hijack.c revision 1.90.4.2 1 /* $NetBSD: hijack.c,v 1.90.4.2 2012/05/23 10:07:33 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2011 Antti Kantee. All Rights Reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 /* Disable namespace mangling, Fortification is useless here anyway. */
29 #undef _FORTIFY_SOURCE
30
31 #include <sys/cdefs.h>
32 __RCSID("$NetBSD: hijack.c,v 1.90.4.2 2012/05/23 10:07:33 yamt Exp $");
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/event.h>
37 #include <sys/ioctl.h>
38 #include <sys/mman.h>
39 #include <sys/mount.h>
40 #include <sys/poll.h>
41 #include <sys/socket.h>
42 #include <sys/statvfs.h>
43 #include <sys/quotactl.h>
44
45 #include <rump/rumpclient.h>
46 #include <rump/rump_syscalls.h>
47
48 #include <assert.h>
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <poll.h>
54 #include <pthread.h>
55 #include <signal.h>
56 #include <stdarg.h>
57 #include <stdbool.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <time.h>
62 #include <unistd.h>
63
64 #include "hijack.h"
65
66 enum dualcall {
67 DUALCALL_WRITE, DUALCALL_WRITEV, DUALCALL_PWRITE, DUALCALL_PWRITEV,
68 DUALCALL_IOCTL, DUALCALL_FCNTL,
69 DUALCALL_SOCKET, DUALCALL_ACCEPT, DUALCALL_BIND, DUALCALL_CONNECT,
70 DUALCALL_GETPEERNAME, DUALCALL_GETSOCKNAME, DUALCALL_LISTEN,
71 DUALCALL_RECVFROM, DUALCALL_RECVMSG,
72 DUALCALL_SENDTO, DUALCALL_SENDMSG,
73 DUALCALL_GETSOCKOPT, DUALCALL_SETSOCKOPT,
74 DUALCALL_SHUTDOWN,
75 DUALCALL_READ, DUALCALL_READV, DUALCALL_PREAD, DUALCALL_PREADV,
76 DUALCALL_DUP2,
77 DUALCALL_CLOSE,
78 DUALCALL_POLLTS,
79 DUALCALL_KEVENT,
80 DUALCALL_STAT, DUALCALL_LSTAT, DUALCALL_FSTAT,
81 DUALCALL_CHMOD, DUALCALL_LCHMOD, DUALCALL_FCHMOD,
82 DUALCALL_CHOWN, DUALCALL_LCHOWN, DUALCALL_FCHOWN,
83 DUALCALL_OPEN,
84 DUALCALL_STATVFS1, DUALCALL_FSTATVFS1,
85 DUALCALL_CHDIR, DUALCALL_FCHDIR,
86 DUALCALL_LSEEK,
87 DUALCALL_GETDENTS,
88 DUALCALL_UNLINK, DUALCALL_SYMLINK, DUALCALL_READLINK,
89 DUALCALL_RENAME,
90 DUALCALL_MKDIR, DUALCALL_RMDIR,
91 DUALCALL_UTIMES, DUALCALL_LUTIMES, DUALCALL_FUTIMES,
92 DUALCALL_TRUNCATE, DUALCALL_FTRUNCATE,
93 DUALCALL_FSYNC, DUALCALL_FSYNC_RANGE,
94 DUALCALL_MOUNT, DUALCALL_UNMOUNT,
95 DUALCALL___GETCWD,
96 DUALCALL_CHFLAGS, DUALCALL_LCHFLAGS, DUALCALL_FCHFLAGS,
97 DUALCALL_ACCESS,
98 DUALCALL_MKNOD,
99 DUALCALL___SYSCTL,
100 DUALCALL_GETVFSSTAT, DUALCALL_NFSSVC,
101 DUALCALL_GETFH, DUALCALL_FHOPEN, DUALCALL_FHSTAT, DUALCALL_FHSTATVFS1,
102 #if __NetBSD_Prereq__(5,99,48)
103 DUALCALL_QUOTACTL,
104 #endif
105 DUALCALL__NUM
106 };
107
108 #define RSYS_STRING(a) __STRING(a)
109 #define RSYS_NAME(a) RSYS_STRING(__CONCAT(RUMP_SYS_RENAME_,a))
110
111 /*
112 * Would be nice to get this automatically in sync with libc.
113 * Also, this does not work for compat-using binaries!
114 */
115 #if !__NetBSD_Prereq__(5,99,7)
116 #define REALSELECT select
117 #define REALPOLLTS pollts
118 #define REALKEVENT kevent
119 #define REALSTAT __stat30
120 #define REALLSTAT __lstat30
121 #define REALFSTAT __fstat30
122 #define REALUTIMES utimes
123 #define REALLUTIMES lutimes
124 #define REALFUTIMES futimes
125 #define REALMKNOD mknod
126 #define REALFHSTAT __fhstat40
127 #else
128 #define REALSELECT _sys___select50
129 #define REALPOLLTS _sys___pollts50
130 #define REALKEVENT _sys___kevent50
131 #define REALSTAT __stat50
132 #define REALLSTAT __lstat50
133 #define REALFSTAT __fstat50
134 #define REALUTIMES __utimes50
135 #define REALLUTIMES __lutimes50
136 #define REALFUTIMES __futimes50
137 #define REALMKNOD __mknod50
138 #define REALFHSTAT __fhstat50
139 #endif
140 #define REALREAD _sys_read
141 #define REALPREAD _sys_pread
142 #define REALPWRITE _sys_pwrite
143 #define REALGETDENTS __getdents30
144 #define REALMOUNT __mount50
145 #define REALGETFH __getfh30
146 #define REALFHOPEN __fhopen40
147 #define REALFHSTATVFS1 __fhstatvfs140
148 #define OLDREALQUOTACTL __quotactl50 /* 5.99.48-62 only */
149
150 int REALSELECT(int, fd_set *, fd_set *, fd_set *, struct timeval *);
151 int REALPOLLTS(struct pollfd *, nfds_t,
152 const struct timespec *, const sigset_t *);
153 int REALKEVENT(int, const struct kevent *, size_t, struct kevent *, size_t,
154 const struct timespec *);
155 ssize_t REALREAD(int, void *, size_t);
156 ssize_t REALPREAD(int, void *, size_t, off_t);
157 ssize_t REALPWRITE(int, const void *, size_t, off_t);
158 int REALSTAT(const char *, struct stat *);
159 int REALLSTAT(const char *, struct stat *);
160 int REALFSTAT(int, struct stat *);
161 int REALGETDENTS(int, char *, size_t);
162 int REALUTIMES(const char *, const struct timeval [2]);
163 int REALLUTIMES(const char *, const struct timeval [2]);
164 int REALFUTIMES(int, const struct timeval [2]);
165 int REALMOUNT(const char *, const char *, int, void *, size_t);
166 int __getcwd(char *, size_t);
167 int REALMKNOD(const char *, mode_t, dev_t);
168 int REALGETFH(const char *, void *, size_t *);
169 int REALFHOPEN(const void *, size_t, int);
170 int REALFHSTAT(const void *, size_t, struct stat *);
171 int REALFHSTATVFS1(const void *, size_t, struct statvfs *, int);
172 int OLDREALQUOTACTL(const char *, struct plistref *);
173
174 #define S(a) __STRING(a)
175 struct sysnames {
176 enum dualcall scm_callnum;
177 const char *scm_hostname;
178 const char *scm_rumpname;
179 } syscnames[] = {
180 { DUALCALL_SOCKET, "__socket30", RSYS_NAME(SOCKET) },
181 { DUALCALL_ACCEPT, "accept", RSYS_NAME(ACCEPT) },
182 { DUALCALL_BIND, "bind", RSYS_NAME(BIND) },
183 { DUALCALL_CONNECT, "connect", RSYS_NAME(CONNECT) },
184 { DUALCALL_GETPEERNAME, "getpeername", RSYS_NAME(GETPEERNAME) },
185 { DUALCALL_GETSOCKNAME, "getsockname", RSYS_NAME(GETSOCKNAME) },
186 { DUALCALL_LISTEN, "listen", RSYS_NAME(LISTEN) },
187 { DUALCALL_RECVFROM, "recvfrom", RSYS_NAME(RECVFROM) },
188 { DUALCALL_RECVMSG, "recvmsg", RSYS_NAME(RECVMSG) },
189 { DUALCALL_SENDTO, "sendto", RSYS_NAME(SENDTO) },
190 { DUALCALL_SENDMSG, "sendmsg", RSYS_NAME(SENDMSG) },
191 { DUALCALL_GETSOCKOPT, "getsockopt", RSYS_NAME(GETSOCKOPT) },
192 { DUALCALL_SETSOCKOPT, "setsockopt", RSYS_NAME(SETSOCKOPT) },
193 { DUALCALL_SHUTDOWN, "shutdown", RSYS_NAME(SHUTDOWN) },
194 { DUALCALL_READ, S(REALREAD), RSYS_NAME(READ) },
195 { DUALCALL_READV, "readv", RSYS_NAME(READV) },
196 { DUALCALL_PREAD, S(REALPREAD), RSYS_NAME(PREAD) },
197 { DUALCALL_PREADV, "preadv", RSYS_NAME(PREADV) },
198 { DUALCALL_WRITE, "write", RSYS_NAME(WRITE) },
199 { DUALCALL_WRITEV, "writev", RSYS_NAME(WRITEV) },
200 { DUALCALL_PWRITE, S(REALPWRITE), RSYS_NAME(PWRITE) },
201 { DUALCALL_PWRITEV, "pwritev", RSYS_NAME(PWRITEV) },
202 { DUALCALL_IOCTL, "ioctl", RSYS_NAME(IOCTL) },
203 { DUALCALL_FCNTL, "fcntl", RSYS_NAME(FCNTL) },
204 { DUALCALL_DUP2, "dup2", RSYS_NAME(DUP2) },
205 { DUALCALL_CLOSE, "close", RSYS_NAME(CLOSE) },
206 { DUALCALL_POLLTS, S(REALPOLLTS), RSYS_NAME(POLLTS) },
207 { DUALCALL_KEVENT, S(REALKEVENT), RSYS_NAME(KEVENT) },
208 { DUALCALL_STAT, S(REALSTAT), RSYS_NAME(STAT) },
209 { DUALCALL_LSTAT, S(REALLSTAT), RSYS_NAME(LSTAT) },
210 { DUALCALL_FSTAT, S(REALFSTAT), RSYS_NAME(FSTAT) },
211 { DUALCALL_CHOWN, "chown", RSYS_NAME(CHOWN) },
212 { DUALCALL_LCHOWN, "lchown", RSYS_NAME(LCHOWN) },
213 { DUALCALL_FCHOWN, "fchown", RSYS_NAME(FCHOWN) },
214 { DUALCALL_CHMOD, "chmod", RSYS_NAME(CHMOD) },
215 { DUALCALL_LCHMOD, "lchmod", RSYS_NAME(LCHMOD) },
216 { DUALCALL_FCHMOD, "fchmod", RSYS_NAME(FCHMOD) },
217 { DUALCALL_UTIMES, S(REALUTIMES), RSYS_NAME(UTIMES) },
218 { DUALCALL_LUTIMES, S(REALLUTIMES), RSYS_NAME(LUTIMES) },
219 { DUALCALL_FUTIMES, S(REALFUTIMES), RSYS_NAME(FUTIMES) },
220 { DUALCALL_OPEN, "open", RSYS_NAME(OPEN) },
221 { DUALCALL_STATVFS1, "statvfs1", RSYS_NAME(STATVFS1) },
222 { DUALCALL_FSTATVFS1, "fstatvfs1", RSYS_NAME(FSTATVFS1) },
223 { DUALCALL_CHDIR, "chdir", RSYS_NAME(CHDIR) },
224 { DUALCALL_FCHDIR, "fchdir", RSYS_NAME(FCHDIR) },
225 { DUALCALL_LSEEK, "lseek", RSYS_NAME(LSEEK) },
226 { DUALCALL_GETDENTS, "__getdents30", RSYS_NAME(GETDENTS) },
227 { DUALCALL_UNLINK, "unlink", RSYS_NAME(UNLINK) },
228 { DUALCALL_SYMLINK, "symlink", RSYS_NAME(SYMLINK) },
229 { DUALCALL_READLINK, "readlink", RSYS_NAME(READLINK) },
230 { DUALCALL_RENAME, "rename", RSYS_NAME(RENAME) },
231 { DUALCALL_MKDIR, "mkdir", RSYS_NAME(MKDIR) },
232 { DUALCALL_RMDIR, "rmdir", RSYS_NAME(RMDIR) },
233 { DUALCALL_TRUNCATE, "truncate", RSYS_NAME(TRUNCATE) },
234 { DUALCALL_FTRUNCATE, "ftruncate", RSYS_NAME(FTRUNCATE) },
235 { DUALCALL_FSYNC, "fsync", RSYS_NAME(FSYNC) },
236 { DUALCALL_FSYNC_RANGE, "fsync_range", RSYS_NAME(FSYNC_RANGE) },
237 { DUALCALL_MOUNT, S(REALMOUNT), RSYS_NAME(MOUNT) },
238 { DUALCALL_UNMOUNT, "unmount", RSYS_NAME(UNMOUNT) },
239 { DUALCALL___GETCWD, "__getcwd", RSYS_NAME(__GETCWD) },
240 { DUALCALL_CHFLAGS, "chflags", RSYS_NAME(CHFLAGS) },
241 { DUALCALL_LCHFLAGS, "lchflags", RSYS_NAME(LCHFLAGS) },
242 { DUALCALL_FCHFLAGS, "fchflags", RSYS_NAME(FCHFLAGS) },
243 { DUALCALL_ACCESS, "access", RSYS_NAME(ACCESS) },
244 { DUALCALL_MKNOD, S(REALMKNOD), RSYS_NAME(MKNOD) },
245 { DUALCALL___SYSCTL, "__sysctl", RSYS_NAME(__SYSCTL) },
246 { DUALCALL_GETVFSSTAT, "getvfsstat", RSYS_NAME(GETVFSSTAT) },
247 { DUALCALL_NFSSVC, "nfssvc", RSYS_NAME(NFSSVC) },
248 { DUALCALL_GETFH, S(REALGETFH), RSYS_NAME(GETFH) },
249 { DUALCALL_FHOPEN, S(REALFHOPEN),RSYS_NAME(FHOPEN) },
250 { DUALCALL_FHSTAT, S(REALFHSTAT),RSYS_NAME(FHSTAT) },
251 { DUALCALL_FHSTATVFS1, S(REALFHSTATVFS1),RSYS_NAME(FHSTATVFS1) },
252 #if __NetBSD_Prereq__(5,99,63)
253 { DUALCALL_QUOTACTL, "__quotactl", RSYS_NAME(__QUOTACTL) },
254 #elif __NetBSD_Prereq__(5,99,48)
255 { DUALCALL_QUOTACTL, S(OLDREALQUOTACTL),RSYS_NAME(QUOTACTL) },
256 #endif
257 };
258 #undef S
259
260 struct bothsys {
261 void *bs_host;
262 void *bs_rump;
263 } syscalls[DUALCALL__NUM];
264 #define GETSYSCALL(which, name) syscalls[DUALCALL_##name].bs_##which
265
266 static pid_t (*host_fork)(void);
267 static int (*host_daemon)(int, int);
268 static void * (*host_mmap)(void *, size_t, int, int, int, off_t);
269
270 /*
271 * This tracks if our process is in a subdirectory of /rump.
272 * It's preserved over exec.
273 */
274 static bool pwdinrump;
275
276 enum pathtype { PATH_HOST, PATH_RUMP, PATH_RUMPBLANKET };
277
278 static bool fd_isrump(int);
279 static enum pathtype path_isrump(const char *);
280
281 /* default FD_SETSIZE is 256 ==> default fdoff is 128 */
282 static int hijack_fdoff = FD_SETSIZE/2;
283
284 /*
285 * Maintain a mapping table for the usual dup2 suspects.
286 * Could use atomic ops to operate on dup2vec, but an application
287 * racing there is not well-defined, so don't bother.
288 */
289 /* note: you cannot change this without editing the env-passing code */
290 #define DUP2HIGH 2
291 static uint32_t dup2vec[DUP2HIGH+1];
292 #define DUP2BIT (1<<31)
293 #define DUP2ALIAS (1<<30)
294 #define DUP2FDMASK ((1<<30)-1)
295
296 static bool
297 isdup2d(int fd)
298 {
299
300 return fd <= DUP2HIGH && fd >= 0 && dup2vec[fd] & DUP2BIT;
301 }
302
303 static int
304 mapdup2(int hostfd)
305 {
306
307 _DIAGASSERT(isdup2d(hostfd));
308 return dup2vec[hostfd] & DUP2FDMASK;
309 }
310
311 static int
312 unmapdup2(int rumpfd)
313 {
314 int i;
315
316 for (i = 0; i <= DUP2HIGH; i++) {
317 if (dup2vec[i] & DUP2BIT &&
318 (dup2vec[i] & DUP2FDMASK) == (unsigned)rumpfd)
319 return i;
320 }
321 return -1;
322 }
323
324 static void
325 setdup2(int hostfd, int rumpfd)
326 {
327
328 if (hostfd > DUP2HIGH) {
329 _DIAGASSERT(0);
330 return;
331 }
332
333 dup2vec[hostfd] = DUP2BIT | DUP2ALIAS | rumpfd;
334 }
335
336 static void
337 clrdup2(int hostfd)
338 {
339
340 if (hostfd > DUP2HIGH) {
341 _DIAGASSERT(0);
342 return;
343 }
344
345 dup2vec[hostfd] = 0;
346 }
347
348 static bool
349 killdup2alias(int rumpfd)
350 {
351 int hostfd;
352
353 if ((hostfd = unmapdup2(rumpfd)) == -1)
354 return false;
355
356 if (dup2vec[hostfd] & DUP2ALIAS) {
357 dup2vec[hostfd] &= ~DUP2ALIAS;
358 return true;
359 }
360 return false;
361 }
362
363 //#define DEBUGJACK
364 #ifdef DEBUGJACK
365 #define DPRINTF(x) mydprintf x
366 static void
367 mydprintf(const char *fmt, ...)
368 {
369 va_list ap;
370
371 if (isdup2d(STDERR_FILENO))
372 return;
373
374 va_start(ap, fmt);
375 vfprintf(stderr, fmt, ap);
376 va_end(ap);
377 }
378
379 static const char *
380 whichfd(int fd)
381 {
382
383 if (fd == -1)
384 return "-1";
385 else if (fd_isrump(fd))
386 return "rump";
387 else
388 return "host";
389 }
390
391 static const char *
392 whichpath(const char *path)
393 {
394
395 if (path_isrump(path))
396 return "rump";
397 else
398 return "host";
399 }
400
401 #else
402 #define DPRINTF(x)
403 #endif
404
405 #define FDCALL(type, name, rcname, args, proto, vars) \
406 type name args \
407 { \
408 type (*fun) proto; \
409 \
410 DPRINTF(("%s -> %d (%s)\n", __STRING(name), fd, whichfd(fd))); \
411 if (fd_isrump(fd)) { \
412 fun = syscalls[rcname].bs_rump; \
413 fd = fd_host2rump(fd); \
414 } else { \
415 fun = syscalls[rcname].bs_host; \
416 } \
417 \
418 return fun vars; \
419 }
420
421 #define PATHCALL(type, name, rcname, args, proto, vars) \
422 type name args \
423 { \
424 type (*fun) proto; \
425 enum pathtype pt; \
426 \
427 DPRINTF(("%s -> %s (%s)\n", __STRING(name), path, \
428 whichpath(path))); \
429 if ((pt = path_isrump(path)) != PATH_HOST) { \
430 fun = syscalls[rcname].bs_rump; \
431 if (pt == PATH_RUMP) \
432 path = path_host2rump(path); \
433 } else { \
434 fun = syscalls[rcname].bs_host; \
435 } \
436 \
437 return fun vars; \
438 }
439
440 #define VFSCALL(bit, type, name, rcname, args, proto, vars) \
441 type name args \
442 { \
443 type (*fun) proto; \
444 \
445 DPRINTF(("%s (0x%x, 0x%x)\n", __STRING(name), bit, vfsbits)); \
446 if (vfsbits & bit) { \
447 fun = syscalls[rcname].bs_rump; \
448 } else { \
449 fun = syscalls[rcname].bs_host; \
450 } \
451 \
452 return fun vars; \
453 }
454
455 /*
456 * These variables are set from the RUMPHIJACK string and control
457 * which operations can product rump kernel file descriptors.
458 * This should be easily extendable for future needs.
459 */
460 #define RUMPHIJACK_DEFAULT "path=/rump,socket=all:nolocal"
461 static bool rumpsockets[PF_MAX];
462 static const char *rumpprefix;
463 static size_t rumpprefixlen;
464
465 static struct {
466 int pf;
467 const char *name;
468 } socketmap[] = {
469 { PF_LOCAL, "local" },
470 { PF_INET, "inet" },
471 { PF_LINK, "link" },
472 #ifdef PF_OROUTE
473 { PF_OROUTE, "oroute" },
474 #endif
475 { PF_ROUTE, "route" },
476 { PF_INET6, "inet6" },
477 #ifdef PF_MPLS
478 { PF_MPLS, "mpls" },
479 #endif
480 { -1, NULL }
481 };
482
483 static void
484 sockparser(char *buf)
485 {
486 char *p, *l;
487 bool value;
488 int i;
489
490 /* if "all" is present, it must be specified first */
491 if (strncmp(buf, "all", strlen("all")) == 0) {
492 for (i = 0; i < (int)__arraycount(rumpsockets); i++) {
493 rumpsockets[i] = true;
494 }
495 buf += strlen("all");
496 if (*buf == ':')
497 buf++;
498 }
499
500 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
501 value = true;
502 if (strncmp(p, "no", strlen("no")) == 0) {
503 value = false;
504 p += strlen("no");
505 }
506
507 for (i = 0; socketmap[i].name; i++) {
508 if (strcmp(p, socketmap[i].name) == 0) {
509 rumpsockets[socketmap[i].pf] = value;
510 break;
511 }
512 }
513 if (socketmap[i].name == NULL) {
514 errx(1, "invalid socket specifier %s", p);
515 }
516 }
517 }
518
519 static void
520 pathparser(char *buf)
521 {
522
523 /* sanity-check */
524 if (*buf != '/')
525 errx(1, "hijack path specifier must begin with ``/''");
526 rumpprefixlen = strlen(buf);
527 if (rumpprefixlen < 2)
528 errx(1, "invalid hijack prefix: %s", buf);
529 if (buf[rumpprefixlen-1] == '/' && strspn(buf, "/") != rumpprefixlen)
530 errx(1, "hijack prefix may end in slash only if pure "
531 "slash, gave %s", buf);
532
533 if ((rumpprefix = strdup(buf)) == NULL)
534 err(1, "strdup");
535 rumpprefixlen = strlen(rumpprefix);
536 }
537
538 static struct blanket {
539 const char *pfx;
540 size_t len;
541 } *blanket;
542 static int nblanket;
543
544 static void
545 blanketparser(char *buf)
546 {
547 char *p, *l;
548 int i;
549
550 for (nblanket = 0, p = buf; p; p = strchr(p+1, ':'), nblanket++)
551 continue;
552
553 blanket = malloc(nblanket * sizeof(*blanket));
554 if (blanket == NULL)
555 err(1, "alloc blanket %d", nblanket);
556
557 for (p = strtok_r(buf, ":", &l), i = 0; p;
558 p = strtok_r(NULL, ":", &l), i++) {
559 blanket[i].pfx = strdup(p);
560 if (blanket[i].pfx == NULL)
561 err(1, "strdup blanket");
562 blanket[i].len = strlen(p);
563
564 if (blanket[i].len == 0 || *blanket[i].pfx != '/')
565 errx(1, "invalid blanket specifier %s", p);
566 if (*(blanket[i].pfx + blanket[i].len-1) == '/')
567 errx(1, "invalid blanket specifier %s", p);
568 }
569 }
570
571 #define VFSBIT_NFSSVC 0x01
572 #define VFSBIT_GETVFSSTAT 0x02
573 #define VFSBIT_FHCALLS 0x04
574 static unsigned vfsbits;
575
576 static struct {
577 int bit;
578 const char *name;
579 } vfscalls[] = {
580 { VFSBIT_NFSSVC, "nfssvc" },
581 { VFSBIT_GETVFSSTAT, "getvfsstat" },
582 { VFSBIT_FHCALLS, "fhcalls" },
583 { -1, NULL }
584 };
585
586 static void
587 vfsparser(char *buf)
588 {
589 char *p, *l;
590 bool turnon;
591 unsigned int fullmask;
592 int i;
593
594 /* build the full mask and sanity-check while we're at it */
595 fullmask = 0;
596 for (i = 0; vfscalls[i].name != NULL; i++) {
597 if (fullmask & vfscalls[i].bit)
598 errx(1, "problem exists between vi and chair");
599 fullmask |= vfscalls[i].bit;
600 }
601
602
603 /* if "all" is present, it must be specified first */
604 if (strncmp(buf, "all", strlen("all")) == 0) {
605 vfsbits = fullmask;
606 buf += strlen("all");
607 if (*buf == ':')
608 buf++;
609 }
610
611 for (p = strtok_r(buf, ":", &l); p; p = strtok_r(NULL, ":", &l)) {
612 turnon = true;
613 if (strncmp(p, "no", strlen("no")) == 0) {
614 turnon = false;
615 p += strlen("no");
616 }
617
618 for (i = 0; vfscalls[i].name; i++) {
619 if (strcmp(p, vfscalls[i].name) == 0) {
620 if (turnon)
621 vfsbits |= vfscalls[i].bit;
622 else
623 vfsbits &= ~vfscalls[i].bit;
624 break;
625 }
626 }
627 if (vfscalls[i].name == NULL) {
628 errx(1, "invalid vfscall specifier %s", p);
629 }
630 }
631 }
632
633 static bool rumpsysctl = false;
634
635 static void
636 sysctlparser(char *buf)
637 {
638
639 if (buf == NULL) {
640 rumpsysctl = true;
641 return;
642 }
643
644 if (strcasecmp(buf, "y") == 0 || strcasecmp(buf, "yes") == 0 ||
645 strcasecmp(buf, "yep") == 0 || strcasecmp(buf, "tottakai") == 0) {
646 rumpsysctl = true;
647 return;
648 }
649 if (strcasecmp(buf, "n") == 0 || strcasecmp(buf, "no") == 0) {
650 rumpsysctl = false;
651 return;
652 }
653
654 errx(1, "sysctl value should be y(es)/n(o), gave: %s", buf);
655 }
656
657 static void
658 fdoffparser(char *buf)
659 {
660 unsigned long fdoff;
661 char *ep;
662
663 if (*buf == '-') {
664 errx(1, "fdoff must not be negative");
665 }
666 fdoff = strtoul(buf, &ep, 10);
667 if (*ep != '\0')
668 errx(1, "invalid fdoff specifier \"%s\"", buf);
669 if (fdoff >= INT_MAX/2 || fdoff < 3)
670 errx(1, "fdoff out of range");
671 hijack_fdoff = fdoff;
672 }
673
674 static struct {
675 void (*parsefn)(char *);
676 const char *name;
677 bool needvalues;
678 } hijackparse[] = {
679 { sockparser, "socket", true },
680 { pathparser, "path", true },
681 { blanketparser, "blanket", true },
682 { vfsparser, "vfs", true },
683 { sysctlparser, "sysctl", false },
684 { fdoffparser, "fdoff", true },
685 { NULL, NULL, false },
686 };
687
688 static void
689 parsehijack(char *hijack)
690 {
691 char *p, *p2, *l;
692 const char *hijackcopy;
693 bool nop2;
694 int i;
695
696 if ((hijackcopy = strdup(hijack)) == NULL)
697 err(1, "strdup");
698
699 /* disable everything explicitly */
700 for (i = 0; i < PF_MAX; i++)
701 rumpsockets[i] = false;
702
703 for (p = strtok_r(hijack, ",", &l); p; p = strtok_r(NULL, ",", &l)) {
704 nop2 = false;
705 p2 = strchr(p, '=');
706 if (!p2) {
707 nop2 = true;
708 p2 = p + strlen(p);
709 }
710
711 for (i = 0; hijackparse[i].parsefn; i++) {
712 if (strncmp(hijackparse[i].name, p,
713 (size_t)(p2-p)) == 0) {
714 if (nop2 && hijackparse[i].needvalues)
715 errx(1, "invalid hijack specifier: %s",
716 hijackcopy);
717 hijackparse[i].parsefn(nop2 ? NULL : p2+1);
718 break;
719 }
720 }
721
722 if (hijackparse[i].parsefn == NULL)
723 errx(1, "invalid hijack specifier name in %s", p);
724 }
725
726 }
727
728 static void __attribute__((constructor))
729 rcinit(void)
730 {
731 char buf[1024];
732 unsigned i, j;
733
734 host_fork = dlsym(RTLD_NEXT, "fork");
735 host_daemon = dlsym(RTLD_NEXT, "daemon");
736 host_mmap = dlsym(RTLD_NEXT, "mmap");
737
738 /*
739 * In theory cannot print anything during lookups because
740 * we might not have the call vector set up. so, the errx()
741 * is a bit of a strech, but it might work.
742 */
743
744 for (i = 0; i < DUALCALL__NUM; i++) {
745 /* build runtime O(1) access */
746 for (j = 0; j < __arraycount(syscnames); j++) {
747 if (syscnames[j].scm_callnum == i)
748 break;
749 }
750
751 if (j == __arraycount(syscnames))
752 errx(1, "rumphijack error: syscall pos %d missing", i);
753
754 syscalls[i].bs_host = dlsym(RTLD_NEXT,
755 syscnames[j].scm_hostname);
756 if (syscalls[i].bs_host == NULL)
757 errx(1, "hostcall %s not found!",
758 syscnames[j].scm_hostname);
759
760 syscalls[i].bs_rump = dlsym(RTLD_NEXT,
761 syscnames[j].scm_rumpname);
762 if (syscalls[i].bs_rump == NULL)
763 errx(1, "rumpcall %s not found!",
764 syscnames[j].scm_rumpname);
765 }
766
767 if (rumpclient_init() == -1)
768 err(1, "rumpclient init");
769
770 /* check which syscalls we're supposed to hijack */
771 if (getenv_r("RUMPHIJACK", buf, sizeof(buf)) == -1) {
772 strcpy(buf, RUMPHIJACK_DEFAULT);
773 }
774 parsehijack(buf);
775
776 /* set client persistence level */
777 if (getenv_r("RUMPHIJACK_RETRYCONNECT", buf, sizeof(buf)) != -1) {
778 if (strcmp(buf, "die") == 0)
779 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_DIE);
780 else if (strcmp(buf, "inftime") == 0)
781 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_INFTIME);
782 else if (strcmp(buf, "once") == 0)
783 rumpclient_setconnretry(RUMPCLIENT_RETRYCONN_ONCE);
784 else {
785 time_t timeout;
786 char *ep;
787
788 timeout = (time_t)strtoll(buf, &ep, 10);
789 if (timeout <= 0 || ep != buf + strlen(buf))
790 errx(1, "RUMPHIJACK_RETRYCONNECT must be "
791 "keyword or integer, got: %s", buf);
792
793 rumpclient_setconnretry(timeout);
794 }
795 }
796
797 if (getenv_r("RUMPHIJACK__DUP2INFO", buf, sizeof(buf)) == 0) {
798 if (sscanf(buf, "%u,%u,%u",
799 &dup2vec[0], &dup2vec[1], &dup2vec[2]) != 3) {
800 warnx("invalid dup2mask: %s", buf);
801 memset(dup2vec, 0, sizeof(dup2vec));
802 }
803 unsetenv("RUMPHIJACK__DUP2INFO");
804 }
805 if (getenv_r("RUMPHIJACK__PWDINRUMP", buf, sizeof(buf)) == 0) {
806 pwdinrump = true;
807 unsetenv("RUMPHIJACK__PWDINRUMP");
808 }
809 }
810
811 static int
812 fd_rump2host(int fd)
813 {
814
815 if (fd == -1)
816 return fd;
817 return fd + hijack_fdoff;
818 }
819
820 static int
821 fd_rump2host_withdup(int fd)
822 {
823 int hfd;
824
825 _DIAGASSERT(fd != -1);
826 hfd = unmapdup2(fd);
827 if (hfd != -1) {
828 _DIAGASSERT(hfd <= DUP2HIGH);
829 return hfd;
830 }
831 return fd_rump2host(fd);
832 }
833
834 static int
835 fd_host2rump(int fd)
836 {
837
838 if (!isdup2d(fd))
839 return fd - hijack_fdoff;
840 else
841 return mapdup2(fd);
842 }
843
844 static bool
845 fd_isrump(int fd)
846 {
847
848 return isdup2d(fd) || fd >= hijack_fdoff;
849 }
850
851 #define assertfd(_fd_) assert(ISDUP2D(_fd_) || (_fd_) >= hijack_fdoff)
852
853 static enum pathtype
854 path_isrump(const char *path)
855 {
856 size_t plen;
857 int i;
858
859 if (rumpprefix == NULL && nblanket == 0)
860 return PATH_HOST;
861
862 if (*path == '/') {
863 plen = strlen(path);
864 if (rumpprefix && plen >= rumpprefixlen) {
865 if (strncmp(path, rumpprefix, rumpprefixlen) == 0
866 && (plen == rumpprefixlen
867 || *(path + rumpprefixlen) == '/')) {
868 return PATH_RUMP;
869 }
870 }
871 for (i = 0; i < nblanket; i++) {
872 if (strncmp(path, blanket[i].pfx, blanket[i].len) == 0)
873 return PATH_RUMPBLANKET;
874 }
875
876 return PATH_HOST;
877 } else {
878 return pwdinrump ? PATH_RUMP : PATH_HOST;
879 }
880 }
881
882 static const char *rootpath = "/";
883 static const char *
884 path_host2rump(const char *path)
885 {
886 const char *rv;
887
888 if (*path == '/') {
889 rv = path + rumpprefixlen;
890 if (*rv == '\0')
891 rv = rootpath;
892 } else {
893 rv = path;
894 }
895
896 return rv;
897 }
898
899 static int
900 dodup(int oldd, int minfd)
901 {
902 int (*op_fcntl)(int, int, ...);
903 int newd;
904 int isrump;
905
906 DPRINTF(("dup -> %d (minfd %d)\n", oldd, minfd));
907 if (fd_isrump(oldd)) {
908 op_fcntl = GETSYSCALL(rump, FCNTL);
909 oldd = fd_host2rump(oldd);
910 if (minfd >= hijack_fdoff)
911 minfd -= hijack_fdoff;
912 isrump = 1;
913 } else {
914 op_fcntl = GETSYSCALL(host, FCNTL);
915 isrump = 0;
916 }
917
918 newd = op_fcntl(oldd, F_DUPFD, minfd);
919
920 if (isrump)
921 newd = fd_rump2host(newd);
922 DPRINTF(("dup <- %d\n", newd));
923
924 return newd;
925 }
926
927 /*
928 * Check that host fd value does not exceed fdoffset and if necessary
929 * dup the file descriptor so that it doesn't collide with the dup2mask.
930 */
931 static int
932 fd_host2host(int fd)
933 {
934 int (*op_fcntl)(int, int, ...) = GETSYSCALL(host, FCNTL);
935 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
936 int ofd, i;
937
938 if (fd >= hijack_fdoff) {
939 op_close(fd);
940 errno = ENFILE;
941 return -1;
942 }
943
944 for (i = 1; isdup2d(fd); i++) {
945 ofd = fd;
946 fd = op_fcntl(ofd, F_DUPFD, i);
947 op_close(ofd);
948 }
949
950 return fd;
951 }
952
953 int
954 open(const char *path, int flags, ...)
955 {
956 int (*op_open)(const char *, int, ...);
957 bool isrump;
958 va_list ap;
959 enum pathtype pt;
960 int fd;
961
962 DPRINTF(("open -> %s (%s)\n", path, whichpath(path)));
963
964 if ((pt = path_isrump(path)) != PATH_HOST) {
965 if (pt == PATH_RUMP)
966 path = path_host2rump(path);
967 op_open = GETSYSCALL(rump, OPEN);
968 isrump = true;
969 } else {
970 op_open = GETSYSCALL(host, OPEN);
971 isrump = false;
972 }
973
974 va_start(ap, flags);
975 fd = op_open(path, flags, va_arg(ap, mode_t));
976 va_end(ap);
977
978 if (isrump)
979 fd = fd_rump2host(fd);
980 else
981 fd = fd_host2host(fd);
982
983 DPRINTF(("open <- %d (%s)\n", fd, whichfd(fd)));
984 return fd;
985 }
986
987 int
988 chdir(const char *path)
989 {
990 int (*op_chdir)(const char *);
991 enum pathtype pt;
992 int rv;
993
994 if ((pt = path_isrump(path)) != PATH_HOST) {
995 op_chdir = GETSYSCALL(rump, CHDIR);
996 if (pt == PATH_RUMP)
997 path = path_host2rump(path);
998 } else {
999 op_chdir = GETSYSCALL(host, CHDIR);
1000 }
1001
1002 rv = op_chdir(path);
1003 if (rv == 0)
1004 pwdinrump = pt != PATH_HOST;
1005
1006 return rv;
1007 }
1008
1009 int
1010 fchdir(int fd)
1011 {
1012 int (*op_fchdir)(int);
1013 bool isrump;
1014 int rv;
1015
1016 if (fd_isrump(fd)) {
1017 op_fchdir = GETSYSCALL(rump, FCHDIR);
1018 isrump = true;
1019 fd = fd_host2rump(fd);
1020 } else {
1021 op_fchdir = GETSYSCALL(host, FCHDIR);
1022 isrump = false;
1023 }
1024
1025 rv = op_fchdir(fd);
1026 if (rv == 0) {
1027 pwdinrump = isrump;
1028 }
1029
1030 return rv;
1031 }
1032
1033 int
1034 __getcwd(char *bufp, size_t len)
1035 {
1036 int (*op___getcwd)(char *, size_t);
1037 size_t prefixgap;
1038 bool iamslash;
1039 int rv;
1040
1041 if (pwdinrump && rumpprefix) {
1042 if (rumpprefix[rumpprefixlen-1] == '/')
1043 iamslash = true;
1044 else
1045 iamslash = false;
1046
1047 if (iamslash)
1048 prefixgap = rumpprefixlen - 1; /* ``//+path'' */
1049 else
1050 prefixgap = rumpprefixlen; /* ``/pfx+/path'' */
1051 if (len <= prefixgap) {
1052 errno = ERANGE;
1053 return -1;
1054 }
1055
1056 op___getcwd = GETSYSCALL(rump, __GETCWD);
1057 rv = op___getcwd(bufp + prefixgap, len - prefixgap);
1058 if (rv == -1)
1059 return rv;
1060
1061 /* augment the "/" part only for a non-root path */
1062 memcpy(bufp, rumpprefix, rumpprefixlen);
1063
1064 /* append / only to non-root cwd */
1065 if (rv != 2)
1066 bufp[prefixgap] = '/';
1067
1068 /* don't append extra slash in the purely-slash case */
1069 if (rv == 2 && !iamslash)
1070 bufp[rumpprefixlen] = '\0';
1071 } else if (pwdinrump) {
1072 /* assume blanket. we can't provide a prefix here */
1073 op___getcwd = GETSYSCALL(rump, __GETCWD);
1074 rv = op___getcwd(bufp, len);
1075 } else {
1076 op___getcwd = GETSYSCALL(host, __GETCWD);
1077 rv = op___getcwd(bufp, len);
1078 }
1079
1080 return rv;
1081 }
1082
1083 int
1084 rename(const char *from, const char *to)
1085 {
1086 int (*op_rename)(const char *, const char *);
1087 enum pathtype ptf, ptt;
1088
1089 if ((ptf = path_isrump(from)) != PATH_HOST) {
1090 if ((ptt = path_isrump(to)) == PATH_HOST) {
1091 errno = EXDEV;
1092 return -1;
1093 }
1094
1095 if (ptf == PATH_RUMP)
1096 from = path_host2rump(from);
1097 if (ptt == PATH_RUMP)
1098 to = path_host2rump(to);
1099 op_rename = GETSYSCALL(rump, RENAME);
1100 } else {
1101 if (path_isrump(to) != PATH_HOST) {
1102 errno = EXDEV;
1103 return -1;
1104 }
1105
1106 op_rename = GETSYSCALL(host, RENAME);
1107 }
1108
1109 return op_rename(from, to);
1110 }
1111
1112 int __socket30(int, int, int);
1113 int
1114 __socket30(int domain, int type, int protocol)
1115 {
1116 int (*op_socket)(int, int, int);
1117 int fd;
1118 bool isrump;
1119
1120 isrump = domain < PF_MAX && rumpsockets[domain];
1121
1122 if (isrump)
1123 op_socket = GETSYSCALL(rump, SOCKET);
1124 else
1125 op_socket = GETSYSCALL(host, SOCKET);
1126 fd = op_socket(domain, type, protocol);
1127
1128 if (isrump)
1129 fd = fd_rump2host(fd);
1130 else
1131 fd = fd_host2host(fd);
1132 DPRINTF(("socket <- %d\n", fd));
1133
1134 return fd;
1135 }
1136
1137 int
1138 accept(int s, struct sockaddr *addr, socklen_t *addrlen)
1139 {
1140 int (*op_accept)(int, struct sockaddr *, socklen_t *);
1141 int fd;
1142 bool isrump;
1143
1144 isrump = fd_isrump(s);
1145
1146 DPRINTF(("accept -> %d", s));
1147 if (isrump) {
1148 op_accept = GETSYSCALL(rump, ACCEPT);
1149 s = fd_host2rump(s);
1150 } else {
1151 op_accept = GETSYSCALL(host, ACCEPT);
1152 }
1153 fd = op_accept(s, addr, addrlen);
1154 if (fd != -1 && isrump)
1155 fd = fd_rump2host(fd);
1156 else
1157 fd = fd_host2host(fd);
1158
1159 DPRINTF((" <- %d\n", fd));
1160
1161 return fd;
1162 }
1163
1164 /*
1165 * ioctl and fcntl are varargs calls and need special treatment
1166 */
1167 int
1168 ioctl(int fd, unsigned long cmd, ...)
1169 {
1170 int (*op_ioctl)(int, unsigned long cmd, ...);
1171 va_list ap;
1172 int rv;
1173
1174 DPRINTF(("ioctl -> %d\n", fd));
1175 if (fd_isrump(fd)) {
1176 fd = fd_host2rump(fd);
1177 op_ioctl = GETSYSCALL(rump, IOCTL);
1178 } else {
1179 op_ioctl = GETSYSCALL(host, IOCTL);
1180 }
1181
1182 va_start(ap, cmd);
1183 rv = op_ioctl(fd, cmd, va_arg(ap, void *));
1184 va_end(ap);
1185 return rv;
1186 }
1187
1188 int
1189 fcntl(int fd, int cmd, ...)
1190 {
1191 int (*op_fcntl)(int, int, ...);
1192 va_list ap;
1193 int rv, minfd, i, maxdup2;
1194
1195 DPRINTF(("fcntl -> %d (cmd %d)\n", fd, cmd));
1196
1197 switch (cmd) {
1198 case F_DUPFD:
1199 va_start(ap, cmd);
1200 minfd = va_arg(ap, int);
1201 va_end(ap);
1202 return dodup(fd, minfd);
1203
1204 case F_CLOSEM:
1205 /*
1206 * So, if fd < HIJACKOFF, we want to do a host closem.
1207 */
1208
1209 if (fd < hijack_fdoff) {
1210 int closemfd = fd;
1211
1212 if (rumpclient__closenotify(&closemfd,
1213 RUMPCLIENT_CLOSE_FCLOSEM) == -1)
1214 return -1;
1215 op_fcntl = GETSYSCALL(host, FCNTL);
1216 rv = op_fcntl(closemfd, cmd);
1217 if (rv)
1218 return rv;
1219 }
1220
1221 /*
1222 * Additionally, we want to do a rump closem, but only
1223 * for the file descriptors not dup2'd.
1224 */
1225
1226 for (i = 0, maxdup2 = 0; i <= DUP2HIGH; i++) {
1227 if (dup2vec[i] & DUP2BIT) {
1228 int val;
1229
1230 val = dup2vec[i] & DUP2FDMASK;
1231 maxdup2 = MAX(val, maxdup2);
1232 }
1233 }
1234
1235 if (fd >= hijack_fdoff)
1236 fd -= hijack_fdoff;
1237 else
1238 fd = 0;
1239 fd = MAX(maxdup2+1, fd);
1240
1241 /* hmm, maybe we should close rump fd's not within dup2mask? */
1242 return rump_sys_fcntl(fd, F_CLOSEM);
1243
1244 case F_MAXFD:
1245 /*
1246 * For maxfd, if there's a rump kernel fd, return
1247 * it hostified. Otherwise, return host's MAXFD
1248 * return value.
1249 */
1250 if ((rv = rump_sys_fcntl(fd, F_MAXFD)) != -1) {
1251 /*
1252 * This might go a little wrong in case
1253 * of dup2 to [012], but I'm not sure if
1254 * there's a justification for tracking
1255 * that info. Consider e.g.
1256 * dup2(rumpfd, 2) followed by rump_sys_open()
1257 * returning 1. We should return 1+HIJACKOFF,
1258 * not 2+HIJACKOFF. However, if [01] is not
1259 * open, the correct return value is 2.
1260 */
1261 return fd_rump2host(fd);
1262 } else {
1263 op_fcntl = GETSYSCALL(host, FCNTL);
1264 return op_fcntl(fd, F_MAXFD);
1265 }
1266 /*NOTREACHED*/
1267
1268 default:
1269 if (fd_isrump(fd)) {
1270 fd = fd_host2rump(fd);
1271 op_fcntl = GETSYSCALL(rump, FCNTL);
1272 } else {
1273 op_fcntl = GETSYSCALL(host, FCNTL);
1274 }
1275
1276 va_start(ap, cmd);
1277 rv = op_fcntl(fd, cmd, va_arg(ap, void *));
1278 va_end(ap);
1279 return rv;
1280 }
1281 /*NOTREACHED*/
1282 }
1283
1284 int
1285 close(int fd)
1286 {
1287 int (*op_close)(int);
1288 int rv;
1289
1290 DPRINTF(("close -> %d\n", fd));
1291 if (fd_isrump(fd)) {
1292 bool undup2 = false;
1293 int ofd;
1294
1295 if (isdup2d(ofd = fd)) {
1296 undup2 = true;
1297 }
1298
1299 fd = fd_host2rump(fd);
1300 if (!undup2 && killdup2alias(fd)) {
1301 return 0;
1302 }
1303
1304 op_close = GETSYSCALL(rump, CLOSE);
1305 rv = op_close(fd);
1306 if (rv == 0 && undup2) {
1307 clrdup2(ofd);
1308 }
1309 } else {
1310 if (rumpclient__closenotify(&fd, RUMPCLIENT_CLOSE_CLOSE) == -1)
1311 return -1;
1312 op_close = GETSYSCALL(host, CLOSE);
1313 rv = op_close(fd);
1314 }
1315
1316 return rv;
1317 }
1318
1319 /*
1320 * write cannot issue a standard debug printf due to recursion
1321 */
1322 ssize_t
1323 write(int fd, const void *buf, size_t blen)
1324 {
1325 ssize_t (*op_write)(int, const void *, size_t);
1326
1327 if (fd_isrump(fd)) {
1328 fd = fd_host2rump(fd);
1329 op_write = GETSYSCALL(rump, WRITE);
1330 } else {
1331 op_write = GETSYSCALL(host, WRITE);
1332 }
1333
1334 return op_write(fd, buf, blen);
1335 }
1336
1337 /*
1338 * dup2 is special. we allow dup2 of a rump kernel fd to 0-2 since
1339 * many programs do that. dup2 of a rump kernel fd to another value
1340 * not >= fdoff is an error.
1341 *
1342 * Note: cannot rump2host newd, because it is often hardcoded.
1343 */
1344 int
1345 dup2(int oldd, int newd)
1346 {
1347 int (*host_dup2)(int, int);
1348 int rv;
1349
1350 DPRINTF(("dup2 -> %d (o) -> %d (n)\n", oldd, newd));
1351
1352 if (fd_isrump(oldd)) {
1353 int (*op_close)(int) = GETSYSCALL(host, CLOSE);
1354
1355 /* only allow fd 0-2 for cross-kernel dup */
1356 if (!(newd >= 0 && newd <= 2 && !fd_isrump(newd))) {
1357 errno = EBADF;
1358 return -1;
1359 }
1360
1361 /* regular dup2? */
1362 if (fd_isrump(newd)) {
1363 newd = fd_host2rump(newd);
1364 rv = rump_sys_dup2(oldd, newd);
1365 return fd_rump2host(rv);
1366 }
1367
1368 /*
1369 * dup2 rump => host? just establish an
1370 * entry in the mapping table.
1371 */
1372 op_close(newd);
1373 setdup2(newd, fd_host2rump(oldd));
1374 rv = 0;
1375 } else {
1376 host_dup2 = syscalls[DUALCALL_DUP2].bs_host;
1377 if (rumpclient__closenotify(&newd, RUMPCLIENT_CLOSE_DUP2) == -1)
1378 return -1;
1379 rv = host_dup2(oldd, newd);
1380 }
1381
1382 return rv;
1383 }
1384
1385 int
1386 dup(int oldd)
1387 {
1388
1389 return dodup(oldd, 0);
1390 }
1391
1392 pid_t
1393 fork()
1394 {
1395 pid_t rv;
1396
1397 DPRINTF(("fork\n"));
1398
1399 rv = rumpclient__dofork(host_fork);
1400
1401 DPRINTF(("fork returns %d\n", rv));
1402 return rv;
1403 }
1404 /* we do not have the luxury of not requiring a stackframe */
1405 __strong_alias(__vfork14,fork);
1406
1407 int
1408 daemon(int nochdir, int noclose)
1409 {
1410 struct rumpclient_fork *rf;
1411
1412 if ((rf = rumpclient_prefork()) == NULL)
1413 return -1;
1414
1415 if (host_daemon(nochdir, noclose) == -1)
1416 return -1;
1417
1418 if (rumpclient_fork_init(rf) == -1)
1419 return -1;
1420
1421 return 0;
1422 }
1423
1424 int
1425 execve(const char *path, char *const argv[], char *const envp[])
1426 {
1427 char buf[128];
1428 char *dup2str;
1429 const char *pwdinrumpstr;
1430 char **newenv;
1431 size_t nelem;
1432 int rv, sverrno;
1433 int bonus = 2, i = 0;
1434
1435 snprintf(buf, sizeof(buf), "RUMPHIJACK__DUP2INFO=%u,%u,%u",
1436 dup2vec[0], dup2vec[1], dup2vec[2]);
1437 dup2str = strdup(buf);
1438 if (dup2str == NULL) {
1439 errno = ENOMEM;
1440 return -1;
1441 }
1442
1443 if (pwdinrump) {
1444 pwdinrumpstr = "RUMPHIJACK__PWDINRUMP=true";
1445 bonus++;
1446 } else {
1447 pwdinrumpstr = NULL;
1448 }
1449
1450 for (nelem = 0; envp && envp[nelem]; nelem++)
1451 continue;
1452 newenv = malloc(sizeof(*newenv) * (nelem+bonus));
1453 if (newenv == NULL) {
1454 free(dup2str);
1455 errno = ENOMEM;
1456 return -1;
1457 }
1458 memcpy(newenv, envp, nelem*sizeof(*newenv));
1459 newenv[nelem+i] = dup2str;
1460 i++;
1461
1462 if (pwdinrumpstr) {
1463 newenv[nelem+i] = __UNCONST(pwdinrumpstr);
1464 i++;
1465 }
1466 newenv[nelem+i] = NULL;
1467 _DIAGASSERT(i < bonus);
1468
1469 rv = rumpclient_exec(path, argv, newenv);
1470
1471 _DIAGASSERT(rv != 0);
1472 sverrno = errno;
1473 free(newenv);
1474 free(dup2str);
1475 errno = sverrno;
1476 return rv;
1477 }
1478
1479 /*
1480 * select is done by calling poll.
1481 */
1482 int
1483 REALSELECT(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1484 struct timeval *timeout)
1485 {
1486 struct pollfd *pfds;
1487 struct timespec ts, *tsp = NULL;
1488 nfds_t realnfds;
1489 int i, j;
1490 int rv, incr;
1491
1492 DPRINTF(("select\n"));
1493
1494 /*
1495 * Well, first we must scan the fds to figure out how many
1496 * fds there really are. This is because up to and including
1497 * nb5 poll() silently refuses nfds > process_maxopen_fds.
1498 * Seems to be fixed in current, thank the maker.
1499 * god damn cluster...bomb.
1500 */
1501
1502 for (i = 0, realnfds = 0; i < nfds; i++) {
1503 if (readfds && FD_ISSET(i, readfds)) {
1504 realnfds++;
1505 continue;
1506 }
1507 if (writefds && FD_ISSET(i, writefds)) {
1508 realnfds++;
1509 continue;
1510 }
1511 if (exceptfds && FD_ISSET(i, exceptfds)) {
1512 realnfds++;
1513 continue;
1514 }
1515 }
1516
1517 if (realnfds) {
1518 pfds = calloc(realnfds, sizeof(*pfds));
1519 if (!pfds)
1520 return -1;
1521 } else {
1522 pfds = NULL;
1523 }
1524
1525 for (i = 0, j = 0; i < nfds; i++) {
1526 incr = 0;
1527 if (readfds && FD_ISSET(i, readfds)) {
1528 pfds[j].fd = i;
1529 pfds[j].events |= POLLIN;
1530 incr=1;
1531 }
1532 if (writefds && FD_ISSET(i, writefds)) {
1533 pfds[j].fd = i;
1534 pfds[j].events |= POLLOUT;
1535 incr=1;
1536 }
1537 if (exceptfds && FD_ISSET(i, exceptfds)) {
1538 pfds[j].fd = i;
1539 pfds[j].events |= POLLHUP|POLLERR;
1540 incr=1;
1541 }
1542 if (incr)
1543 j++;
1544 }
1545 assert(j == (int)realnfds);
1546
1547 if (timeout) {
1548 TIMEVAL_TO_TIMESPEC(timeout, &ts);
1549 tsp = &ts;
1550 }
1551 rv = REALPOLLTS(pfds, realnfds, tsp, NULL);
1552 /*
1553 * "If select() returns with an error the descriptor sets
1554 * will be unmodified"
1555 */
1556 if (rv < 0)
1557 goto out;
1558
1559 /*
1560 * zero out results (can't use FD_ZERO for the
1561 * obvious select-me-not reason). whee.
1562 *
1563 * We do this here since some software ignores the return
1564 * value of select, and hence if the timeout expires, it may
1565 * assume all input descriptors have activity.
1566 */
1567 for (i = 0; i < nfds; i++) {
1568 if (readfds)
1569 FD_CLR(i, readfds);
1570 if (writefds)
1571 FD_CLR(i, writefds);
1572 if (exceptfds)
1573 FD_CLR(i, exceptfds);
1574 }
1575 if (rv == 0)
1576 goto out;
1577
1578 /*
1579 * We have >0 fds with activity. Harvest the results.
1580 */
1581 for (i = 0; i < (int)realnfds; i++) {
1582 if (readfds) {
1583 if (pfds[i].revents & POLLIN) {
1584 FD_SET(pfds[i].fd, readfds);
1585 }
1586 }
1587 if (writefds) {
1588 if (pfds[i].revents & POLLOUT) {
1589 FD_SET(pfds[i].fd, writefds);
1590 }
1591 }
1592 if (exceptfds) {
1593 if (pfds[i].revents & (POLLHUP|POLLERR)) {
1594 FD_SET(pfds[i].fd, exceptfds);
1595 }
1596 }
1597 }
1598
1599 out:
1600 free(pfds);
1601 return rv;
1602 }
1603
1604 static void
1605 checkpoll(struct pollfd *fds, nfds_t nfds, int *hostcall, int *rumpcall)
1606 {
1607 nfds_t i;
1608
1609 for (i = 0; i < nfds; i++) {
1610 if (fds[i].fd == -1)
1611 continue;
1612
1613 if (fd_isrump(fds[i].fd))
1614 (*rumpcall)++;
1615 else
1616 (*hostcall)++;
1617 }
1618 }
1619
1620 static void
1621 adjustpoll(struct pollfd *fds, nfds_t nfds, int (*fdadj)(int))
1622 {
1623 nfds_t i;
1624
1625 for (i = 0; i < nfds; i++) {
1626 fds[i].fd = fdadj(fds[i].fd);
1627 }
1628 }
1629
1630 /*
1631 * poll is easy as long as the call comes in the fds only in one
1632 * kernel. otherwise its quite tricky...
1633 */
1634 struct pollarg {
1635 struct pollfd *pfds;
1636 nfds_t nfds;
1637 const struct timespec *ts;
1638 const sigset_t *sigmask;
1639 int pipefd;
1640 int errnum;
1641 };
1642
1643 static void *
1644 hostpoll(void *arg)
1645 {
1646 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1647 const sigset_t *);
1648 struct pollarg *parg = arg;
1649 intptr_t rv;
1650
1651 op_pollts = GETSYSCALL(host, POLLTS);
1652 rv = op_pollts(parg->pfds, parg->nfds, parg->ts, parg->sigmask);
1653 if (rv == -1)
1654 parg->errnum = errno;
1655 rump_sys_write(parg->pipefd, &rv, sizeof(rv));
1656
1657 return (void *)rv;
1658 }
1659
1660 int
1661 REALPOLLTS(struct pollfd *fds, nfds_t nfds, const struct timespec *ts,
1662 const sigset_t *sigmask)
1663 {
1664 int (*op_pollts)(struct pollfd *, nfds_t, const struct timespec *,
1665 const sigset_t *);
1666 int (*host_close)(int);
1667 int hostcall = 0, rumpcall = 0;
1668 pthread_t pt;
1669 nfds_t i;
1670 int rv;
1671
1672 DPRINTF(("poll\n"));
1673 checkpoll(fds, nfds, &hostcall, &rumpcall);
1674
1675 if (hostcall && rumpcall) {
1676 struct pollfd *pfd_host = NULL, *pfd_rump = NULL;
1677 int rpipe[2] = {-1,-1}, hpipe[2] = {-1,-1};
1678 struct pollarg parg;
1679 void *trv_val;
1680 int sverrno = 0, lrv, trv;
1681
1682 /*
1683 * ok, this is where it gets tricky. We must support
1684 * this since it's a very common operation in certain
1685 * types of software (telnet, netcat, etc). We allocate
1686 * two vectors and run two poll commands in separate
1687 * threads. Whichever returns first "wins" and the
1688 * other kernel's fds won't show activity.
1689 */
1690 rv = -1;
1691
1692 /* allocate full vector for O(n) joining after call */
1693 pfd_host = malloc(sizeof(*pfd_host)*(nfds+1));
1694 if (!pfd_host)
1695 goto out;
1696 pfd_rump = malloc(sizeof(*pfd_rump)*(nfds+1));
1697 if (!pfd_rump) {
1698 goto out;
1699 }
1700
1701 /*
1702 * then, open two pipes, one for notifications
1703 * to each kernel.
1704 *
1705 * At least the rump pipe should probably be
1706 * cached, along with the helper threads. This
1707 * should give a microbenchmark improvement (haven't
1708 * experienced a macro-level problem yet, though).
1709 */
1710 if ((rv = rump_sys_pipe(rpipe)) == -1) {
1711 sverrno = errno;
1712 }
1713 if (rv == 0 && (rv = pipe(hpipe)) == -1) {
1714 sverrno = errno;
1715 }
1716
1717 /* split vectors (or signal errors) */
1718 for (i = 0; i < nfds; i++) {
1719 int fd;
1720
1721 fds[i].revents = 0;
1722 if (fds[i].fd == -1) {
1723 pfd_host[i].fd = -1;
1724 pfd_rump[i].fd = -1;
1725 } else if (fd_isrump(fds[i].fd)) {
1726 pfd_host[i].fd = -1;
1727 fd = fd_host2rump(fds[i].fd);
1728 if (fd == rpipe[0] || fd == rpipe[1]) {
1729 fds[i].revents = POLLNVAL;
1730 if (rv != -1)
1731 rv++;
1732 }
1733 pfd_rump[i].fd = fd;
1734 pfd_rump[i].events = fds[i].events;
1735 } else {
1736 pfd_rump[i].fd = -1;
1737 fd = fds[i].fd;
1738 if (fd == hpipe[0] || fd == hpipe[1]) {
1739 fds[i].revents = POLLNVAL;
1740 if (rv != -1)
1741 rv++;
1742 }
1743 pfd_host[i].fd = fd;
1744 pfd_host[i].events = fds[i].events;
1745 }
1746 pfd_rump[i].revents = pfd_host[i].revents = 0;
1747 }
1748 if (rv) {
1749 goto out;
1750 }
1751
1752 pfd_host[nfds].fd = hpipe[0];
1753 pfd_host[nfds].events = POLLIN;
1754 pfd_rump[nfds].fd = rpipe[0];
1755 pfd_rump[nfds].events = POLLIN;
1756
1757 /*
1758 * then, create a thread to do host part and meanwhile
1759 * do rump kernel part right here
1760 */
1761
1762 parg.pfds = pfd_host;
1763 parg.nfds = nfds+1;
1764 parg.ts = ts;
1765 parg.sigmask = sigmask;
1766 parg.pipefd = rpipe[1];
1767 pthread_create(&pt, NULL, hostpoll, &parg);
1768
1769 op_pollts = GETSYSCALL(rump, POLLTS);
1770 lrv = op_pollts(pfd_rump, nfds+1, ts, NULL);
1771 sverrno = errno;
1772 write(hpipe[1], &rv, sizeof(rv));
1773 pthread_join(pt, &trv_val);
1774 trv = (int)(intptr_t)trv_val;
1775
1776 /* check who "won" and merge results */
1777 if (lrv != 0 && pfd_host[nfds].revents & POLLIN) {
1778 rv = trv;
1779
1780 for (i = 0; i < nfds; i++) {
1781 if (pfd_rump[i].fd != -1)
1782 fds[i].revents = pfd_rump[i].revents;
1783 }
1784 sverrno = parg.errnum;
1785 } else if (trv != 0 && pfd_rump[nfds].revents & POLLIN) {
1786 rv = trv;
1787
1788 for (i = 0; i < nfds; i++) {
1789 if (pfd_host[i].fd != -1)
1790 fds[i].revents = pfd_host[i].revents;
1791 }
1792 } else {
1793 rv = 0;
1794 }
1795
1796 out:
1797 host_close = GETSYSCALL(host, CLOSE);
1798 if (rpipe[0] != -1)
1799 rump_sys_close(rpipe[0]);
1800 if (rpipe[1] != -1)
1801 rump_sys_close(rpipe[1]);
1802 if (hpipe[0] != -1)
1803 host_close(hpipe[0]);
1804 if (hpipe[1] != -1)
1805 host_close(hpipe[1]);
1806 free(pfd_host);
1807 free(pfd_rump);
1808 errno = sverrno;
1809 } else {
1810 if (hostcall) {
1811 op_pollts = GETSYSCALL(host, POLLTS);
1812 } else {
1813 op_pollts = GETSYSCALL(rump, POLLTS);
1814 adjustpoll(fds, nfds, fd_host2rump);
1815 }
1816
1817 rv = op_pollts(fds, nfds, ts, sigmask);
1818 if (rumpcall)
1819 adjustpoll(fds, nfds, fd_rump2host_withdup);
1820 }
1821
1822 return rv;
1823 }
1824
1825 int
1826 poll(struct pollfd *fds, nfds_t nfds, int timeout)
1827 {
1828 struct timespec ts;
1829 struct timespec *tsp = NULL;
1830
1831 if (timeout != INFTIM) {
1832 ts.tv_sec = timeout / 1000;
1833 ts.tv_nsec = (timeout % 1000) * 1000*1000;
1834
1835 tsp = &ts;
1836 }
1837
1838 return REALPOLLTS(fds, nfds, tsp, NULL);
1839 }
1840
1841 int
1842 REALKEVENT(int kq, const struct kevent *changelist, size_t nchanges,
1843 struct kevent *eventlist, size_t nevents,
1844 const struct timespec *timeout)
1845 {
1846 int (*op_kevent)(int, const struct kevent *, size_t,
1847 struct kevent *, size_t, const struct timespec *);
1848 const struct kevent *ev;
1849 size_t i;
1850
1851 /*
1852 * Check that we don't attempt to kevent rump kernel fd's.
1853 * That needs similar treatment to select/poll, but is slightly
1854 * trickier since we need to manage to different kq descriptors.
1855 * (TODO, in case you're wondering).
1856 */
1857 for (i = 0; i < nchanges; i++) {
1858 ev = &changelist[i];
1859 if (ev->filter == EVFILT_READ || ev->filter == EVFILT_WRITE ||
1860 ev->filter == EVFILT_VNODE) {
1861 if (fd_isrump((int)ev->ident)) {
1862 errno = ENOTSUP;
1863 return -1;
1864 }
1865 }
1866 }
1867
1868 op_kevent = GETSYSCALL(host, KEVENT);
1869 return op_kevent(kq, changelist, nchanges, eventlist, nevents, timeout);
1870 }
1871
1872 /*
1873 * mmapping from a rump kernel is not supported, so disallow it.
1874 */
1875 void *
1876 mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)
1877 {
1878
1879 if (flags & MAP_FILE && fd_isrump(fd)) {
1880 errno = ENOSYS;
1881 return MAP_FAILED;
1882 }
1883 return host_mmap(addr, len, prot, flags, fd, offset);
1884 }
1885
1886 /*
1887 * these go to one or the other on a per-process configuration
1888 */
1889 int __sysctl(const int *, unsigned int, void *, size_t *, const void *, size_t);
1890 int
1891 __sysctl(const int *name, unsigned int namelen, void *old, size_t *oldlenp,
1892 const void *new, size_t newlen)
1893 {
1894 int (*op___sysctl)(const int *, unsigned int, void *, size_t *,
1895 const void *, size_t);
1896
1897 if (rumpsysctl) {
1898 op___sysctl = GETSYSCALL(rump, __SYSCTL);
1899 } else {
1900 op___sysctl = GETSYSCALL(host, __SYSCTL);
1901 /* we haven't inited yet */
1902 if (__predict_false(op___sysctl == NULL)) {
1903 op___sysctl = rumphijack_dlsym(RTLD_NEXT, "__sysctl");
1904 }
1905 }
1906
1907 return op___sysctl(name, namelen, old, oldlenp, new, newlen);
1908 }
1909
1910 /*
1911 * Rest are std type calls.
1912 */
1913
1914 FDCALL(int, bind, DUALCALL_BIND, \
1915 (int fd, const struct sockaddr *name, socklen_t namelen), \
1916 (int, const struct sockaddr *, socklen_t), \
1917 (fd, name, namelen))
1918
1919 FDCALL(int, connect, DUALCALL_CONNECT, \
1920 (int fd, const struct sockaddr *name, socklen_t namelen), \
1921 (int, const struct sockaddr *, socklen_t), \
1922 (fd, name, namelen))
1923
1924 FDCALL(int, getpeername, DUALCALL_GETPEERNAME, \
1925 (int fd, struct sockaddr *name, socklen_t *namelen), \
1926 (int, struct sockaddr *, socklen_t *), \
1927 (fd, name, namelen))
1928
1929 FDCALL(int, getsockname, DUALCALL_GETSOCKNAME, \
1930 (int fd, struct sockaddr *name, socklen_t *namelen), \
1931 (int, struct sockaddr *, socklen_t *), \
1932 (fd, name, namelen))
1933
1934 FDCALL(int, listen, DUALCALL_LISTEN, \
1935 (int fd, int backlog), \
1936 (int, int), \
1937 (fd, backlog))
1938
1939 FDCALL(ssize_t, recvfrom, DUALCALL_RECVFROM, \
1940 (int fd, void *buf, size_t len, int flags, \
1941 struct sockaddr *from, socklen_t *fromlen), \
1942 (int, void *, size_t, int, struct sockaddr *, socklen_t *), \
1943 (fd, buf, len, flags, from, fromlen))
1944
1945 FDCALL(ssize_t, sendto, DUALCALL_SENDTO, \
1946 (int fd, const void *buf, size_t len, int flags, \
1947 const struct sockaddr *to, socklen_t tolen), \
1948 (int, const void *, size_t, int, \
1949 const struct sockaddr *, socklen_t), \
1950 (fd, buf, len, flags, to, tolen))
1951
1952 FDCALL(ssize_t, recvmsg, DUALCALL_RECVMSG, \
1953 (int fd, struct msghdr *msg, int flags), \
1954 (int, struct msghdr *, int), \
1955 (fd, msg, flags))
1956
1957 FDCALL(ssize_t, sendmsg, DUALCALL_SENDMSG, \
1958 (int fd, const struct msghdr *msg, int flags), \
1959 (int, const struct msghdr *, int), \
1960 (fd, msg, flags))
1961
1962 FDCALL(int, getsockopt, DUALCALL_GETSOCKOPT, \
1963 (int fd, int level, int optn, void *optval, socklen_t *optlen), \
1964 (int, int, int, void *, socklen_t *), \
1965 (fd, level, optn, optval, optlen))
1966
1967 FDCALL(int, setsockopt, DUALCALL_SETSOCKOPT, \
1968 (int fd, int level, int optn, \
1969 const void *optval, socklen_t optlen), \
1970 (int, int, int, const void *, socklen_t), \
1971 (fd, level, optn, optval, optlen))
1972
1973 FDCALL(int, shutdown, DUALCALL_SHUTDOWN, \
1974 (int fd, int how), \
1975 (int, int), \
1976 (fd, how))
1977
1978 FDCALL(ssize_t, REALREAD, DUALCALL_READ, \
1979 (int fd, void *buf, size_t buflen), \
1980 (int, void *, size_t), \
1981 (fd, buf, buflen))
1982
1983 FDCALL(ssize_t, readv, DUALCALL_READV, \
1984 (int fd, const struct iovec *iov, int iovcnt), \
1985 (int, const struct iovec *, int), \
1986 (fd, iov, iovcnt))
1987
1988 FDCALL(ssize_t, REALPREAD, DUALCALL_PREAD, \
1989 (int fd, void *buf, size_t nbytes, off_t offset), \
1990 (int, void *, size_t, off_t), \
1991 (fd, buf, nbytes, offset))
1992
1993 FDCALL(ssize_t, preadv, DUALCALL_PREADV, \
1994 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
1995 (int, const struct iovec *, int, off_t), \
1996 (fd, iov, iovcnt, offset))
1997
1998 FDCALL(ssize_t, writev, DUALCALL_WRITEV, \
1999 (int fd, const struct iovec *iov, int iovcnt), \
2000 (int, const struct iovec *, int), \
2001 (fd, iov, iovcnt))
2002
2003 FDCALL(ssize_t, REALPWRITE, DUALCALL_PWRITE, \
2004 (int fd, const void *buf, size_t nbytes, off_t offset), \
2005 (int, const void *, size_t, off_t), \
2006 (fd, buf, nbytes, offset))
2007
2008 FDCALL(ssize_t, pwritev, DUALCALL_PWRITEV, \
2009 (int fd, const struct iovec *iov, int iovcnt, off_t offset), \
2010 (int, const struct iovec *, int, off_t), \
2011 (fd, iov, iovcnt, offset))
2012
2013 FDCALL(int, REALFSTAT, DUALCALL_FSTAT, \
2014 (int fd, struct stat *sb), \
2015 (int, struct stat *), \
2016 (fd, sb))
2017
2018 FDCALL(int, fstatvfs1, DUALCALL_FSTATVFS1, \
2019 (int fd, struct statvfs *buf, int flags), \
2020 (int, struct statvfs *, int), \
2021 (fd, buf, flags))
2022
2023 FDCALL(off_t, lseek, DUALCALL_LSEEK, \
2024 (int fd, off_t offset, int whence), \
2025 (int, off_t, int), \
2026 (fd, offset, whence))
2027 __strong_alias(_lseek,lseek);
2028
2029 FDCALL(int, REALGETDENTS, DUALCALL_GETDENTS, \
2030 (int fd, char *buf, size_t nbytes), \
2031 (int, char *, size_t), \
2032 (fd, buf, nbytes))
2033
2034 FDCALL(int, fchown, DUALCALL_FCHOWN, \
2035 (int fd, uid_t owner, gid_t group), \
2036 (int, uid_t, gid_t), \
2037 (fd, owner, group))
2038
2039 FDCALL(int, fchmod, DUALCALL_FCHMOD, \
2040 (int fd, mode_t mode), \
2041 (int, mode_t), \
2042 (fd, mode))
2043
2044 FDCALL(int, ftruncate, DUALCALL_FTRUNCATE, \
2045 (int fd, off_t length), \
2046 (int, off_t), \
2047 (fd, length))
2048
2049 FDCALL(int, fsync, DUALCALL_FSYNC, \
2050 (int fd), \
2051 (int), \
2052 (fd))
2053
2054 FDCALL(int, fsync_range, DUALCALL_FSYNC_RANGE, \
2055 (int fd, int how, off_t start, off_t length), \
2056 (int, int, off_t, off_t), \
2057 (fd, how, start, length))
2058
2059 FDCALL(int, futimes, DUALCALL_FUTIMES, \
2060 (int fd, const struct timeval *tv), \
2061 (int, const struct timeval *), \
2062 (fd, tv))
2063
2064 FDCALL(int, fchflags, DUALCALL_FCHFLAGS, \
2065 (int fd, u_long flags), \
2066 (int, u_long), \
2067 (fd, flags))
2068
2069 /*
2070 * path-based selectors
2071 */
2072
2073 PATHCALL(int, REALSTAT, DUALCALL_STAT, \
2074 (const char *path, struct stat *sb), \
2075 (const char *, struct stat *), \
2076 (path, sb))
2077
2078 PATHCALL(int, REALLSTAT, DUALCALL_LSTAT, \
2079 (const char *path, struct stat *sb), \
2080 (const char *, struct stat *), \
2081 (path, sb))
2082
2083 PATHCALL(int, chown, DUALCALL_CHOWN, \
2084 (const char *path, uid_t owner, gid_t group), \
2085 (const char *, uid_t, gid_t), \
2086 (path, owner, group))
2087
2088 PATHCALL(int, lchown, DUALCALL_LCHOWN, \
2089 (const char *path, uid_t owner, gid_t group), \
2090 (const char *, uid_t, gid_t), \
2091 (path, owner, group))
2092
2093 PATHCALL(int, chmod, DUALCALL_CHMOD, \
2094 (const char *path, mode_t mode), \
2095 (const char *, mode_t), \
2096 (path, mode))
2097
2098 PATHCALL(int, lchmod, DUALCALL_LCHMOD, \
2099 (const char *path, mode_t mode), \
2100 (const char *, mode_t), \
2101 (path, mode))
2102
2103 PATHCALL(int, statvfs1, DUALCALL_STATVFS1, \
2104 (const char *path, struct statvfs *buf, int flags), \
2105 (const char *, struct statvfs *, int), \
2106 (path, buf, flags))
2107
2108 PATHCALL(int, unlink, DUALCALL_UNLINK, \
2109 (const char *path), \
2110 (const char *), \
2111 (path))
2112
2113 PATHCALL(int, symlink, DUALCALL_SYMLINK, \
2114 (const char *target, const char *path), \
2115 (const char *, const char *), \
2116 (target, path))
2117
2118 PATHCALL(ssize_t, readlink, DUALCALL_READLINK, \
2119 (const char *path, char *buf, size_t bufsiz), \
2120 (const char *, char *, size_t), \
2121 (path, buf, bufsiz))
2122
2123 PATHCALL(int, mkdir, DUALCALL_MKDIR, \
2124 (const char *path, mode_t mode), \
2125 (const char *, mode_t), \
2126 (path, mode))
2127
2128 PATHCALL(int, rmdir, DUALCALL_RMDIR, \
2129 (const char *path), \
2130 (const char *), \
2131 (path))
2132
2133 PATHCALL(int, utimes, DUALCALL_UTIMES, \
2134 (const char *path, const struct timeval *tv), \
2135 (const char *, const struct timeval *), \
2136 (path, tv))
2137
2138 PATHCALL(int, lutimes, DUALCALL_LUTIMES, \
2139 (const char *path, const struct timeval *tv), \
2140 (const char *, const struct timeval *), \
2141 (path, tv))
2142
2143 PATHCALL(int, chflags, DUALCALL_CHFLAGS, \
2144 (const char *path, u_long flags), \
2145 (const char *, u_long), \
2146 (path, flags))
2147
2148 PATHCALL(int, lchflags, DUALCALL_LCHFLAGS, \
2149 (const char *path, u_long flags), \
2150 (const char *, u_long), \
2151 (path, flags))
2152
2153 PATHCALL(int, truncate, DUALCALL_TRUNCATE, \
2154 (const char *path, off_t length), \
2155 (const char *, off_t), \
2156 (path, length))
2157
2158 PATHCALL(int, access, DUALCALL_ACCESS, \
2159 (const char *path, int mode), \
2160 (const char *, int), \
2161 (path, mode))
2162
2163 PATHCALL(int, REALMKNOD, DUALCALL_MKNOD, \
2164 (const char *path, mode_t mode, dev_t dev), \
2165 (const char *, mode_t, dev_t), \
2166 (path, mode, dev))
2167
2168 /*
2169 * Note: with mount the decisive parameter is the mount
2170 * destination directory. This is because we don't really know
2171 * about the "source" directory in a generic call (and besides,
2172 * it might not even exist, cf. nfs).
2173 */
2174 PATHCALL(int, REALMOUNT, DUALCALL_MOUNT, \
2175 (const char *type, const char *path, int flags, \
2176 void *data, size_t dlen), \
2177 (const char *, const char *, int, void *, size_t), \
2178 (type, path, flags, data, dlen))
2179
2180 PATHCALL(int, unmount, DUALCALL_UNMOUNT, \
2181 (const char *path, int flags), \
2182 (const char *, int), \
2183 (path, flags))
2184
2185 #if __NetBSD_Prereq__(5,99,63)
2186 PATHCALL(int, __quotactl, DUALCALL_QUOTACTL, \
2187 (const char *path, struct quotactl_args *args), \
2188 (const char *, struct quotactl_args *), \
2189 (path, args))
2190 #elif __NetBSD_Prereq__(5,99,48)
2191 PATHCALL(int, OLDREALQUOTACTL, DUALCALL_QUOTACTL, \
2192 (const char *path, struct plistref *p), \
2193 (const char *, struct plistref *), \
2194 (path, p))
2195 #endif
2196
2197 PATHCALL(int, REALGETFH, DUALCALL_GETFH, \
2198 (const char *path, void *fhp, size_t *fh_size), \
2199 (const char *, void *, size_t *), \
2200 (path, fhp, fh_size))
2201
2202 /*
2203 * These act different on a per-process vfs configuration
2204 */
2205
2206 VFSCALL(VFSBIT_GETVFSSTAT, int, getvfsstat, DUALCALL_GETVFSSTAT, \
2207 (struct statvfs *buf, size_t buflen, int flags), \
2208 (struct statvfs *, size_t, int), \
2209 (buf, buflen, flags))
2210
2211 VFSCALL(VFSBIT_FHCALLS, int, REALFHOPEN, DUALCALL_FHOPEN, \
2212 (const void *fhp, size_t fh_size, int flags), \
2213 (const char *, size_t, int), \
2214 (fhp, fh_size, flags))
2215
2216 VFSCALL(VFSBIT_FHCALLS, int, REALFHSTAT, DUALCALL_FHSTAT, \
2217 (const void *fhp, size_t fh_size, struct stat *sb), \
2218 (const char *, size_t, struct stat *), \
2219 (fhp, fh_size, sb))
2220
2221 VFSCALL(VFSBIT_FHCALLS, int, REALFHSTATVFS1, DUALCALL_FHSTATVFS1, \
2222 (const void *fhp, size_t fh_size, struct statvfs *sb, int flgs),\
2223 (const char *, size_t, struct statvfs *, int), \
2224 (fhp, fh_size, sb, flgs))
2225
2226 /* finally, put nfssvc here. "keep the namespace clean" */
2227
2228 #include <nfs/rpcv2.h>
2229 #include <nfs/nfs.h>
2230
2231 int
2232 nfssvc(int flags, void *argstructp)
2233 {
2234 int (*op_nfssvc)(int, void *);
2235
2236 if (vfsbits & VFSBIT_NFSSVC){
2237 struct nfsd_args *nfsdargs;
2238
2239 /* massage the socket descriptor if necessary */
2240 if (flags == NFSSVC_ADDSOCK) {
2241 nfsdargs = argstructp;
2242 nfsdargs->sock = fd_host2rump(nfsdargs->sock);
2243 }
2244 op_nfssvc = GETSYSCALL(rump, NFSSVC);
2245 } else
2246 op_nfssvc = GETSYSCALL(host, NFSSVC);
2247
2248 return op_nfssvc(flags, argstructp);
2249 }
2250