mdreloc.c revision 1.36 1 /* $NetBSD: mdreloc.c,v 1.36 2005/08/15 10:52:42 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <errno.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <unistd.h>
44 #include <sys/stat.h>
45
46 #include "rtldenv.h"
47 #include "debug.h"
48 #include "rtld.h"
49
50 /*
51 * The following table holds for each relocation type:
52 * - the width in bits of the memory location the relocation
53 * applies to (not currently used)
54 * - the number of bits the relocation value must be shifted to the
55 * right (i.e. discard least significant bits) to fit into
56 * the appropriate field in the instruction word.
57 * - flags indicating whether
58 * * the relocation involves a symbol
59 * * the relocation is relative to the current position
60 * * the relocation is for a GOT entry
61 * * the relocation is relative to the load address
62 *
63 */
64 #define _RF_S 0x80000000 /* Resolve symbol */
65 #define _RF_A 0x40000000 /* Use addend */
66 #define _RF_P 0x20000000 /* Location relative */
67 #define _RF_G 0x10000000 /* GOT offset */
68 #define _RF_B 0x08000000 /* Load address relative */
69 #define _RF_U 0x04000000 /* Unaligned */
70 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
71 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
72 static const int reloc_target_flags[] = {
73 0, /* NONE */
74 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
75 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
76 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
86 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
88 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
89 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
91 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
92 _RF_SZ(32) | _RF_RS(0), /* COPY */
93 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_DAT */
94 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
95 _RF_A| _RF_B| _RF_SZ(32) | _RF_RS(0), /* RELATIVE */
96 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
97 };
98
99 #ifdef RTLD_DEBUG_RELOC
100 static const char *reloc_names[] = {
101 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
102 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
103 "22", "13", "LO10", "GOT10", "GOT13",
104 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
105 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
106 };
107 #endif
108
109 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
110 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
111 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
112 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
113 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
114 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
115 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
116
117 static const int reloc_target_bitmask[] = {
118 #define _BM(x) (~(-(1ULL << (x))))
119 0, /* NONE */
120 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
121 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
122 _BM(30), _BM(22), /* WDISP30, WDISP22 */
123 _BM(22), _BM(22), /* HI22, _22 */
124 _BM(13), _BM(10), /* RELOC_13, _LO10 */
125 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
126 _BM(10), _BM(22), /* _PC10, _PC22 */
127 _BM(30), 0, /* _WPLT30, _COPY */
128 -1, -1, -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
129 _BM(32) /* _UA32 */
130 #undef _BM
131 };
132 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
133
134 void _rtld_bind_start(void);
135 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
136 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
137 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
138 const Elf_Rela *, Elf_Addr *);
139
140 void
141 _rtld_setup_pltgot(const Obj_Entry *obj)
142 {
143 /*
144 * PLTGOT is the PLT on the sparc.
145 * The first entry holds the call the dynamic linker.
146 * We construct a `call' sequence that transfers
147 * to `_rtld_bind_start()'.
148 * The second entry holds the object identification.
149 * Note: each PLT entry is three words long.
150 */
151 #define SAVE 0x9de3bfa0 /* i.e. `save %sp,-96,%sp' */
152 #define CALL 0x40000000
153 #define NOP 0x01000000
154 obj->pltgot[0] = SAVE;
155 obj->pltgot[1] = CALL |
156 ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
157 obj->pltgot[2] = NOP;
158 obj->pltgot[3] = (Elf_Addr) obj;
159 }
160
161 void
162 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
163 {
164 const Elf_Rela *rela = 0, *relalim;
165 Elf_Addr relasz = 0;
166 Elf_Addr *where;
167
168 for (; dynp->d_tag != DT_NULL; dynp++) {
169 switch (dynp->d_tag) {
170 case DT_RELA:
171 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
172 break;
173 case DT_RELASZ:
174 relasz = dynp->d_un.d_val;
175 break;
176 }
177 }
178 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
179 for (; rela < relalim; rela++) {
180 where = (Elf_Addr *)(relocbase + rela->r_offset);
181 *where += (Elf_Addr)(relocbase + rela->r_addend);
182 }
183 }
184
185 int
186 _rtld_relocate_nonplt_objects(const Obj_Entry *obj)
187 {
188 const Elf_Rela *rela;
189
190 for (rela = obj->rela; rela < obj->relalim; rela++) {
191 Elf_Addr *where;
192 Elf_Word type, value, mask;
193 const Elf_Sym *def = NULL;
194 const Obj_Entry *defobj = NULL;
195 unsigned long symnum;
196
197 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
198 symnum = ELF_R_SYM(rela->r_info);
199
200 type = ELF_R_TYPE(rela->r_info);
201 if (type == R_TYPE(NONE))
202 continue;
203
204 /* We do JMP_SLOTs in _rtld_bind() below */
205 if (type == R_TYPE(JMP_SLOT))
206 continue;
207
208 /* COPY relocs are also handled elsewhere */
209 if (type == R_TYPE(COPY))
210 continue;
211
212 /*
213 * We use the fact that relocation types are an `enum'
214 * Note: R_SPARC_6 is currently numerically largest.
215 */
216 if (type > R_TYPE(6))
217 return (-1);
218
219 value = rela->r_addend;
220
221 /*
222 * Handle relative relocs here, as an optimization.
223 */
224 if (type == R_TYPE(RELATIVE)) {
225 *where += (Elf_Addr)(obj->relocbase + value);
226 rdbg(("RELATIVE in %s --> %p", obj->path,
227 (void *)*where));
228 continue;
229 }
230
231 if (RELOC_RESOLVE_SYMBOL(type)) {
232
233 /* Find the symbol */
234 def = _rtld_find_symdef(symnum, obj, &defobj, false);
235 if (def == NULL)
236 return (-1);
237
238 /* Add in the symbol's absolute address */
239 value += (Elf_Word)(defobj->relocbase + def->st_value);
240 }
241
242 if (RELOC_PC_RELATIVE(type)) {
243 value -= (Elf_Word)where;
244 }
245
246 if (RELOC_BASE_RELATIVE(type)) {
247 /*
248 * Note that even though sparcs use `Elf_rela'
249 * exclusively we still need the implicit memory addend
250 * in relocations referring to GOT entries.
251 * Undoubtedly, someone f*cked this up in the distant
252 * past, and now we're stuck with it in the name of
253 * compatibility for all eternity..
254 *
255 * In any case, the implicit and explicit should be
256 * mutually exclusive. We provide a check for that
257 * here.
258 */
259 #define DIAGNOSTIC
260 #ifdef DIAGNOSTIC
261 if (value != 0 && *where != 0) {
262 xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
263 "addend=0x%x, base %p\n",
264 obj->path, where, *where,
265 rela->r_addend, obj->relocbase);
266 }
267 #endif
268 value += (Elf_Word)(obj->relocbase + *where);
269 }
270
271 mask = RELOC_VALUE_BITMASK(type);
272 value >>= RELOC_VALUE_RIGHTSHIFT(type);
273 value &= mask;
274
275 if (RELOC_UNALIGNED(type)) {
276 /* Handle unaligned relocations. */
277 Elf_Addr tmp = 0;
278 char *ptr = (char *)where;
279 int i, size = RELOC_TARGET_SIZE(type)/8;
280
281 /* Read it in one byte at a time. */
282 for (i=0; i<size; i++)
283 tmp = (tmp << 8) | ptr[i];
284
285 tmp &= ~mask;
286 tmp |= value;
287
288 /* Write it back out. */
289 for (i=0; i<size; i++)
290 ptr[i] = ((tmp >> (8*i)) & 0xff);
291 #ifdef RTLD_DEBUG_RELOC
292 value = (Elf_Word)tmp;
293 #endif
294
295 } else {
296 *where &= ~mask;
297 *where |= value;
298 #ifdef RTLD_DEBUG_RELOC
299 value = (Elf_Word)*where;
300 #endif
301 }
302 #ifdef RTLD_DEBUG_RELOC
303 if (RELOC_RESOLVE_SYMBOL(type)) {
304 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
305 obj->strtab + obj->symtab[symnum].st_name,
306 obj->path, (void *)value, defobj->path));
307 } else {
308 rdbg(("%s in %s --> %p", reloc_names[type],
309 obj->path, (void *)value));
310 }
311 #endif
312 }
313 return (0);
314 }
315
316 int
317 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
318 {
319 return (0);
320 }
321
322 caddr_t
323 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
324 {
325 const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
326 Elf_Addr value;
327 int err;
328
329 err = _rtld_relocate_plt_object(obj, rela, &value);
330 if (err)
331 _rtld_die();
332
333 return (caddr_t)value;
334 }
335
336 int
337 _rtld_relocate_plt_objects(const Obj_Entry *obj)
338 {
339 const Elf_Rela *rela = obj->pltrela;
340
341 for (; rela < obj->pltrelalim; rela++)
342 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
343 return -1;
344
345 return 0;
346 }
347
348 static inline int
349 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
350 {
351 const Elf_Sym *def;
352 const Obj_Entry *defobj;
353 Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
354 Elf_Addr value;
355
356 /* Fully resolve procedure addresses now */
357
358 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
359
360 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
361 if (def == NULL)
362 return -1;
363
364 value = (Elf_Addr)(defobj->relocbase + def->st_value);
365 rdbg(("bind now/fixup in %s --> new=%p",
366 defobj->strtab + def->st_name, (void *)value));
367
368 /*
369 * At the PLT entry pointed at by `where', we now construct
370 * a direct transfer to the now fully resolved function
371 * address. The resulting code in the jump slot is:
372 *
373 * sethi %hi(roffset), %g1
374 * sethi %hi(addr), %g1
375 * jmp %g1+%lo(addr)
376 *
377 * We write the third instruction first, since that leaves the
378 * previous `b,a' at the second word in place. Hence the whole
379 * PLT slot can be atomically change to the new sequence by
380 * writing the `sethi' instruction at word 2.
381 */
382 #define SETHI 0x03000000
383 #define JMP 0x81c06000
384 #define NOP 0x01000000
385 where[2] = JMP | (value & 0x000003ff);
386 where[1] = SETHI | ((value >> 10) & 0x003fffff);
387 __asm __volatile("iflush %0+8" : : "r" (where));
388 __asm __volatile("iflush %0+4" : : "r" (where));
389
390 if (tp)
391 *tp = value;
392
393 return 0;
394 }
395