mdreloc.c revision 1.13 1 1.13 mycroft /* $NetBSD: mdreloc.c,v 1.13 2002/09/06 03:05:37 mycroft Exp $ */
2 1.1 eeh
3 1.1 eeh /*-
4 1.1 eeh * Copyright (c) 2000 Eduardo Horvath.
5 1.1 eeh * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 1.1 eeh * All rights reserved.
7 1.1 eeh *
8 1.1 eeh * This code is derived from software contributed to The NetBSD Foundation
9 1.1 eeh * by Paul Kranenburg.
10 1.1 eeh *
11 1.1 eeh * Redistribution and use in source and binary forms, with or without
12 1.1 eeh * modification, are permitted provided that the following conditions
13 1.1 eeh * are met:
14 1.1 eeh * 1. Redistributions of source code must retain the above copyright
15 1.1 eeh * notice, this list of conditions and the following disclaimer.
16 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 eeh * notice, this list of conditions and the following disclaimer in the
18 1.1 eeh * documentation and/or other materials provided with the distribution.
19 1.1 eeh * 3. All advertising materials mentioning features or use of this software
20 1.1 eeh * must display the following acknowledgement:
21 1.1 eeh * This product includes software developed by the NetBSD
22 1.1 eeh * Foundation, Inc. and its contributors.
23 1.1 eeh * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 eeh * contributors may be used to endorse or promote products derived
25 1.1 eeh * from this software without specific prior written permission.
26 1.1 eeh *
27 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 eeh * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 eeh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 eeh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 eeh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 eeh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 eeh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 eeh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 eeh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 eeh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 eeh * POSSIBILITY OF SUCH DAMAGE.
38 1.1 eeh */
39 1.1 eeh
40 1.1 eeh #include <errno.h>
41 1.1 eeh #include <stdio.h>
42 1.1 eeh #include <stdlib.h>
43 1.1 eeh #include <string.h>
44 1.1 eeh #include <unistd.h>
45 1.1 eeh #include <sys/stat.h>
46 1.1 eeh
47 1.1 eeh #include "rtldenv.h"
48 1.1 eeh #include "debug.h"
49 1.1 eeh #include "rtld.h"
50 1.1 eeh
51 1.1 eeh /*
52 1.1 eeh * The following table holds for each relocation type:
53 1.1 eeh * - the width in bits of the memory location the relocation
54 1.1 eeh * applies to (not currently used)
55 1.1 eeh * - the number of bits the relocation value must be shifted to the
56 1.1 eeh * right (i.e. discard least significant bits) to fit into
57 1.1 eeh * the appropriate field in the instruction word.
58 1.1 eeh * - flags indicating whether
59 1.1 eeh * * the relocation involves a symbol
60 1.1 eeh * * the relocation is relative to the current position
61 1.1 eeh * * the relocation is for a GOT entry
62 1.1 eeh * * the relocation is relative to the load address
63 1.1 eeh *
64 1.1 eeh */
65 1.1 eeh #define _RF_S 0x80000000 /* Resolve symbol */
66 1.1 eeh #define _RF_A 0x40000000 /* Use addend */
67 1.1 eeh #define _RF_P 0x20000000 /* Location relative */
68 1.1 eeh #define _RF_G 0x10000000 /* GOT offset */
69 1.1 eeh #define _RF_B 0x08000000 /* Load address relative */
70 1.2 eeh #define _RF_U 0x04000000 /* Unaligned */
71 1.1 eeh #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 1.1 eeh #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 1.1 eeh static int reloc_target_flags[] = {
74 1.1 eeh 0, /* NONE */
75 1.1 eeh _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 1.1 eeh _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 1.1 eeh _RF_SZ(32) | _RF_RS(0), /* COPY */
94 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 1.1 eeh _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 1.1 eeh _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98 1.1 eeh
99 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 1.1 eeh _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 1.1 eeh _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 1.1 eeh };
132 1.1 eeh
133 1.1 eeh #ifdef RTLD_DEBUG_RELOC
134 1.1 eeh static const char *reloc_names[] = {
135 1.1 eeh "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 1.1 eeh "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 1.1 eeh "22", "13", "LO10", "GOT10", "GOT13",
138 1.1 eeh "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 1.1 eeh "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 1.1 eeh "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 1.1 eeh "10", "11", "64", "OLO10", "HH22",
142 1.1 eeh "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 1.1 eeh "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 1.1 eeh "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 1.1 eeh "L44", "REGISTER", "UA64", "UA16"
146 1.1 eeh };
147 1.1 eeh #endif
148 1.1 eeh
149 1.1 eeh #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 1.1 eeh #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 1.1 eeh #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 1.2 eeh #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 1.2 eeh #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 1.1 eeh #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 1.1 eeh #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156 1.1 eeh
157 1.1 eeh static long reloc_target_bitmask[] = {
158 1.1 eeh #define _BM(x) (~(-(1ULL << (x))))
159 1.1 eeh 0, /* NONE */
160 1.1 eeh _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 1.1 eeh _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 1.1 eeh _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 1.1 eeh _BM(22), _BM(22), /* HI22, _22 */
164 1.1 eeh _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 1.1 eeh _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 1.1 eeh _BM(10), _BM(22), /* _PC10, _PC22 */
167 1.1 eeh _BM(30), 0, /* _WPLT30, _COPY */
168 1.1 eeh _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 1.1 eeh _BM(32), _BM(32), /* _UA32, PLT32 */
170 1.1 eeh _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 1.1 eeh _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 1.1 eeh _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 1.1 eeh _BM(10), _BM(22), /* _OLO10, _HH22 */
174 1.1 eeh _BM(10), _BM(22), /* _HM10, _LM22 */
175 1.1 eeh _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 1.1 eeh _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 1.1 eeh -1, /* GLOB_JMP */
178 1.1 eeh _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 1.1 eeh -1, -1, /* DISP64, PLT64 */
180 1.1 eeh _BM(22), _BM(13), /* HIX22, LOX10 */
181 1.1 eeh _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 1.1 eeh -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 1.1 eeh #undef _BM
184 1.1 eeh };
185 1.1 eeh #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186 1.1 eeh
187 1.1 eeh /*
188 1.1 eeh * Instruction templates:
189 1.1 eeh */
190 1.1 eeh #define BAA 0x10400000 /* ba,a %xcc, 0 */
191 1.1 eeh #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
192 1.1 eeh #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
193 1.1 eeh #define NOP 0x01000000 /* sethi %hi(0), %g0 */
194 1.1 eeh #define OR 0x82806000 /* or %g1, 0, %g1 */
195 1.1 eeh #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
196 1.1 eeh #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
197 1.1 eeh #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
198 1.1 eeh #define CALL 0x40000000 /* call 0 */
199 1.1 eeh #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
200 1.1 eeh #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
201 1.1 eeh #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
202 1.1 eeh
203 1.1 eeh
204 1.1 eeh /* %hi(v) with variable shift */
205 1.1 eeh #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
206 1.1 eeh #define LOVAL(v) ((v) & 0x000003ff)
207 1.1 eeh
208 1.1 eeh int
209 1.13 mycroft _rtld_relocate_plt_object(obj, rela, addrp, dodebug)
210 1.1 eeh Obj_Entry *obj;
211 1.5 kleink const Elf_Rela *rela;
212 1.1 eeh caddr_t *addrp;
213 1.1 eeh bool dodebug;
214 1.1 eeh {
215 1.1 eeh const Elf_Sym *def;
216 1.1 eeh const Obj_Entry *defobj;
217 1.3 mycroft Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
218 1.1 eeh Elf_Addr value, offset;
219 1.1 eeh
220 1.1 eeh /* Fully resolve procedure addresses now */
221 1.1 eeh
222 1.1 eeh assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
223 1.1 eeh
224 1.10 mycroft def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
225 1.1 eeh if (def == NULL)
226 1.1 eeh return (-1);
227 1.1 eeh
228 1.1 eeh value = (Elf_Addr) (defobj->relocbase + def->st_value);
229 1.13 mycroft rdbg(dodebug, ("bind now/fixup in %s --> old=%lx new=%lx",
230 1.13 mycroft defobj->strtab + def->st_name,
231 1.2 eeh (u_long)*where, (u_long)value));
232 1.1 eeh
233 1.1 eeh /*
234 1.1 eeh * At the PLT entry pointed at by `where', we now construct
235 1.1 eeh * a direct transfer to the now fully resolved function
236 1.1 eeh * address.
237 1.1 eeh *
238 1.1 eeh * A PLT entry is supposed to start by looking like this:
239 1.1 eeh *
240 1.1 eeh * sethi %hi(. - .PLT0), %g1
241 1.1 eeh * ba,a %xcc, .PLT1
242 1.1 eeh * nop
243 1.1 eeh * nop
244 1.1 eeh * nop
245 1.1 eeh * nop
246 1.1 eeh * nop
247 1.1 eeh * nop
248 1.1 eeh *
249 1.1 eeh * When we replace these entries we start from the second
250 1.1 eeh * entry and do it in reverse order so the last thing we
251 1.1 eeh * do is replace the branch. That allows us to change this
252 1.1 eeh * atomically.
253 1.1 eeh *
254 1.1 eeh * We now need to find out how far we need to jump. We
255 1.1 eeh * have a choice of several different relocation techniques
256 1.1 eeh * which are increasingly expensive.
257 1.1 eeh */
258 1.1 eeh
259 1.1 eeh offset = ((Elf_Addr)where) - value;
260 1.1 eeh if (rela->r_addend) {
261 1.1 eeh Elf_Addr *ptr = (Elf_Addr *)where;
262 1.1 eeh /*
263 1.1 eeh * This entry is >32768. Just replace the pointer.
264 1.1 eeh */
265 1.1 eeh ptr[0] = value;
266 1.1 eeh
267 1.1 eeh } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
268 1.1 eeh /*
269 1.1 eeh * We're within 1MB -- we can use a direct branch insn.
270 1.1 eeh *
271 1.1 eeh * We can generate this pattern:
272 1.1 eeh *
273 1.1 eeh * sethi %hi(. - .PLT0), %g1
274 1.1 eeh * ba,a %xcc, addr
275 1.1 eeh * nop
276 1.1 eeh * nop
277 1.1 eeh * nop
278 1.1 eeh * nop
279 1.1 eeh * nop
280 1.1 eeh * nop
281 1.1 eeh *
282 1.1 eeh */
283 1.1 eeh where[1] = BAA | ((offset >> 2) &0x3fffff);
284 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
285 1.1 eeh } else if (value >= 0 && value < (1L<<32)) {
286 1.1 eeh /*
287 1.1 eeh * We're withing 32-bits of address zero.
288 1.1 eeh *
289 1.1 eeh * The resulting code in the jump slot is:
290 1.1 eeh *
291 1.1 eeh * sethi %hi(. - .PLT0), %g1
292 1.1 eeh * sethi %hi(addr), %g1
293 1.1 eeh * jmp %g1+%lo(addr)
294 1.1 eeh * nop
295 1.1 eeh * nop
296 1.1 eeh * nop
297 1.1 eeh * nop
298 1.1 eeh * nop
299 1.1 eeh *
300 1.1 eeh */
301 1.1 eeh where[2] = JMP | LOVAL(value);
302 1.1 eeh where[1] = SETHI | HIVAL(value, 10);
303 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
304 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
305 1.1 eeh
306 1.1 eeh } else if (value <= 0 && value > -(1L<<32)) {
307 1.1 eeh /*
308 1.1 eeh * We're withing 32-bits of address -1.
309 1.1 eeh *
310 1.1 eeh * The resulting code in the jump slot is:
311 1.1 eeh *
312 1.1 eeh * sethi %hi(. - .PLT0), %g1
313 1.1 eeh * sethi %hix(addr), %g1
314 1.1 eeh * xor %g1, %lox(addr), %g1
315 1.1 eeh * jmp %g1
316 1.1 eeh * nop
317 1.1 eeh * nop
318 1.1 eeh * nop
319 1.1 eeh * nop
320 1.1 eeh *
321 1.1 eeh */
322 1.1 eeh where[3] = JMP;
323 1.1 eeh where[2] = XOR | ((~value) & 0x00001fff);
324 1.1 eeh where[1] = SETHI | HIVAL(~value, 10);
325 1.1 eeh __asm __volatile("iflush %0+12" : : "r" (where));
326 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
327 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
328 1.1 eeh
329 1.1 eeh } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
330 1.1 eeh /*
331 1.1 eeh * We're withing 32-bits -- we can use a direct call insn
332 1.1 eeh *
333 1.1 eeh * The resulting code in the jump slot is:
334 1.1 eeh *
335 1.1 eeh * sethi %hi(. - .PLT0), %g1
336 1.1 eeh * mov %o7, %g1
337 1.1 eeh * call (.+offset)
338 1.1 eeh * mov %g1, %o7
339 1.1 eeh * nop
340 1.1 eeh * nop
341 1.1 eeh * nop
342 1.1 eeh * nop
343 1.1 eeh *
344 1.1 eeh */
345 1.1 eeh where[3] = MOV17;
346 1.1 eeh where[2] = CALL | ((offset >> 4) & 0x3fffffff);
347 1.1 eeh where[1] = MOV71;
348 1.1 eeh __asm __volatile("iflush %0+12" : : "r" (where));
349 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
350 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
351 1.1 eeh
352 1.1 eeh } else if (offset >= 0 && offset < (1L<<44)) {
353 1.1 eeh /*
354 1.1 eeh * We're withing 44 bits. We can generate this pattern:
355 1.1 eeh *
356 1.1 eeh * The resulting code in the jump slot is:
357 1.1 eeh *
358 1.1 eeh * sethi %hi(. - .PLT0), %g1
359 1.1 eeh * sethi %h44(addr), %g1
360 1.1 eeh * or %g1, %m44(addr), %g1
361 1.1 eeh * sllx %g1, 12, %g1
362 1.1 eeh * jmp %g1+%l44(addr)
363 1.1 eeh * nop
364 1.1 eeh * nop
365 1.1 eeh * nop
366 1.1 eeh *
367 1.1 eeh */
368 1.1 eeh where[4] = JMP | LOVAL(offset);
369 1.1 eeh where[3] = SLLX | 12;
370 1.1 eeh where[2] = OR | (((offset) >> 12) & 0x00001fff);
371 1.1 eeh where[1] = SETHI | HIVAL(offset, 22);
372 1.1 eeh __asm __volatile("iflush %0+16" : : "r" (where));
373 1.1 eeh __asm __volatile("iflush %0+12" : : "r" (where));
374 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
375 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
376 1.1 eeh
377 1.1 eeh } else if (offset < 0 && offset > -(1L<<44)) {
378 1.1 eeh /*
379 1.1 eeh * We're withing 44 bits. We can generate this pattern:
380 1.1 eeh *
381 1.1 eeh * The resulting code in the jump slot is:
382 1.1 eeh *
383 1.1 eeh * sethi %hi(. - .PLT0), %g1
384 1.1 eeh * sethi %h44(-addr), %g1
385 1.1 eeh * xor %g1, %m44(-addr), %g1
386 1.1 eeh * sllx %g1, 12, %g1
387 1.1 eeh * jmp %g1+%l44(addr)
388 1.1 eeh * nop
389 1.1 eeh * nop
390 1.1 eeh * nop
391 1.1 eeh *
392 1.1 eeh */
393 1.1 eeh where[4] = JMP | LOVAL(offset);
394 1.1 eeh where[3] = SLLX | 12;
395 1.1 eeh where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
396 1.1 eeh where[1] = SETHI | HIVAL(~offset, 22);
397 1.1 eeh __asm __volatile("iflush %0+16" : : "r" (where));
398 1.1 eeh __asm __volatile("iflush %0+12" : : "r" (where));
399 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
400 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
401 1.1 eeh
402 1.1 eeh } else {
403 1.1 eeh /*
404 1.1 eeh * We need to load all 64-bits
405 1.1 eeh *
406 1.1 eeh * The resulting code in the jump slot is:
407 1.1 eeh *
408 1.1 eeh * sethi %hi(. - .PLT0), %g1
409 1.1 eeh * sethi %hh(addr), %g1
410 1.1 eeh * sethi %lm(addr), %g5
411 1.1 eeh * or %g1, %hm(addr), %g1
412 1.1 eeh * sllx %g1, 32, %g1
413 1.1 eeh * or %g1, %g5, %g1
414 1.1 eeh * jmp %g1+%lo(addr)
415 1.1 eeh * nop
416 1.1 eeh *
417 1.1 eeh */
418 1.1 eeh where[6] = JMP | LOVAL(value);
419 1.1 eeh where[5] = ORG5;
420 1.1 eeh where[4] = SLLX | 12;
421 1.1 eeh where[3] = OR | LOVAL((value) >> 32);
422 1.1 eeh where[2] = SETHIG5 | HIVAL(value, 10);
423 1.1 eeh where[1] = SETHI | HIVAL(value, 42);
424 1.1 eeh __asm __volatile("iflush %0+20" : : "r" (where));
425 1.1 eeh __asm __volatile("iflush %0+16" : : "r" (where));
426 1.1 eeh __asm __volatile("iflush %0+16" : : "r" (where));
427 1.1 eeh __asm __volatile("iflush %0+12" : : "r" (where));
428 1.1 eeh __asm __volatile("iflush %0+8" : : "r" (where));
429 1.1 eeh __asm __volatile("iflush %0+4" : : "r" (where));
430 1.1 eeh
431 1.1 eeh }
432 1.1 eeh
433 1.13 mycroft *addrp = (caddr_t)value;
434 1.1 eeh return (0);
435 1.1 eeh }
436 1.1 eeh
437 1.1 eeh /*
438 1.1 eeh * Install rtld function call into this PLT slot.
439 1.1 eeh */
440 1.1 eeh #define SAVE 0x9de3bf50
441 1.1 eeh #define SETHI_l0 0x21000000
442 1.1 eeh #define SETHI_l1 0x23000000
443 1.1 eeh #define OR_l0_l0 0xa0142000
444 1.1 eeh #define SLLX_l0_32_l0 0xa12c3020
445 1.1 eeh #define OR_l0_l1_l0 0xa0140011
446 1.4 eeh #define JMPL_l0_o1 0x93c42000
447 1.1 eeh #define MOV_g1_o0 0x90100001
448 1.1 eeh
449 1.3 mycroft void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
450 1.1 eeh
451 1.1 eeh void
452 1.1 eeh _rtld_install_plt(pltgot, proc)
453 1.3 mycroft Elf_Word *pltgot;
454 1.1 eeh Elf_Addr proc;
455 1.1 eeh {
456 1.1 eeh pltgot[0] = SAVE;
457 1.1 eeh pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
458 1.1 eeh pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
459 1.1 eeh pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
460 1.1 eeh pltgot[4] = SLLX_l0_32_l0;
461 1.1 eeh pltgot[5] = OR_l0_l1_l0;
462 1.4 eeh pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
463 1.1 eeh pltgot[7] = MOV_g1_o0;
464 1.1 eeh }
465 1.2 eeh
466 1.2 eeh long _rtld_bind_start_0_stub __P((long x, long y));
467 1.2 eeh long
468 1.2 eeh _rtld_bind_start_0_stub(x, y)
469 1.2 eeh long x, y;
470 1.2 eeh {
471 1.2 eeh long i;
472 1.2 eeh long n;
473 1.2 eeh
474 1.2 eeh i = x - y + 1048596;
475 1.2 eeh n = 32768 + (i/5120)*160 + (i%5120)/24;
476 1.2 eeh
477 1.2 eeh return (n);
478 1.2 eeh }
479 1.2 eeh
480 1.6 mycroft void
481 1.6 mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
482 1.6 mycroft {
483 1.6 mycroft /*
484 1.6 mycroft * On sparc64 we got troubles.
485 1.6 mycroft *
486 1.6 mycroft * Instructions are 4 bytes long.
487 1.6 mycroft * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
488 1.6 mycroft * array entries.
489 1.6 mycroft * Each PLT entry jumps to PLT0 to enter the dynamic
490 1.6 mycroft * linker.
491 1.6 mycroft * Loading an arbitrary 64-bit pointer takes 6
492 1.6 mycroft * instructions and 2 registers.
493 1.6 mycroft *
494 1.6 mycroft * Somehow we need to issue a save to get a new stack
495 1.6 mycroft * frame, load the address of the dynamic linker, and
496 1.6 mycroft * jump there, in 8 instructions or less.
497 1.6 mycroft *
498 1.6 mycroft * Oh, we need to fill out both PLT0 and PLT1.
499 1.6 mycroft */
500 1.6 mycroft {
501 1.6 mycroft Elf_Word *entry = (Elf_Word *)obj->pltgot;
502 1.6 mycroft extern void _rtld_bind_start_0 __P((long, long));
503 1.6 mycroft extern void _rtld_bind_start_1 __P((long, long));
504 1.6 mycroft
505 1.6 mycroft /* Install in entries 0 and 1 */
506 1.6 mycroft _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
507 1.6 mycroft _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
508 1.6 mycroft
509 1.6 mycroft /*
510 1.6 mycroft * Install the object reference in first slot
511 1.6 mycroft * of entry 2.
512 1.6 mycroft */
513 1.6 mycroft obj->pltgot[8] = (Elf_Addr) obj;
514 1.6 mycroft }
515 1.8 mycroft }
516 1.8 mycroft
517 1.8 mycroft int
518 1.9 mycroft _rtld_relocate_nonplt_objects(obj, dodebug)
519 1.8 mycroft Obj_Entry *obj;
520 1.8 mycroft bool dodebug;
521 1.8 mycroft {
522 1.9 mycroft const Elf_Rela *rela;
523 1.8 mycroft
524 1.9 mycroft for (rela = obj->rela; rela < obj->relalim; rela++) {
525 1.9 mycroft Elf_Addr *where;
526 1.9 mycroft Elf_Word type;
527 1.9 mycroft Elf_Addr value = 0, mask;
528 1.9 mycroft const Elf_Sym *def = NULL;
529 1.9 mycroft const Obj_Entry *defobj = NULL;
530 1.10 mycroft unsigned long symnum;
531 1.9 mycroft
532 1.9 mycroft where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
533 1.10 mycroft symnum = ELF_R_SYM(rela->r_info);
534 1.9 mycroft
535 1.9 mycroft type = ELF_R_TYPE(rela->r_info);
536 1.9 mycroft if (type == R_TYPE(NONE))
537 1.12 mycroft continue;
538 1.9 mycroft
539 1.9 mycroft /* We do JMP_SLOTs in relocate_plt_object() below */
540 1.9 mycroft if (type == R_TYPE(JMP_SLOT))
541 1.12 mycroft continue;
542 1.9 mycroft
543 1.9 mycroft /* COPY relocs are also handled elsewhere */
544 1.9 mycroft if (type == R_TYPE(COPY))
545 1.12 mycroft continue;
546 1.8 mycroft
547 1.9 mycroft /*
548 1.9 mycroft * We use the fact that relocation types are an `enum'
549 1.9 mycroft * Note: R_SPARC_UA16 is currently numerically largest.
550 1.9 mycroft */
551 1.9 mycroft if (type > R_TYPE(UA16))
552 1.9 mycroft return (-1);
553 1.8 mycroft
554 1.9 mycroft value = rela->r_addend;
555 1.8 mycroft
556 1.9 mycroft /*
557 1.9 mycroft * Handle relative relocs here, because we might not
558 1.9 mycroft * be able to access globals yet.
559 1.9 mycroft */
560 1.9 mycroft if (!dodebug && type == R_TYPE(RELATIVE)) {
561 1.9 mycroft /* XXXX -- apparently we ignore the preexisting value */
562 1.9 mycroft *where = (Elf_Addr)(obj->relocbase + value);
563 1.12 mycroft continue;
564 1.9 mycroft }
565 1.8 mycroft
566 1.9 mycroft if (RELOC_RESOLVE_SYMBOL(type)) {
567 1.8 mycroft
568 1.9 mycroft /* Find the symbol */
569 1.10 mycroft def = _rtld_find_symdef(symnum, obj, &defobj, false);
570 1.9 mycroft if (def == NULL)
571 1.9 mycroft return (-1);
572 1.8 mycroft
573 1.9 mycroft /* Add in the symbol's absolute address */
574 1.9 mycroft value += (Elf_Addr)(defobj->relocbase + def->st_value);
575 1.9 mycroft }
576 1.8 mycroft
577 1.9 mycroft if (RELOC_PC_RELATIVE(type)) {
578 1.9 mycroft value -= (Elf_Addr)where;
579 1.9 mycroft }
580 1.8 mycroft
581 1.9 mycroft if (RELOC_BASE_RELATIVE(type)) {
582 1.9 mycroft /*
583 1.9 mycroft * Note that even though sparcs use `Elf_rela'
584 1.9 mycroft * exclusively we still need the implicit memory addend
585 1.9 mycroft * in relocations referring to GOT entries.
586 1.9 mycroft * Undoubtedly, someone f*cked this up in the distant
587 1.9 mycroft * past, and now we're stuck with it in the name of
588 1.9 mycroft * compatibility for all eternity..
589 1.9 mycroft *
590 1.9 mycroft * In any case, the implicit and explicit should be
591 1.9 mycroft * mutually exclusive. We provide a check for that
592 1.9 mycroft * here.
593 1.9 mycroft */
594 1.8 mycroft #ifdef DIAGNOSTIC
595 1.9 mycroft if (value != 0 && *where != 0) {
596 1.9 mycroft xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
597 1.9 mycroft "addend=0x%lx, base %p\n",
598 1.9 mycroft obj->path, where, *where,
599 1.9 mycroft rela->r_addend, obj->relocbase);
600 1.9 mycroft }
601 1.9 mycroft #endif
602 1.9 mycroft /* XXXX -- apparently we ignore the preexisting value */
603 1.9 mycroft value += (Elf_Addr)(obj->relocbase);
604 1.8 mycroft }
605 1.8 mycroft
606 1.9 mycroft mask = RELOC_VALUE_BITMASK(type);
607 1.9 mycroft value >>= RELOC_VALUE_RIGHTSHIFT(type);
608 1.9 mycroft value &= mask;
609 1.9 mycroft
610 1.9 mycroft if (RELOC_UNALIGNED(type)) {
611 1.9 mycroft /* Handle unaligned relocations. */
612 1.9 mycroft Elf_Addr tmp = 0;
613 1.9 mycroft char *ptr = (char *)where;
614 1.9 mycroft int i, size = RELOC_TARGET_SIZE(type)/8;
615 1.9 mycroft
616 1.9 mycroft /* Read it in one byte at a time. */
617 1.9 mycroft for (i=0; i<size; i++)
618 1.9 mycroft tmp = (tmp << 8) | ptr[i];
619 1.9 mycroft
620 1.9 mycroft tmp &= ~mask;
621 1.9 mycroft tmp |= value;
622 1.9 mycroft
623 1.9 mycroft /* Write it back out. */
624 1.9 mycroft for (i=0; i<size; i++)
625 1.9 mycroft ptr[i] = ((tmp >> (8*i)) & 0xff);
626 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
627 1.9 mycroft value = (Elf_Addr)tmp;
628 1.8 mycroft #endif
629 1.8 mycroft
630 1.9 mycroft } else if (RELOC_TARGET_SIZE(type) > 32) {
631 1.9 mycroft *where &= ~mask;
632 1.9 mycroft *where |= value;
633 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
634 1.9 mycroft value = (Elf_Addr)*where;
635 1.8 mycroft #endif
636 1.9 mycroft } else {
637 1.9 mycroft Elf32_Addr *where32 = (Elf32_Addr *)where;
638 1.8 mycroft
639 1.9 mycroft *where32 &= ~mask;
640 1.9 mycroft *where32 |= value;
641 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
642 1.9 mycroft value = (Elf_Addr)*where32;
643 1.8 mycroft #endif
644 1.9 mycroft }
645 1.8 mycroft
646 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
647 1.9 mycroft if (RELOC_RESOLVE_SYMBOL(type)) {
648 1.9 mycroft rdbg(dodebug, ("%s %s in %s --> %p %s",
649 1.9 mycroft reloc_names[type],
650 1.11 mycroft obj->strtab + obj->symtab[symnum].st_name,
651 1.11 mycroft obj->path, (void *)value, defobj->path));
652 1.11 mycroft } else {
653 1.9 mycroft rdbg(dodebug, ("%s --> %p", reloc_names[type],
654 1.9 mycroft (void *)value));
655 1.9 mycroft }
656 1.9 mycroft #endif
657 1.8 mycroft }
658 1.13 mycroft return (0);
659 1.13 mycroft }
660 1.13 mycroft
661 1.13 mycroft int
662 1.13 mycroft _rtld_relocate_plt_lazy(obj, dodebug)
663 1.13 mycroft Obj_Entry *obj;
664 1.13 mycroft bool dodebug;
665 1.13 mycroft {
666 1.8 mycroft return (0);
667 1.6 mycroft }
668