Home | History | Annotate | Line # | Download | only in sparc
mdreloc.c revision 1.41
      1 /*	$NetBSD: mdreloc.c,v 1.41 2008/07/24 04:39:25 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifndef lint
     34 __RCSID("$NetBSD: mdreloc.c,v 1.41 2008/07/24 04:39:25 matt Exp $");
     35 #endif /* not lint */
     36 
     37 #include <errno.h>
     38 #include <stdio.h>
     39 #include <stdlib.h>
     40 #include <string.h>
     41 #include <unistd.h>
     42 #include <sys/stat.h>
     43 
     44 #include "rtldenv.h"
     45 #include "debug.h"
     46 #include "rtld.h"
     47 
     48 /*
     49  * The following table holds for each relocation type:
     50  *	- the width in bits of the memory location the relocation
     51  *	  applies to (not currently used)
     52  *	- the number of bits the relocation value must be shifted to the
     53  *	  right (i.e. discard least significant bits) to fit into
     54  *	  the appropriate field in the instruction word.
     55  *	- flags indicating whether
     56  *		* the relocation involves a symbol
     57  *		* the relocation is relative to the current position
     58  *		* the relocation is for a GOT entry
     59  *		* the relocation is relative to the load address
     60  *
     61  */
     62 #define _RF_S		0x80000000		/* Resolve symbol */
     63 #define _RF_A		0x40000000		/* Use addend */
     64 #define _RF_P		0x20000000		/* Location relative */
     65 #define _RF_G		0x10000000		/* GOT offset */
     66 #define _RF_B		0x08000000		/* Load address relative */
     67 #define _RF_U		0x04000000		/* Unaligned */
     68 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     69 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     70 static const int reloc_target_flags[] = {
     71 	0,							/* NONE */
     72 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     73 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     74 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     75 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     76 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     77 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     79 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     80 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     81 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     82 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     83 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     84 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     85 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     86 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     87 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     88 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     89 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     90 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     91 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_DAT */
     92 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     93 	      _RF_A|	_RF_B|	_RF_SZ(32) | _RF_RS(0),		/* RELATIVE */
     94 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     95 };
     96 
     97 #ifdef RTLD_DEBUG_RELOC
     98 static const char *reloc_names[] = {
     99 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    100 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    101 	"22", "13", "LO10", "GOT10", "GOT13",
    102 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    103 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32"
    104 };
    105 #endif
    106 
    107 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    108 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    109 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    110 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    111 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    112 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    113 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    114 
    115 static const int reloc_target_bitmask[] = {
    116 #define _BM(x)	(~(-(1ULL << (x))))
    117 	0,				/* NONE */
    118 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    119 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    120 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    121 	_BM(22), _BM(22),		/* HI22, _22 */
    122 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    123 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    124 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    125 	_BM(30), 0,			/* _WPLT30, _COPY */
    126 	-1, -1, -1,			/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    127 	_BM(32)				/* _UA32 */
    128 #undef _BM
    129 };
    130 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    131 
    132 void _rtld_bind_start(void);
    133 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
    134 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
    135 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
    136     const Elf_Rela *, Elf_Addr *);
    137 
    138 void
    139 _rtld_setup_pltgot(const Obj_Entry *obj)
    140 {
    141 	/*
    142 	 * PLTGOT is the PLT on the sparc.
    143 	 * The first entry holds the call the dynamic linker.
    144 	 * We construct a `call' sequence that transfers
    145 	 * to `_rtld_bind_start()'.
    146 	 * The second entry holds the object identification.
    147 	 * Note: each PLT entry is three words long.
    148 	 */
    149 #define SAVE	0x9de3bfa0	/* i.e. `save %sp,-96,%sp' */
    150 #define CALL	0x40000000
    151 #define NOP	0x01000000
    152 	obj->pltgot[0] = SAVE;
    153 	obj->pltgot[1] = CALL |
    154 	    ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
    155 	obj->pltgot[2] = NOP;
    156 	obj->pltgot[3] = (Elf_Addr) obj;
    157 }
    158 
    159 void
    160 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
    161 {
    162 	const Elf_Rela *rela = 0, *relalim;
    163 	Elf_Addr relasz = 0;
    164 	Elf_Addr *where;
    165 
    166 	for (; dynp->d_tag != DT_NULL; dynp++) {
    167 		switch (dynp->d_tag) {
    168 		case DT_RELA:
    169 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
    170 			break;
    171 		case DT_RELASZ:
    172 			relasz = dynp->d_un.d_val;
    173 			break;
    174 		}
    175 	}
    176 	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
    177 	for (; rela < relalim; rela++) {
    178 		where = (Elf_Addr *)(relocbase + rela->r_offset);
    179 		*where += (Elf_Addr)(relocbase + rela->r_addend);
    180 	}
    181 }
    182 
    183 int
    184 _rtld_relocate_nonplt_objects(const Obj_Entry *obj)
    185 {
    186 	const Elf_Rela *rela;
    187 
    188 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    189 		Elf_Addr *where;
    190 		Elf_Word type, value, mask;
    191 		const Elf_Sym *def = NULL;
    192 		const Obj_Entry *defobj = NULL;
    193 		unsigned long	 symnum;
    194 
    195 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    196 		symnum = ELF_R_SYM(rela->r_info);
    197 
    198 		type = ELF_R_TYPE(rela->r_info);
    199 		if (type == R_TYPE(NONE))
    200 			continue;
    201 
    202 		/* We do JMP_SLOTs in _rtld_bind() below */
    203 		if (type == R_TYPE(JMP_SLOT))
    204 			continue;
    205 
    206 		/* COPY relocs are also handled elsewhere */
    207 		if (type == R_TYPE(COPY))
    208 			continue;
    209 
    210 		/*
    211 		 * We use the fact that relocation types are an `enum'
    212 		 * Note: R_SPARC_6 is currently numerically largest.
    213 		 */
    214 		if (type > R_TYPE(6))
    215 			return (-1);
    216 
    217 		value = rela->r_addend;
    218 
    219 		/*
    220 		 * Handle relative relocs here, as an optimization.
    221 		 */
    222 		if (type == R_TYPE(RELATIVE)) {
    223 			*where += (Elf_Addr)(obj->relocbase + value);
    224 			rdbg(("RELATIVE in %s --> %p", obj->path,
    225 			    (void *)*where));
    226 			continue;
    227 		}
    228 
    229 		if (RELOC_RESOLVE_SYMBOL(type)) {
    230 
    231 			/* Find the symbol */
    232 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
    233 			if (def == NULL)
    234 				return (-1);
    235 
    236 			/* Add in the symbol's absolute address */
    237 			value += (Elf_Word)(defobj->relocbase + def->st_value);
    238 		}
    239 
    240 		if (RELOC_PC_RELATIVE(type)) {
    241 			value -= (Elf_Word)where;
    242 		}
    243 
    244 		if (RELOC_BASE_RELATIVE(type)) {
    245 			/*
    246 			 * Note that even though sparcs use `Elf_rela'
    247 			 * exclusively we still need the implicit memory addend
    248 			 * in relocations referring to GOT entries.
    249 			 * Undoubtedly, someone f*cked this up in the distant
    250 			 * past, and now we're stuck with it in the name of
    251 			 * compatibility for all eternity..
    252 			 *
    253 			 * In any case, the implicit and explicit should be
    254 			 * mutually exclusive. We provide a check for that
    255 			 * here.
    256 			 */
    257 #define DIAGNOSTIC
    258 #ifdef DIAGNOSTIC
    259 			if (value != 0 && *where != 0) {
    260 				xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
    261 					"addend=0x%x, base %p\n",
    262 					obj->path, where, *where,
    263 					rela->r_addend, obj->relocbase);
    264 			}
    265 #endif
    266 			value += (Elf_Word)(obj->relocbase + *where);
    267 		}
    268 
    269 		mask = RELOC_VALUE_BITMASK(type);
    270 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    271 		value &= mask;
    272 
    273 		if (RELOC_UNALIGNED(type)) {
    274 			/* Handle unaligned relocations. */
    275 			Elf_Addr tmp = 0;
    276 			char *ptr = (char *)where;
    277 			int i, size = RELOC_TARGET_SIZE(type)/8;
    278 
    279 			/* Read it in one byte at a time. */
    280 			for (i=0; i<size; i++)
    281 				tmp = (tmp << 8) | ptr[i];
    282 
    283 			tmp &= ~mask;
    284 			tmp |= value;
    285 
    286 			/* Write it back out. */
    287 			for (i=0; i<size; i++)
    288 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    289 #ifdef RTLD_DEBUG_RELOC
    290 			value = (Elf_Word)tmp;
    291 #endif
    292 
    293 		} else {
    294 			*where &= ~mask;
    295 			*where |= value;
    296 #ifdef RTLD_DEBUG_RELOC
    297 			value = (Elf_Word)*where;
    298 #endif
    299 		}
    300 #ifdef RTLD_DEBUG_RELOC
    301 		if (RELOC_RESOLVE_SYMBOL(type)) {
    302 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
    303 			    obj->strtab + obj->symtab[symnum].st_name,
    304 			    obj->path, (void *)value, defobj->path));
    305 		} else {
    306 			rdbg(("%s in %s --> %p", reloc_names[type],
    307 			    obj->path, (void *)value));
    308 		}
    309 #endif
    310 	}
    311 	return (0);
    312 }
    313 
    314 int
    315 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
    316 {
    317 	return (0);
    318 }
    319 
    320 caddr_t
    321 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
    322 {
    323 	const Elf_Rela *rela = (const Elf_Rela *)((caddr_t)obj->pltrela + reloff);
    324 	Elf_Addr value;
    325 	int err;
    326 
    327 	value = 0;	/* XXX gcc */
    328 
    329 	err = _rtld_relocate_plt_object(obj, rela, &value);
    330 	if (err || value == 0)
    331 		_rtld_die();
    332 
    333 	return (caddr_t)value;
    334 }
    335 
    336 int
    337 _rtld_relocate_plt_objects(const Obj_Entry *obj)
    338 {
    339 	const Elf_Rela *rela = obj->pltrela;
    340 
    341 	for (; rela < obj->pltrelalim; rela++)
    342 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
    343 			return -1;
    344 
    345 	return 0;
    346 }
    347 
    348 static inline int
    349 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
    350 {
    351 	const Elf_Sym *def;
    352 	const Obj_Entry *defobj;
    353 	Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
    354 	Elf_Addr value;
    355 
    356 	/* Fully resolve procedure addresses now */
    357 
    358 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
    359 
    360 	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
    361 	if (def == NULL)
    362 		return -1;
    363 
    364 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
    365 	rdbg(("bind now/fixup in %s --> new=%p",
    366 	    defobj->strtab + def->st_name, (void *)value));
    367 
    368 	/*
    369 	 * At the PLT entry pointed at by `where', we now construct
    370 	 * a direct transfer to the now fully resolved function
    371 	 * address.  The resulting code in the jump slot is:
    372 	 *
    373 	 *	sethi	%hi(roffset), %g1
    374 	 *	sethi	%hi(addr), %g1
    375 	 *	jmp	%g1+%lo(addr)
    376 	 *
    377 	 * We write the third instruction first, since that leaves the
    378 	 * previous `b,a' at the second word in place. Hence the whole
    379 	 * PLT slot can be atomically change to the new sequence by
    380 	 * writing the `sethi' instruction at word 2.
    381 	 */
    382 #define SETHI	0x03000000
    383 #define JMP	0x81c06000
    384 #define NOP	0x01000000
    385 	where[2] = JMP   | (value & 0x000003ff);
    386 	where[1] = SETHI | ((value >> 10) & 0x003fffff);
    387 	__asm volatile("iflush %0+8" : : "r" (where));
    388 	__asm volatile("iflush %0+4" : : "r" (where));
    389 
    390 	if (tp)
    391 		*tp = value;
    392 
    393 	return 0;
    394 }
    395