mdreloc.c revision 1.51 1 /* $NetBSD: mdreloc.c,v 1.51 2017/08/10 19:03:26 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifndef lint
34 __RCSID("$NetBSD: mdreloc.c,v 1.51 2017/08/10 19:03:26 joerg Exp $");
35 #endif /* not lint */
36
37 #include <errno.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42
43 #include "rtldenv.h"
44 #include "debug.h"
45 #include "rtld.h"
46
47 /*
48 * The following table holds for each relocation type:
49 * - the width in bits of the memory location the relocation
50 * applies to (not currently used)
51 * - the number of bits the relocation value must be shifted to the
52 * right (i.e. discard least significant bits) to fit into
53 * the appropriate field in the instruction word.
54 * - flags indicating whether
55 * * the relocation involves a symbol
56 * * the relocation is relative to the current position
57 * * the relocation is for a GOT entry
58 * * the relocation is relative to the load address
59 *
60 */
61 #define _RF_S 0x80000000 /* Resolve symbol */
62 #define _RF_A 0x40000000 /* Use addend */
63 #define _RF_P 0x20000000 /* Location relative */
64 #define _RF_G 0x10000000 /* GOT offset */
65 #define _RF_B 0x08000000 /* Load address relative */
66 #define _RF_U 0x04000000 /* Unaligned */
67 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
68 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
69 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
70 0, /* NONE */
71 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
72 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
73 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
74 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
79 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
83 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
85 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
86 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
88 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
89 _RF_SZ(32) | _RF_RS(0), /* COPY */
90 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_DAT */
91 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
92 _RF_A| _RF_B| _RF_SZ(32) | _RF_RS(0), /* RELATIVE */
93 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
94
95 /* TLS and 64 bit relocs not listed here... */
96 };
97
98 #ifdef RTLD_DEBUG_RELOC
99 static const char *reloc_names[] = {
100 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
101 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
102 "22", "13", "LO10", "GOT10", "GOT13",
103 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
104 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32",
105
106 /* not used with 32bit userland, besides a few of the TLS ones */
107 "PLT32",
108 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
109 "10", "11", "64", "OLO10", "HH22",
110 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
111 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
112 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
113 "L44", "REGISTER", "UA64", "UA16",
114 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
115 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
116 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
117 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
118 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
119 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
120 };
121 #endif
122
123 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
124 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
125 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
126 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
127 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
128 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
129 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
130 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
131
132 static const int reloc_target_bitmask[] = {
133 #define _BM(x) (~(-(1ULL << (x))))
134 0, /* NONE */
135 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
136 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
137 _BM(30), _BM(22), /* WDISP30, WDISP22 */
138 _BM(22), _BM(22), /* HI22, _22 */
139 _BM(13), _BM(10), /* RELOC_13, _LO10 */
140 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
141 _BM(10), _BM(22), /* _PC10, _PC22 */
142 _BM(30), 0, /* _WPLT30, _COPY */
143 -1, -1, -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
144 _BM(32) /* _UA32 */
145 #undef _BM
146 };
147 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
148
149 void _rtld_bind_start(void);
150 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
151 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
152 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
153 const Elf_Rela *, Elf_Addr *);
154
155 void
156 _rtld_setup_pltgot(const Obj_Entry *obj)
157 {
158 /*
159 * PLTGOT is the PLT on the sparc.
160 * The first entry holds the call the dynamic linker.
161 * We construct a `call' sequence that transfers
162 * to `_rtld_bind_start()'.
163 * The second entry holds the object identification.
164 * Note: each PLT entry is three words long.
165 */
166 #define SAVE 0x9de3bfa0 /* i.e. `save %sp,-96,%sp' */
167 #define CALL 0x40000000
168 #define NOP 0x01000000
169 obj->pltgot[0] = SAVE;
170 obj->pltgot[1] = CALL |
171 ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
172 obj->pltgot[2] = NOP;
173 obj->pltgot[3] = (Elf_Addr) obj;
174 }
175
176 void
177 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
178 {
179 const Elf_Rela *rela = 0, *relalim;
180 Elf_Addr relasz = 0;
181 Elf_Addr *where;
182
183 for (; dynp->d_tag != DT_NULL; dynp++) {
184 switch (dynp->d_tag) {
185 case DT_RELA:
186 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
187 break;
188 case DT_RELASZ:
189 relasz = dynp->d_un.d_val;
190 break;
191 }
192 }
193 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
194 for (; rela < relalim; rela++) {
195 where = (Elf_Addr *)(relocbase + rela->r_offset);
196 *where += (Elf_Addr)(relocbase + rela->r_addend);
197 }
198 }
199
200 int
201 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
202 {
203 const Elf_Rela *rela;
204 const Elf_Sym *def = NULL;
205 const Obj_Entry *defobj = NULL;
206 unsigned long last_symnum = ULONG_MAX;
207
208 for (rela = obj->rela; rela < obj->relalim; rela++) {
209 Elf_Addr *where;
210 Elf_Word type, value, mask;
211 unsigned long symnum;
212
213 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
214
215 type = ELF_R_TYPE(rela->r_info);
216 if (type == R_TYPE(NONE))
217 continue;
218
219 /* We do JMP_SLOTs in _rtld_bind() below */
220 if (type == R_TYPE(JMP_SLOT))
221 continue;
222
223 /* COPY relocs are also handled elsewhere */
224 if (type == R_TYPE(COPY))
225 continue;
226
227 /*
228 * We use the fact that relocation types are an `enum'
229 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
230 */
231 if (type > R_TYPE(TLS_TPOFF64))
232 return (-1);
233
234 value = rela->r_addend;
235
236 if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
237 symnum = ELF_R_SYM(rela->r_info);
238 if (last_symnum != symnum) {
239 last_symnum = symnum;
240 def = _rtld_find_symdef(symnum, obj, &defobj,
241 false);
242 if (def == NULL)
243 return -1;
244 }
245 }
246
247 /*
248 * Handle TLS relocations here, they are different.
249 */
250 if (RELOC_TLS(type)) {
251 switch (type) {
252 case R_TYPE(TLS_DTPMOD32):
253 *where = (Elf_Addr)defobj->tlsindex;
254
255 rdbg(("TLS_DTPMOD32 %s in %s --> %p",
256 obj->strtab +
257 obj->symtab[symnum].st_name,
258 obj->path, (void *)*where));
259
260 break;
261
262 case R_TYPE(TLS_DTPOFF32):
263 *where = (Elf_Addr)(def->st_value
264 + rela->r_addend);
265
266 rdbg(("TLS_DTPOFF32 %s in %s --> %p",
267 obj->strtab +
268 obj->symtab[symnum].st_name,
269 obj->path, (void *)*where));
270
271 break;
272
273 case R_TYPE(TLS_TPOFF32):
274 if (!defobj->tls_done &&
275 _rtld_tls_offset_allocate(obj))
276 return -1;
277
278 *where = (Elf_Addr)(def->st_value -
279 defobj->tlsoffset + rela->r_addend);
280
281 rdbg(("TLS_TPOFF32 %s in %s --> %p",
282 obj->strtab +
283 obj->symtab[symnum].st_name,
284 obj->path, (void *)*where));
285
286 break;
287 }
288 continue;
289 }
290
291 /*
292 * If it is no TLS relocation (handled above), we can not
293 * deal with it if it is beyound R_SPARC_6.
294 */
295 if (type > R_TYPE(6))
296 return (-1);
297
298 /*
299 * Handle relative relocs here, as an optimization.
300 */
301 if (type == R_TYPE(RELATIVE)) {
302 *where += (Elf_Addr)(obj->relocbase + value);
303 rdbg(("RELATIVE in %s --> %p", obj->path,
304 (void *)*where));
305 continue;
306 }
307
308 if (RELOC_RESOLVE_SYMBOL(type)) {
309 /* Add in the symbol's absolute address */
310 value += (Elf_Word)(defobj->relocbase + def->st_value);
311 }
312
313 if (RELOC_PC_RELATIVE(type)) {
314 value -= (Elf_Word)where;
315 }
316
317 if (RELOC_BASE_RELATIVE(type)) {
318 /*
319 * Note that even though sparcs use `Elf_rela'
320 * exclusively we still need the implicit memory addend
321 * in relocations referring to GOT entries.
322 * Undoubtedly, someone f*cked this up in the distant
323 * past, and now we're stuck with it in the name of
324 * compatibility for all eternity..
325 *
326 * In any case, the implicit and explicit should be
327 * mutually exclusive. We provide a check for that
328 * here.
329 */
330 #define DIAGNOSTIC
331 #ifdef DIAGNOSTIC
332 if (value != 0 && *where != 0) {
333 xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
334 "addend=0x%x, base %p\n",
335 obj->path, where, *where,
336 rela->r_addend, obj->relocbase);
337 }
338 #endif
339 value += (Elf_Word)(obj->relocbase + *where);
340 }
341
342 mask = RELOC_VALUE_BITMASK(type);
343 value >>= RELOC_VALUE_RIGHTSHIFT(type);
344 value &= mask;
345
346 if (RELOC_UNALIGNED(type)) {
347 /* Handle unaligned relocations. */
348 Elf_Addr tmp = 0;
349 char *ptr = (char *)where;
350 int i, size = RELOC_TARGET_SIZE(type)/8;
351
352 /* Read it in one byte at a time. */
353 for (i=0; i<size; i++)
354 tmp = (tmp << 8) | ptr[i];
355
356 tmp &= ~mask;
357 tmp |= value;
358
359 /* Write it back out. */
360 for (i=0; i<size; i++)
361 ptr[i] = ((tmp >> (8*i)) & 0xff);
362 #ifdef RTLD_DEBUG_RELOC
363 value = (Elf_Word)tmp;
364 #endif
365
366 } else {
367 *where &= ~mask;
368 *where |= value;
369 #ifdef RTLD_DEBUG_RELOC
370 value = (Elf_Word)*where;
371 #endif
372 }
373 #ifdef RTLD_DEBUG_RELOC
374 if (RELOC_RESOLVE_SYMBOL(type)) {
375 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
376 obj->strtab + obj->symtab[symnum].st_name,
377 obj->path, (void *)value, defobj->path));
378 } else {
379 rdbg(("%s in %s --> %p", reloc_names[type],
380 obj->path, (void *)value));
381 }
382 #endif
383 }
384 return (0);
385 }
386
387 int
388 _rtld_relocate_plt_lazy(Obj_Entry *obj)
389 {
390 return (0);
391 }
392
393 caddr_t
394 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
395 {
396 const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
397 Elf_Addr value;
398 int err;
399
400 value = 0; /* XXX gcc */
401
402 _rtld_shared_enter();
403 err = _rtld_relocate_plt_object(obj, rela, &value);
404 if (err)
405 _rtld_die();
406 _rtld_shared_exit();
407
408 return (caddr_t)value;
409 }
410
411 int
412 _rtld_relocate_plt_objects(const Obj_Entry *obj)
413 {
414 const Elf_Rela *rela = obj->pltrela;
415
416 for (; rela < obj->pltrelalim; rela++)
417 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
418 return -1;
419
420 return 0;
421 }
422
423 static inline int
424 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
425 {
426 const Elf_Sym *def;
427 const Obj_Entry *defobj;
428 Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
429 Elf_Addr value;
430 unsigned long info = rela->r_info;
431
432 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
433
434 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
435 if (__predict_false(def == NULL))
436 return -1;
437 if (__predict_false(def == &_rtld_sym_zero))
438 return 0;
439
440 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
441 if (tp == NULL)
442 return 0;
443 value = _rtld_resolve_ifunc(defobj, def);
444 } else {
445 value = (Elf_Addr)(defobj->relocbase + def->st_value);
446 }
447 rdbg(("bind now/fixup in %s --> new=%p",
448 defobj->strtab + def->st_name, (void *)value));
449
450 /*
451 * At the PLT entry pointed at by `where', we now construct
452 * a direct transfer to the now fully resolved function
453 * address. The resulting code in the jump slot is:
454 *
455 * sethi %hi(roffset), %g1
456 * sethi %hi(addr), %g1
457 * jmp %g1+%lo(addr)
458 *
459 * We write the third instruction first, since that leaves the
460 * previous `b,a' at the second word in place. Hence the whole
461 * PLT slot can be atomically change to the new sequence by
462 * writing the `sethi' instruction at word 2.
463 */
464 #define SETHI 0x03000000
465 #define JMP 0x81c06000
466 #define NOP 0x01000000
467 where[2] = JMP | (value & 0x000003ff);
468 where[1] = SETHI | ((value >> 10) & 0x003fffff);
469 __asm volatile("iflush %0+8" : : "r" (where));
470 __asm volatile("iflush %0+4" : : "r" (where));
471
472 if (tp)
473 *tp = value;
474
475 return 0;
476 }
477