents = 0;
1577 }
1578 if (rv) {
1579 goto out;
1580 }
1581
1582 pfd_host[nfds].fd = hpipe[0];
1583 pfd_host[nfds].events = POLLIN;
1584 pfd_rump[nfds].fd = rpipe[0];
1585 pfd_rump[nfds].events = POLLIN;
1586
1587 /*
1588 * then, create a thread to do host part and meanwhile
1589 * do rump kernel part right here
1590 */
1591
1592 parg.pfds = pfd_host;
1593 parg.nfds = nfds+1;
1594 parg.ts = ts;
1595 parg.sigmask = sigmask;
1596 parg.pipefd = rpipe[1];
1597 pthread_create(&pt, NULL, hostpoll, &parg);
1598
1599 op_pollts = GETSYSCALL(rump, POLLTS);
1600 lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
1601 sverrno = errno;
1602 write(hpipe[1], &rv, sizeof(rv));
1603 pthread_join(pt, (void *)&trv);
1604
1605 /* check who "won" and merge results */
1606 if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
1607 rv = trv;
1608
1609 for (i = 0; i < nfds; i++) {
1610 if (pfd_rump[i].fd != -1)
1611 fds[i].revents = pfd_rump[i].revents;
1612 }
1613 sverrno = parg.errnum;
1614 } else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
1615 rv = trv;
1616
1617 for (i = 0; i < nfds; i++) {
1618 if (pfd_host[i].fd != -1)
1619 fds[i].revents = pfd_host[i].revents;
1620 }
1621 } else {
1622 rv = 0;
1623 }
1624
1625 out:
1626 host_close = GETSYSCALL(host, CLOSE);
1627 if (rpipe[0] != -1)
1628 rump_sys_close(rpipe[0]);
1629 if (rpipe[1] != -1)
1630 rump_sys_close(rpipe[1]);
1631 if (hpipe[0] != -1)
1632 host_close(hpipe[0]);
1633 if (hpipe[1] != -1)
1634 host_close(hpipe[1]);
1635 free(pfd_host);
1636 free(pfd_rump);
1637 errno = sverrno;
1638 } else {
1639 if (hostcall) {
1640 op_pollts = GETSYSCALL(host, POLLTS);
1641 } else {
1642 op_pollts = GETSYSCALL(rump, POLLTS);
1643 adjustpoll(fds, nfds, fd_host2rump);
1644 }
1645
1646 rv = op_pollts(fds, nfds, ts, sigmask);
1647 if (rumpcall)
1648 adjustpoll(fds, nfds, fd_rump2host_withdup);
1649 }
1650
1651 return rv;
1652 }
1653
1654 int
1655 poll(struct pollfd *fds, nfds_t nfds, int timeout)
1656 {
1657 struct timespec ts;
1658 struct timespec *tsp = NULL;
1659
1660 if (timeout != INFTIM) {
1661 ts.tv_sec = timeout / 1000;
1662 ts.tv_nsec = (timeout % 1000) * 1000*1000;
1663
1664 tsp = &ts;
1665 }
1666
1667 return REALPOLLTS(fds, nfds, tsp, NULL);
1668 }
1669
1670 int
1671 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
1672 struct kevent *eventlist, size_t nevents,
1673 const struct timespec *timeout)
1674 {
1675 int (*op_kevent)(int, const struct kevent *, size_t,
1676 struct kevent *, size_t, const struct timespec *);
1677 const struct kevent *ev;
1678 size_t i;
1679
1680 /*
1681 * Check that we don't attempt to kevent rump kernel fd's.
1682 * That needs similar treatment to select/poll, but is slightly
1683 * trickier since we need to manage to different kq descriptors.
1684 * (TODO, in case you're wondering).
1685 */
1686 for (i = 0; i < nchanges; i++) {
1687 ev = &changelist[i];
1688 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
1689 ev->filter == EVFILT_VNODE) {
1690 if (fd_isrump((int)ev->ident)) {
1691 errno = ENOTSUP;
1692 return -1;
1693 }
1694 }
1695 }
1696
1697 op_kevent = GETSYSCALL(host, KEVENT);
1698 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
1699 }
1700
1701 /*
1702 * mmapping from a rump kernel is not supported, so disallow it.
1703 */
1704 void *
1705 mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)
1706 {
1707
1708 if (flags & MAP_FILE && fd_isrump(fd)) {
1709 errno = ENOSYS;
1710 return MAP_FAILED;
1711 }
1712 return host_mmap(addr, len, prot, flags, fd, offset);
1713 }
1714
1715 /*
1716 * Rest are std type calls.
1717 */
1718
1719 FDCALL(int, bind, DUALCALL_BIND, \
1720 (int fd, const struct sockaddr *name, socklen_t namelen), \
1721 (int, const struct sockaddr *, socklen_t), \
1722 (fd, name, namelen))
1723
1724 FDCALL(int, connect, DUALCALL_CONNECT, \
1725 (int fd, const struct sockaddr *name, socklen_t namelen), \
1726 (int, const struct sockaddr *, socklen_t), \
1727 (fd, name, namelen))
1728
1729 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
1730 (int fd, struct sockaddr *name, socklen_t *namelen), \
1731 (int, struct sockaddr *, socklen_t *), \
1732 (fd, name, namelen))
1733
1734 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
1735 (int fd, struct sockaddr *name, socklen_t *namelen), \
1736 (int, struct sockaddr *, socklen_t *), \
1737 (fd, name, namelen))
1738
1739 FDCALL(int, listen, DUALCALL_LISTEN, \
1740 (int fd, int backlog), \
1741 (int, int), \
1742 (fd, backlog))
1743
1744 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
1745 (int fd, void *buf, size_t len, int flags, \
1746 struct sockaddr *from, socklen_t *fromlen), \
1747 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
1748 (fd, buf, len, flags, from, fromlen))
1749
1750 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
1751 (int fd, const void *buf, size_t len, int flags, \
1752 const struct sockaddr *to, socklen_t tolen), \
1753 (int, const void *, size_t, int, \
1754 const struct sockaddr *, socklen_t), \
1755 (fd, buf, len, flags, to, tolen))
1756
1757 FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
1758 (int fd, struct msghdr *msg, int flags), \
1759 (int, struct msghdr *, int), \
1760 (fd, msg, flags))
1761
1762 FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
1763 (int fd, const struct msghdr *msg, int flags), \
1764 (int, const struct msghdr *, int), \
1765 (fd, msg, flags))
1766
1767 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
1768 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
1769 (int, int, int, void *, socklen_t *), \
1770 (fd, level, optn, optval, optlen))
1771
1772 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
1773 (int fd, int level, int optn, \
1774 const void *optval, socklen_t optlen), \
1775 (int, int, int, const void *, socklen_t), \
1776 (fd, level, optn, optval, optlen))
1777
1778 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
1779 (int fd, int how), \
1780 (int, int), \
1781 (fd, how))
1782
1783 #if _FORTIFY_SOURCE > 0
1784 #define STUB(fun) __ssp_weak_name(fun)
1785 ssize_t _sys_readlink(const char * __restrict, char * __restrict, size_t);
1786 ssize_t
1787 STUB(readlink)(const char * __restrict path, char * __restrict buf,
1788 size_t bufsiz)
1789 {
1790 return _sys_readlink(path, buf, bufsiz);
1791 }
1792
1793 char *_sys_getcwd(char *, size_t);
1794 char *
1795 STUB(getcwd)(char *buf, size_t size)
1796 {
1797 return _sys_getcwd(buf, size);
1798 }
1799 #else
1800 #define STUB(fun) fun
1801 #endif
1802
1803 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
1804 (int fd, void *buf, size_t buflen), \
1805 (int, void *, size_t), \
1806 (fd, buf, buflen))
1807
1808 FDCALL(ssize_t, readv, DUALCALL_READV, \
1809 (int fd, const struct iovec *iov, int iovcnt), \
1810 (int, const struct iovec *, int), \
1811 (fd, iov, iovcnt))
1812
1813 FDCALL(ssize_t, REALPREAD, DUALCALL_PREAD, \
1814 (int fd, void *buf, size_t nbytes, off_t offset), \
1815 (int, void *, size_t, off_t), \
1816 (fd, buf, nbytes, offset))
1817
1818 FDCALL(ssize_t, preadv, DUALCALL_PREADV, \
1819 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
1820 (int, const struct iovec *, int, off_t), \
1821 (fd, iov, iovcnt, offset))
1822
1823 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
1824 (int fd, const struct iovec *iov, int iovcnt), \
1825 (int, const struct iovec *, int), \
1826 (fd, iov, iovcnt))
1827
1828 FDCALL(ssize_t, REALPWRITE, DUALCALL_PWRITE, \
1829 (int fd, const void *buf, size_t nbytes, off_t offset), \
1830 (int, const void *, size_t, off_t), \
1831 (fd, buf, nbytes, offset))
1832
1833 FDCALL(ssize_t, pwritev, DUALCALL_PWRITEV, \
1834 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
1835 (int, const struct iovec *, int, off_t), \
1836 (fd, iov, iovcnt, offset))
1837
1838 FDCALL(int, REALFSTAT, DUALCALL_FSTAT, \
1839 (int fd, struct stat *sb), \
1840 (int, struct stat *), \
1841 (fd, sb))
1842
1843 FDCALL(int, fstatvfs1, DUALCALL_FSTATVFS1, \
1844 (int fd, struct statvfs *buf, int flags), \
1845 (int, struct statvfs *, int), \
1846 (fd, buf, flags))
1847
1848 FDCALL(off_t, lseek, DUALCALL_LSEEK, \
1849 (int fd, off_t offset, int whence), \
1850 (int, off_t, int), \
1851 (fd, offset, whence))
1852 __strong_alias(_lseek,lseek);
1853
1854 FDCALL(int, REALGETDENTS, DUALCALL_GETDENTS, \
1855 (int fd, char *buf, size_t nbytes), \
1856 (int, char *, size_t), \
1857 (fd, buf, nbytes))
1858
1859 FDCALL(int, fchown, DUALCALL_FCHOWN, \
1860 (int fd, uid_t owner, gid_t group), \
1861 (int, uid_t, gid_t), \
1862 (fd, owner, group))
1863
1864 FDCALL(int, fchmod, DUALCALL_FCHMOD, \
1865 (int fd, mode_t mode), \
1866 (int, mode_t), \
1867 (fd, mode))
1868
1869 FDCALL(int, ftruncate, DUALCALL_FTRUNCATE, \
1870 (int fd, off_t length), \
1871 (int, off_t), \
1872 (fd, length))
1873
1874 FDCALL(int, fsync, DUALCALL_FSYNC, \
1875 (int fd), \
1876 (int), \
1877 (fd))
1878
1879 FDCALL(int, fsync_range, DUALCALL_FSYNC_RANGE, \
1880 (int fd, int how, off_t start, off_t length), \
1881 (int, int, off_t, off_t), \
1882 (fd, how, start, length))
1883
1884 FDCALL(int, futimes, DUALCALL_FUTIMES, \
1885 (int fd, const struct timeval *tv), \
1886 (int, const struct timeval *), \
1887 (fd, tv))
1888
1889 FDCALL(int, fchflags, DUALCALL_FCHFLAGS, \
1890 (int fd, u_long flags), \
1891 (int, u_long), \
1892 (fd, flags))
1893
1894 /*
1895 * path-based selectors
1896 */
1897
1898 PATHCALL(int, REALSTAT, DUALCALL_STAT, \
1899 (const char *path, struct stat *sb), \
1900 (const char *, struct stat *), \
1901 (path, sb))
1902
1903 PATHCALL(int, REALLSTAT, DUALCALL_LSTAT, \
1904 (const char *path, struct stat *sb), \
1905 (const char *, struct stat *), \
1906 (path, sb))
1907
1908 PATHCALL(int, chown, DUALCALL_CHOWN, \
1909 (const char *path, uid_t owner, gid_t group), \
1910 (const char *, uid_t, gid_t), \
1911 (path, owner, group))
1912
1913 PATHCALL(int, lchown, DUALCALL_LCHOWN, \
1914 (const char *path, uid_t owner, gid_t group), \
1915 (const char *, uid_t, gid_t), \
1916 (path, owner, group))
1917
1918 PATHCALL(int, chmod, DUALCALL_CHMOD, \
1919 (const char *path, mode_t mode), \
1920 (const char *, mode_t), \
1921 (path, mode))
1922
1923 PATHCALL(int, lchmod, DUALCALL_LCHMOD, \
1924 (const char *path, mode_t mode), \
1925 (const char *, mode_t), \
1926 (path, mode))
1927
1928 PATHCALL(int, statvfs1, DUALCALL_STATVFS1, \
1929 (const char *path, struct statvfs *buf, int flags), \
1930 (const char *, struct statvfs *, int), \
1931 (path, buf, flags))
1932
1933 PATHCALL(int, unlink, DUALCALL_UNLINK, \
1934 (const char *path), \
1935 (const char *), \
1936 (path))
1937
1938 PATHCALL(int, symlink, DUALCALL_SYMLINK, \
1939 (const char *target, const char *path), \
1940 (const char *, const char *), \
1941 (target, path))
1942
1943 PATHCALL(ssize_t, readlink, DUALCALL_READLINK, \
1944 (const char *path, char *buf, size_t bufsiz), \
1945 (const char *, char *, size_t), \
1946 (path, buf, bufsiz))
1947
1948 PATHCALL(int, mkdir, DUALCALL_MKDIR, \
1949 (const char *path, mode_t mode), \
1950 (const char *, mode_t), \
1951 (path, mode))
1952
1953 PATHCALL(int, rmdir, DUALCALL_RMDIR, \
1954 (const char *path), \
1955 (const char *), \
1956 (path))
1957
1958 PATHCALL(int, utimes, DUALCALL_UTIMES, \
1959 (const char *path, const struct timeval *tv), \
1960 (const char *, const struct timeval *), \
1961 (path, tv))
1962
1963 PATHCALL(int, lutimes, DUALCALL_LUTIMES, \
1964 (const char *path, const struct timeval *tv), \
1965 (const char *, const struct timeval *), \
1966 (path, tv))
1967
1968 PATHCALL(int, chflags, DUALCALL_CHFLAGS, \
1969 (const char *path, u_long flags), \
1970 (const char *, u_long), \
1971 (path, flags))
1972
1973 PATHCALL(int, lchflags, DUALCALL_LCHFLAGS, \
1974 (const char *path, u_long flags), \
1975 (const char *, u_long), \
1976 (path, flags))
1977
1978 PATHCALL(int, truncate, DUALCALL_TRUNCATE, \
1979 (const char *path, off_t length), \
1980 (const char *, off_t), \
1981 (path, length))
1982
1983 PATHCALL(int, access, DUALCALL_ACCESS, \
1984 (const char *path, int mode), \
1985 (const char *, int), \
1986 (path, mode))
1987
1988 PATHCALL(int, REALMKNOD, DUALCALL_MKNOD, \
1989 (const char *path, mode_t mode, dev_t dev), \
1990 (const char *, mode_t, dev_t), \
1991 (path, mode, dev))
1992
1993 /*
1994 * Note: with mount the decisive parameter is the mount
1995 * destination directory. This is because we don't really know
1996 * about the "source" directory in a generic call (and besides,
1997 * it might not even exist, cf. nfs).
1998 */
1999 PATHCALL(int, REALMOUNT, DUALCALL_MOUNT, \
2000 (const char *type, const char *path, int flags, \
2001 void *data, size_t dlen), \
2002 (const char *, const char *, int, void *, size_t), \
2003 (type, path, flags, data, dlen))
2004
2005 PATHCALL(int, unmount, DUALCALL_UNMOUNT, \
2006 (const char *path, int flags), \
2007 (const char *, int), \
2008 (path, flags))
2009