hppa_reloc.c revision 1.14 1 /* $NetBSD: hppa_reloc.c,v 1.14 2002/09/12 22:56:29 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <stdlib.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <sys/queue.h>
43
44 #include "rtld.h"
45 #include "debug.h"
46
47 #ifdef RTLD_DEBUG_HPPA
48 #define hdbg(x) xprintf x
49 #else
50 #define hdbg(x) /* nothing */
51 #endif
52
53 void _rtld_bind_start(void);
54 void __rtld_setup_hppa_pltgot(const Obj_Entry *, Elf_Addr *);
55
56 /*
57 * In the runtime architecture (ABI), PLABEL function
58 * pointers are distinguished from normal function
59 * pointers by having the next-least-significant bit
60 * set. (This bit is referred to as the L field in
61 * HP documentation). The $$dyncall millicode is
62 * aware of this.
63 */
64 #define RTLD_MAKE_PLABEL(plabel) (((Elf_Addr)(plabel)) | (1 << 1))
65 #define RTLD_IS_PLABEL(addr) (((Elf_Addr)(addr)) & (1 << 1))
66 #define RTLD_GET_PLABEL(addr) ((hppa_plabel *) (((Elf_Addr)addr) & ~3))
67
68 /*
69 * This is the PLABEL structure. The function PC and
70 * shared linkage members must come first, as they are
71 * the actual PLABEL.
72 */
73 typedef struct _hppa_plabel {
74 Elf_Addr hppa_plabel_pc;
75 Elf_Addr hppa_plabel_sl;
76 SLIST_ENTRY(_hppa_plabel) hppa_plabel_next;
77 } hppa_plabel;
78
79 /*
80 * For now allocated PLABEL structures are tracked on a
81 * singly linked list. This maybe should be revisited.
82 */
83 static SLIST_HEAD(hppa_plabel_head, _hppa_plabel) hppa_plabel_list
84 = SLIST_HEAD_INITIALIZER(hppa_plabel_list);
85
86 /*
87 * Because I'm hesitant to use NEW while relocating self,
88 * this is a small pool of preallocated PLABELs.
89 */
90 #define HPPA_PLABEL_PRE (10)
91 static hppa_plabel hppa_plabel_pre[HPPA_PLABEL_PRE];
92 static int hppa_plabel_pre_next = 0;
93
94 /*
95 * The DT_PLTGOT _DYNAMIC entry always gives the linkage table
96 * pointer for an object. This is often, but not always, the
97 * same as the object's value for _GLOBAL_OFFSET_TABLE_. We
98 * cache one object's GOT value, otherwise we look it up.
99 * XXX it would be nice to be able to keep this in the Obj_Entry.
100 */
101 static const Obj_Entry *hppa_got_cache_obj = NULL;
102 static Elf_Addr *hppa_got_cache_got;
103 #define HPPA_OBJ_SL(obj) ((obj)->pltgot)
104 #define HPPA_OBJ_GOT(obj) ((obj) == hppa_got_cache_obj ? \
105 hppa_got_cache_got : \
106 _rtld_fill_hppa_got_cache(obj))
107 static Elf_Addr *_rtld_fill_hppa_got_cache __P((const Obj_Entry *));
108
109 /*
110 * This bootstraps the dynamic linker by relocating its GOT.
111 * On the hppa, unlike on other architectures, static strings
112 * are found through the GOT. Static strings are essential
113 * for RTLD_DEBUG, and I suspect they're used early even when
114 * !defined(RTLD_DEBUG), making relocating the GOT essential.
115 *
116 * It gets worse. Relocating the GOT doesn't mean just walking
117 * it and adding the relocbase to all of the entries. You must
118 * find and use the GOT relocations, since those RELA relocations
119 * have the necessary addends - the GOT comes initialized as
120 * zeroes.
121 */
122 void
123 _rtld_bootstrap_hppa_got(Elf_Dyn *dynp, Elf_Addr relocbase,
124 Elf_Addr got_begin, Elf_Addr got_end)
125 {
126 const Elf_Rela *relafirst, *rela, *relalim;
127 Elf_Addr relasz = 0;
128 Elf_Addr where;
129
130 /*
131 * Process the DYNAMIC section, looking for the non-PLT
132 * relocations.
133 */
134 relafirst = NULL;
135 for (; dynp->d_tag != DT_NULL; ++dynp) {
136 switch (dynp->d_tag) {
137
138 case DT_RELA:
139 relafirst = (const Elf_Rela *)
140 (relocbase + dynp->d_un.d_ptr);
141 break;
142
143 case DT_RELASZ:
144 relasz = dynp->d_un.d_val;
145 break;
146 }
147 }
148 relalim = (const Elf_Rela *)((caddr_t)relafirst + relasz);
149
150 /*
151 * Process all relocations that look like they're in
152 * the GOT.
153 */
154 for(rela = relafirst; rela < relalim; rela++) {
155 where = (Elf_Addr)(relocbase + rela->r_offset);
156 if (where >= got_begin && where < got_end)
157 *((Elf_Addr *)where) = relocbase + rela->r_addend;
158 }
159
160 #if defined(RTLD_DEBUG_HPPA)
161 for(rela = relafirst; rela < relalim; rela++) {
162 where = (Elf_Addr)(relocbase + rela->r_offset);
163 if (where >= got_begin && where < got_end)
164 xprintf("GOT rela @%p(%p) -> %p(%p)\n",
165 (void *)rela->r_offset,
166 (void *)where,
167 (void *)rela->r_addend,
168 (void *)*((Elf_Addr *)where));
169 }
170 #endif /* RTLD_DEBUG_HPPA */
171 }
172
173 /*
174 * This looks up the object's _GLOBAL_OFFSET_TABLE_
175 * and caches the result.
176 */
177 static Elf_Addr *
178 _rtld_fill_hppa_got_cache(const Obj_Entry *obj)
179 {
180 const char *name = "_GLOBAL_OFFSET_TABLE_";
181 unsigned long hash;
182 const Elf_Sym *def;
183
184 hash = _rtld_elf_hash(name);
185 def = _rtld_symlook_obj(name, hash, obj, true);
186 assert(def != NULL);
187 hppa_got_cache_obj = obj;
188 return hppa_got_cache_got =
189 (Elf_Addr *)(obj->relocbase + def->st_value);
190 }
191
192 /*
193 * This allocates a PLABEL. If called with a non-NULL def, the
194 * plabel is for the function associated with that definition
195 * in the defining object defobj, plus the given addend. If
196 * called with a NULL def, the plabel is for the function at
197 * the (unrelocated) address in addend in the object defobj.
198 */
199 Elf_Addr
200 _rtld_function_descriptor_alloc(const Obj_Entry *defobj, const Elf_Sym *def,
201 Elf_Addr addend)
202 {
203 Elf_Addr func_pc, func_sl;
204 hppa_plabel *plabel;
205
206 if (def != NULL) {
207
208 /*
209 * We assume that symbols of type STT_NOTYPE
210 * are undefined. Return NULL for these.
211 */
212 if (ELF_ST_TYPE(def->st_info) == STT_NOTYPE)
213 return (Elf_Addr)NULL;
214
215 /* Otherwise assert that this symbol must be a function. */
216 assert(ELF_ST_TYPE(def->st_info) == STT_FUNC);
217
218 func_pc = (Elf_Addr)(defobj->relocbase + def->st_value +
219 addend);
220 } else
221 func_pc = (Elf_Addr)(defobj->relocbase + addend);
222
223 /*
224 * Search the existing PLABELs for one matching
225 * this function. If there is one, return it.
226 */
227 func_sl = (Elf_Addr)HPPA_OBJ_SL(defobj);
228 SLIST_FOREACH(plabel, &hppa_plabel_list, hppa_plabel_next)
229 if (plabel->hppa_plabel_pc == func_pc &&
230 plabel->hppa_plabel_sl == func_sl)
231 return RTLD_MAKE_PLABEL(plabel);
232
233 /*
234 * XXX - this assumes that the dynamic linker doesn't
235 * have more than HPPA_PLABEL_PRE PLABEL relocations.
236 * Once we've used up the preallocated set, we start
237 * using NEW to allocate plabels.
238 */
239 if (hppa_plabel_pre_next < HPPA_PLABEL_PRE)
240 plabel = &hppa_plabel_pre[hppa_plabel_pre_next++];
241 else {
242 plabel = NEW(hppa_plabel);
243 if (plabel == NULL)
244 return (Elf_Addr)-1;
245 }
246
247 /* Fill the new entry and insert it on the list. */
248 plabel->hppa_plabel_pc = func_pc;
249 plabel->hppa_plabel_sl = func_sl;
250 SLIST_INSERT_HEAD(&hppa_plabel_list, plabel, hppa_plabel_next);
251
252 return RTLD_MAKE_PLABEL(plabel);
253 }
254
255 /*
256 * If a pointer is a PLABEL, this unwraps it.
257 */
258 const void *
259 _rtld_function_descriptor_function(const void *addr)
260 {
261 return (RTLD_IS_PLABEL(addr) ?
262 (const void *) RTLD_GET_PLABEL(addr)->hppa_plabel_pc :
263 addr);
264 }
265
266 /*
267 * This handles an IPLT relocation, with or without a symbol.
268 */
269 int
270 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, caddr_t *addrp)
271 {
272 Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
273 const Elf_Sym *def;
274 const Obj_Entry *defobj;
275 Elf_Addr func_pc, func_sl;
276
277 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(IPLT));
278
279 /*
280 * If this is an IPLT reloc for a static function,
281 * fully resolve the PLT entry now.
282 */
283 if (ELF_R_SYM(rela->r_info) == 0) {
284 func_pc = (Elf_Addr)(obj->relocbase + rela->r_addend);
285 func_sl = (Elf_Addr)HPPA_OBJ_SL(obj);
286 }
287
288 /*
289 * If we must bind now, fully resolve the PLT entry.
290 */
291 else {
292
293 /*
294 * Look up the symbol. While we're relocating self,
295 * _rtld_objlist is NULL, so just pass in self.
296 */
297 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
298 false);
299 if (def == NULL)
300 return -1;
301 func_pc = (Elf_Addr)(defobj->relocbase + def->st_value +
302 rela->r_addend);
303 func_sl = (Elf_Addr)HPPA_OBJ_SL(defobj);
304 }
305
306 /*
307 * Fill this PLT entry and return.
308 */
309 where[0] = func_pc;
310 where[1] = func_sl;
311
312 *addrp = (caddr_t)where;
313 return 0;
314 }
315
316 /* This sets up an object's GOT. */
317 void
318 _rtld_setup_pltgot(const Obj_Entry *obj)
319 {
320 __rtld_setup_hppa_pltgot(obj, HPPA_OBJ_GOT(obj));
321 }
322
323 int
324 _rtld_relocate_nonplt_objects(obj, self)
325 const Obj_Entry *obj;
326 bool self;
327 {
328 const Elf_Rela *rela;
329
330 for (rela = obj->rela; rela < obj->relalim; rela++) {
331 Elf_Addr *where;
332 const Elf_Sym *def;
333 const Obj_Entry *defobj;
334 Elf_Addr tmp;
335 unsigned long symnum;
336
337 where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
338 symnum = ELF_R_SYM(rela->r_info);
339
340 switch (ELF_R_TYPE(rela->r_info)) {
341 case R_TYPE(NONE):
342 break;
343
344 case R_TYPE(DIR32):
345 if (symnum) {
346 /*
347 * This is either a DIR32 against a symbol
348 * (def->st_name != 0), or against a local
349 * section (def->st_name == 0).
350 */
351 def = obj->symtab + symnum;
352 defobj = obj;
353 if (def->st_name != 0)
354 /*
355 * While we're relocating self,
356 * _rtld_objlist is NULL, so we just
357 * pass in self.
358 */
359 def = _rtld_find_symdef(symnum, obj,
360 &defobj, false);
361 if (def == NULL)
362 return -1;
363
364 tmp = (Elf_Addr)(defobj->relocbase +
365 def->st_value + rela->r_addend);
366
367 if (*where != tmp)
368 *where = tmp;
369 rdbg(("DIR32 %s in %s --> %p in %s",
370 obj->strtab + obj->symtab[symnum].st_name,
371 obj->path, (void *)*where, defobj->path));
372 } else {
373 extern Elf_Addr _GLOBAL_OFFSET_TABLE_[];
374 extern Elf_Addr _GOT_END_[];
375
376 tmp = (Elf_Addr)(obj->relocbase +
377 rela->r_addend);
378
379 /* This is the ...iffy hueristic. */
380 if (!self ||
381 (caddr_t)where < (caddr_t)_GLOBAL_OFFSET_TABLE_ ||
382 (caddr_t)where >= (caddr_t)_GOT_END_) {
383 if (*where != tmp)
384 *where = tmp;
385 rdbg(("DIR32 in %s --> %p", obj->path,
386 (void *)*where));
387 } else
388 rdbg(("DIR32 in %s stays at %p",
389 obj->path, (void *)*where));
390 }
391 break;
392
393 case R_TYPE(PLABEL32):
394 if (symnum) {
395 /*
396 * While we're relocating self, _rtld_objlist
397 * is NULL, so we just pass in self.
398 */
399 def = _rtld_find_symdef(symnum, obj, &defobj,
400 false);
401 if (def == NULL)
402 return -1;
403
404 tmp = _rtld_function_descriptor_alloc(defobj, def,
405 rela->r_addend);
406 if (tmp == (Elf_Addr)-1)
407 return -1;
408
409 if (*where != tmp)
410 *where = tmp;
411 rdbg(("PLABEL32 %s in %s --> %p in %s",
412 obj->strtab + obj->symtab[symnum].st_name,
413 obj->path, (void *)*where, defobj->path));
414 } else {
415 /*
416 * This is a PLABEL for a static function, and
417 * the dynamic linker has both allocated a PLT
418 * entry for this function and told us where it
419 * is. We can safely use the PLT entry as the
420 * PLABEL because there should be no other
421 * PLABEL reloc referencing this function.
422 * This object should also have an IPLT
423 * relocation to initialize the PLT entry.
424 *
425 * The dynamic linker should also have ensured
426 * that the addend has the
427 * next-least-significant bit set; the
428 * $$dyncall millicode uses this to distinguish
429 * a PLABEL pointer from a plain function
430 * pointer.
431 */
432 tmp = (Elf_Addr)(obj->relocbase + rela->r_addend);
433
434 if (*where != tmp)
435 *where = tmp;
436 rdbg(("PLABEL32 in %s --> %p", obj->path,
437 (void *)*where));
438 }
439 break;
440
441 case R_TYPE(COPY):
442 /*
443 * These are deferred until all other relocations have
444 * been done. All we do here is make sure that the
445 * COPY relocation is not in a shared library. They
446 * are allowed only in executable files.
447 */
448 if (obj->isdynamic) {
449 _rtld_error(
450 "%s: Unexpected R_COPY relocation in shared library",
451 obj->path);
452 return -1;
453 }
454 rdbg(("COPY (avoid in main)"));
455 break;
456
457 default:
458 rdbg(("sym = %lu, type = %lu, offset = %p, "
459 "addend = %p, contents = %p, symbol = %s",
460 symnum, (u_long)ELF_R_TYPE(rela->r_info),
461 (void *)rela->r_offset, (void *)rela->r_addend,
462 (void *)*where,
463 obj->strtab + obj->symtab[symnum].st_name));
464 _rtld_error("%s: Unsupported relocation type %ld "
465 "in non-PLT relocations\n",
466 obj->path, (u_long) ELF_R_TYPE(rela->r_info));
467 return -1;
468 }
469 }
470 return 0;
471 }
472
473 int
474 _rtld_relocate_plt_lazy(obj)
475 const Obj_Entry *obj;
476 {
477 const Elf_Rela *rela;
478
479 for (rela = obj->pltrela; rela < obj->pltrelalim; rela++) {
480 Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
481 Elf_Addr func_pc, func_sl;
482
483 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(IPLT));
484
485 /*
486 * If this is an IPLT reloc for a static function,
487 * fully resolve the PLT entry now.
488 */
489 if (ELF_R_SYM(rela->r_info) == 0) {
490 func_pc = (Elf_Addr)(obj->relocbase + rela->r_addend);
491 func_sl = (Elf_Addr)HPPA_OBJ_SL(obj);
492 }
493
494 /*
495 * Otherwise set up for lazy binding.
496 */
497 else {
498 /*
499 * This function pointer points to the PLT
500 * stub added by the linker, and instead of
501 * a shared linkage value, we stash this
502 * relocation's offset. The PLT stub has
503 * already been set up to transfer to
504 * _rtld_bind_start.
505 */
506 func_pc = ((Elf_Addr)HPPA_OBJ_GOT(obj)) - 16;
507 func_sl = (Elf_Addr)((caddr_t)rela - (caddr_t)obj->pltrela);
508 }
509
510 /*
511 * Fill this PLT entry and return.
512 */
513 where[0] = func_pc;
514 where[1] = func_sl;
515 }
516 return 0;
517 }
518