Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.13
      1  1.13  mycroft /*	$NetBSD: mdreloc.c,v 1.13 2002/09/06 03:05:37 mycroft Exp $	*/
      2   1.1      eeh 
      3   1.1      eeh /*-
      4   1.1      eeh  * Copyright (c) 2000 Eduardo Horvath.
      5   1.1      eeh  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6   1.1      eeh  * All rights reserved.
      7   1.1      eeh  *
      8   1.1      eeh  * This code is derived from software contributed to The NetBSD Foundation
      9   1.1      eeh  * by Paul Kranenburg.
     10   1.1      eeh  *
     11   1.1      eeh  * Redistribution and use in source and binary forms, with or without
     12   1.1      eeh  * modification, are permitted provided that the following conditions
     13   1.1      eeh  * are met:
     14   1.1      eeh  * 1. Redistributions of source code must retain the above copyright
     15   1.1      eeh  *    notice, this list of conditions and the following disclaimer.
     16   1.1      eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1      eeh  *    notice, this list of conditions and the following disclaimer in the
     18   1.1      eeh  *    documentation and/or other materials provided with the distribution.
     19   1.1      eeh  * 3. All advertising materials mentioning features or use of this software
     20   1.1      eeh  *    must display the following acknowledgement:
     21   1.1      eeh  *        This product includes software developed by the NetBSD
     22   1.1      eeh  *        Foundation, Inc. and its contributors.
     23   1.1      eeh  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.1      eeh  *    contributors may be used to endorse or promote products derived
     25   1.1      eeh  *    from this software without specific prior written permission.
     26   1.1      eeh  *
     27   1.1      eeh  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.1      eeh  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.1      eeh  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.1      eeh  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.1      eeh  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.1      eeh  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.1      eeh  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.1      eeh  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.1      eeh  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.1      eeh  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.1      eeh  * POSSIBILITY OF SUCH DAMAGE.
     38   1.1      eeh  */
     39   1.1      eeh 
     40   1.1      eeh #include <errno.h>
     41   1.1      eeh #include <stdio.h>
     42   1.1      eeh #include <stdlib.h>
     43   1.1      eeh #include <string.h>
     44   1.1      eeh #include <unistd.h>
     45   1.1      eeh #include <sys/stat.h>
     46   1.1      eeh 
     47   1.1      eeh #include "rtldenv.h"
     48   1.1      eeh #include "debug.h"
     49   1.1      eeh #include "rtld.h"
     50   1.1      eeh 
     51   1.1      eeh /*
     52   1.1      eeh  * The following table holds for each relocation type:
     53   1.1      eeh  *	- the width in bits of the memory location the relocation
     54   1.1      eeh  *	  applies to (not currently used)
     55   1.1      eeh  *	- the number of bits the relocation value must be shifted to the
     56   1.1      eeh  *	  right (i.e. discard least significant bits) to fit into
     57   1.1      eeh  *	  the appropriate field in the instruction word.
     58   1.1      eeh  *	- flags indicating whether
     59   1.1      eeh  *		* the relocation involves a symbol
     60   1.1      eeh  *		* the relocation is relative to the current position
     61   1.1      eeh  *		* the relocation is for a GOT entry
     62   1.1      eeh  *		* the relocation is relative to the load address
     63   1.1      eeh  *
     64   1.1      eeh  */
     65   1.1      eeh #define _RF_S		0x80000000		/* Resolve symbol */
     66   1.1      eeh #define _RF_A		0x40000000		/* Use addend */
     67   1.1      eeh #define _RF_P		0x20000000		/* Location relative */
     68   1.1      eeh #define _RF_G		0x10000000		/* GOT offset */
     69   1.1      eeh #define _RF_B		0x08000000		/* Load address relative */
     70   1.2      eeh #define _RF_U		0x04000000		/* Unaligned */
     71   1.1      eeh #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     72   1.1      eeh #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     73   1.1      eeh static int reloc_target_flags[] = {
     74   1.1      eeh 	0,							/* NONE */
     75   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     76   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     77   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     78   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     79   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     80   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     81   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     82   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     83   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     84   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     85   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     86   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     87   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     88   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     89   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     90   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     91   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     92   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     93   1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     94   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     95   1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     96   1.1      eeh 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     97   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     98   1.1      eeh 
     99   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
    100   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
    101   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
    102   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    103   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    104   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    105   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    106   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    107   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    108   1.1      eeh 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    109   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    110   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    111   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    112   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    113   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    114   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    115   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    116   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    117   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    118   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    119   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    120   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    121   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    122   1.1      eeh 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    123   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    124   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    125   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    126   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    127   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    128   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    129   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    130   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    131   1.1      eeh };
    132   1.1      eeh 
    133   1.1      eeh #ifdef RTLD_DEBUG_RELOC
    134   1.1      eeh static const char *reloc_names[] = {
    135   1.1      eeh 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    136   1.1      eeh 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    137   1.1      eeh 	"22", "13", "LO10", "GOT10", "GOT13",
    138   1.1      eeh 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    139   1.1      eeh 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    140   1.1      eeh 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    141   1.1      eeh 	"10", "11", "64", "OLO10", "HH22",
    142   1.1      eeh 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    143   1.1      eeh 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    144   1.1      eeh 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    145   1.1      eeh 	"L44", "REGISTER", "UA64", "UA16"
    146   1.1      eeh };
    147   1.1      eeh #endif
    148   1.1      eeh 
    149   1.1      eeh #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    150   1.1      eeh #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    151   1.1      eeh #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    152   1.2      eeh #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    153   1.2      eeh #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    154   1.1      eeh #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    155   1.1      eeh #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    156   1.1      eeh 
    157   1.1      eeh static long reloc_target_bitmask[] = {
    158   1.1      eeh #define _BM(x)	(~(-(1ULL << (x))))
    159   1.1      eeh 	0,				/* NONE */
    160   1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    161   1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    162   1.1      eeh 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    163   1.1      eeh 	_BM(22), _BM(22),		/* HI22, _22 */
    164   1.1      eeh 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    165   1.1      eeh 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    166   1.1      eeh 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    167   1.1      eeh 	_BM(30), 0,			/* _WPLT30, _COPY */
    168   1.1      eeh 	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    169   1.1      eeh 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    170   1.1      eeh 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    171   1.1      eeh 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    172   1.1      eeh 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    173   1.1      eeh 	_BM(10), _BM(22),		/* _OLO10, _HH22 */
    174   1.1      eeh 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    175   1.1      eeh 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    176   1.1      eeh 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    177   1.1      eeh 	-1,				/* GLOB_JMP */
    178   1.1      eeh 	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
    179   1.1      eeh 	-1, -1,				/* DISP64, PLT64 */
    180   1.1      eeh 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    181   1.1      eeh 	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
    182   1.1      eeh 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    183   1.1      eeh #undef _BM
    184   1.1      eeh };
    185   1.1      eeh #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    186   1.1      eeh 
    187   1.1      eeh /*
    188   1.1      eeh  * Instruction templates:
    189   1.1      eeh  */
    190   1.1      eeh #define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
    191   1.1      eeh #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    192   1.1      eeh #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    193   1.1      eeh #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    194   1.1      eeh #define	OR	0x82806000	/*	or	%g1, 0, %g1 */
    195   1.1      eeh #define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
    196   1.1      eeh #define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
    197   1.1      eeh #define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
    198   1.1      eeh #define	CALL	0x40000000	/*	call	0 */
    199   1.1      eeh #define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
    200   1.1      eeh #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    201   1.1      eeh #define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
    202   1.1      eeh 
    203   1.1      eeh 
    204   1.1      eeh /* %hi(v) with variable shift */
    205   1.1      eeh #define	HIVAL(v, s)	(((v) >> (s)) &  0x003fffff)
    206   1.1      eeh #define LOVAL(v)	((v) & 0x000003ff)
    207   1.1      eeh 
    208   1.1      eeh int
    209  1.13  mycroft _rtld_relocate_plt_object(obj, rela, addrp, dodebug)
    210   1.1      eeh 	Obj_Entry *obj;
    211   1.5   kleink 	const Elf_Rela *rela;
    212   1.1      eeh 	caddr_t *addrp;
    213   1.1      eeh 	bool dodebug;
    214   1.1      eeh {
    215   1.1      eeh 	const Elf_Sym *def;
    216   1.1      eeh 	const Obj_Entry *defobj;
    217   1.3  mycroft 	Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
    218   1.1      eeh 	Elf_Addr value, offset;
    219   1.1      eeh 
    220   1.1      eeh 	/* Fully resolve procedure addresses now */
    221   1.1      eeh 
    222   1.1      eeh 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
    223   1.1      eeh 
    224  1.10  mycroft 	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
    225   1.1      eeh 	if (def == NULL)
    226   1.1      eeh 		return (-1);
    227   1.1      eeh 
    228   1.1      eeh 	value = (Elf_Addr) (defobj->relocbase + def->st_value);
    229  1.13  mycroft 	rdbg(dodebug, ("bind now/fixup in %s --> old=%lx new=%lx",
    230  1.13  mycroft 	    defobj->strtab + def->st_name,
    231   1.2      eeh 	    (u_long)*where, (u_long)value));
    232   1.1      eeh 
    233   1.1      eeh 	/*
    234   1.1      eeh 	 * At the PLT entry pointed at by `where', we now construct
    235   1.1      eeh 	 * a direct transfer to the now fully resolved function
    236   1.1      eeh 	 * address.
    237   1.1      eeh 	 *
    238   1.1      eeh 	 * A PLT entry is supposed to start by looking like this:
    239   1.1      eeh 	 *
    240   1.1      eeh 	 *	sethi	%hi(. - .PLT0), %g1
    241   1.1      eeh 	 *	ba,a	%xcc, .PLT1
    242   1.1      eeh 	 *	nop
    243   1.1      eeh 	 *	nop
    244   1.1      eeh 	 *	nop
    245   1.1      eeh 	 *	nop
    246   1.1      eeh 	 *	nop
    247   1.1      eeh 	 *	nop
    248   1.1      eeh 	 *
    249   1.1      eeh 	 * When we replace these entries we start from the second
    250   1.1      eeh 	 * entry and do it in reverse order so the last thing we
    251   1.1      eeh 	 * do is replace the branch.  That allows us to change this
    252   1.1      eeh 	 * atomically.
    253   1.1      eeh 	 *
    254   1.1      eeh 	 * We now need to find out how far we need to jump.  We
    255   1.1      eeh 	 * have a choice of several different relocation techniques
    256   1.1      eeh 	 * which are increasingly expensive.
    257   1.1      eeh 	 */
    258   1.1      eeh 
    259   1.1      eeh 	offset = ((Elf_Addr)where) - value;
    260   1.1      eeh 	if (rela->r_addend) {
    261   1.1      eeh 		Elf_Addr *ptr = (Elf_Addr *)where;
    262   1.1      eeh 		/*
    263   1.1      eeh 		 * This entry is >32768.  Just replace the pointer.
    264   1.1      eeh 		 */
    265   1.1      eeh 		ptr[0] = value;
    266   1.1      eeh 
    267   1.1      eeh 	} else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
    268   1.1      eeh 		/*
    269   1.1      eeh 		 * We're within 1MB -- we can use a direct branch insn.
    270   1.1      eeh 		 *
    271   1.1      eeh 		 * We can generate this pattern:
    272   1.1      eeh 		 *
    273   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    274   1.1      eeh 		 *	ba,a	%xcc, addr
    275   1.1      eeh 		 *	nop
    276   1.1      eeh 		 *	nop
    277   1.1      eeh 		 *	nop
    278   1.1      eeh 		 *	nop
    279   1.1      eeh 		 *	nop
    280   1.1      eeh 		 *	nop
    281   1.1      eeh 		 *
    282   1.1      eeh 		 */
    283   1.1      eeh 		where[1] = BAA | ((offset >> 2) &0x3fffff);
    284   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    285   1.1      eeh 	} else if (value >= 0 && value < (1L<<32)) {
    286   1.1      eeh 		/*
    287   1.1      eeh 		 * We're withing 32-bits of address zero.
    288   1.1      eeh 		 *
    289   1.1      eeh 		 * The resulting code in the jump slot is:
    290   1.1      eeh 		 *
    291   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    292   1.1      eeh 		 *	sethi	%hi(addr), %g1
    293   1.1      eeh 		 *	jmp	%g1+%lo(addr)
    294   1.1      eeh 		 *	nop
    295   1.1      eeh 		 *	nop
    296   1.1      eeh 		 *	nop
    297   1.1      eeh 		 *	nop
    298   1.1      eeh 		 *	nop
    299   1.1      eeh 		 *
    300   1.1      eeh 		 */
    301   1.1      eeh 		where[2] = JMP   | LOVAL(value);
    302   1.1      eeh 		where[1] = SETHI | HIVAL(value, 10);
    303   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    304   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    305   1.1      eeh 
    306   1.1      eeh 	} else if (value <= 0 && value > -(1L<<32)) {
    307   1.1      eeh 		/*
    308   1.1      eeh 		 * We're withing 32-bits of address -1.
    309   1.1      eeh 		 *
    310   1.1      eeh 		 * The resulting code in the jump slot is:
    311   1.1      eeh 		 *
    312   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    313   1.1      eeh 		 *	sethi	%hix(addr), %g1
    314   1.1      eeh 		 *	xor	%g1, %lox(addr), %g1
    315   1.1      eeh 		 *	jmp	%g1
    316   1.1      eeh 		 *	nop
    317   1.1      eeh 		 *	nop
    318   1.1      eeh 		 *	nop
    319   1.1      eeh 		 *	nop
    320   1.1      eeh 		 *
    321   1.1      eeh 		 */
    322   1.1      eeh 		where[3] = JMP;
    323   1.1      eeh 		where[2] = XOR | ((~value) & 0x00001fff);
    324   1.1      eeh 		where[1] = SETHI | HIVAL(~value, 10);
    325   1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    326   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    327   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    328   1.1      eeh 
    329   1.1      eeh 	} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
    330   1.1      eeh 		/*
    331   1.1      eeh 		 * We're withing 32-bits -- we can use a direct call insn
    332   1.1      eeh 		 *
    333   1.1      eeh 		 * The resulting code in the jump slot is:
    334   1.1      eeh 		 *
    335   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    336   1.1      eeh 		 *	mov	%o7, %g1
    337   1.1      eeh 		 *	call	(.+offset)
    338   1.1      eeh 		 *	 mov	%g1, %o7
    339   1.1      eeh 		 *	nop
    340   1.1      eeh 		 *	nop
    341   1.1      eeh 		 *	nop
    342   1.1      eeh 		 *	nop
    343   1.1      eeh 		 *
    344   1.1      eeh 		 */
    345   1.1      eeh 		where[3] = MOV17;
    346   1.1      eeh 		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
    347   1.1      eeh 		where[1] = MOV71;
    348   1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    349   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    350   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    351   1.1      eeh 
    352   1.1      eeh 	} else if (offset >= 0 && offset < (1L<<44)) {
    353   1.1      eeh 		/*
    354   1.1      eeh 		 * We're withing 44 bits.  We can generate this pattern:
    355   1.1      eeh 		 *
    356   1.1      eeh 		 * The resulting code in the jump slot is:
    357   1.1      eeh 		 *
    358   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    359   1.1      eeh 		 *	sethi	%h44(addr), %g1
    360   1.1      eeh 		 *	or	%g1, %m44(addr), %g1
    361   1.1      eeh 		 *	sllx	%g1, 12, %g1
    362   1.1      eeh 		 *	jmp	%g1+%l44(addr)
    363   1.1      eeh 		 *	nop
    364   1.1      eeh 		 *	nop
    365   1.1      eeh 		 *	nop
    366   1.1      eeh 		 *
    367   1.1      eeh 		 */
    368   1.1      eeh 		where[4] = JMP   | LOVAL(offset);
    369   1.1      eeh 		where[3] = SLLX  | 12;
    370   1.1      eeh 		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
    371   1.1      eeh 		where[1] = SETHI | HIVAL(offset, 22);
    372   1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    373   1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    374   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    375   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    376   1.1      eeh 
    377   1.1      eeh 	} else if (offset < 0 && offset > -(1L<<44)) {
    378   1.1      eeh 		/*
    379   1.1      eeh 		 * We're withing 44 bits.  We can generate this pattern:
    380   1.1      eeh 		 *
    381   1.1      eeh 		 * The resulting code in the jump slot is:
    382   1.1      eeh 		 *
    383   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    384   1.1      eeh 		 *	sethi	%h44(-addr), %g1
    385   1.1      eeh 		 *	xor	%g1, %m44(-addr), %g1
    386   1.1      eeh 		 *	sllx	%g1, 12, %g1
    387   1.1      eeh 		 *	jmp	%g1+%l44(addr)
    388   1.1      eeh 		 *	nop
    389   1.1      eeh 		 *	nop
    390   1.1      eeh 		 *	nop
    391   1.1      eeh 		 *
    392   1.1      eeh 		 */
    393   1.1      eeh 		where[4] = JMP   | LOVAL(offset);
    394   1.1      eeh 		where[3] = SLLX  | 12;
    395   1.1      eeh 		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
    396   1.1      eeh 		where[1] = SETHI | HIVAL(~offset, 22);
    397   1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    398   1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    399   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    400   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    401   1.1      eeh 
    402   1.1      eeh 	} else {
    403   1.1      eeh 		/*
    404   1.1      eeh 		 * We need to load all 64-bits
    405   1.1      eeh 		 *
    406   1.1      eeh 		 * The resulting code in the jump slot is:
    407   1.1      eeh 		 *
    408   1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    409   1.1      eeh 		 *	sethi	%hh(addr), %g1
    410   1.1      eeh 		 *	sethi	%lm(addr), %g5
    411   1.1      eeh 		 *	or	%g1, %hm(addr), %g1
    412   1.1      eeh 		 *	sllx	%g1, 32, %g1
    413   1.1      eeh 		 *	or	%g1, %g5, %g1
    414   1.1      eeh 		 *	jmp	%g1+%lo(addr)
    415   1.1      eeh 		 *	nop
    416   1.1      eeh 		 *
    417   1.1      eeh 		 */
    418   1.1      eeh 		where[6] = JMP     | LOVAL(value);
    419   1.1      eeh 		where[5] = ORG5;
    420   1.1      eeh 		where[4] = SLLX    | 12;
    421   1.1      eeh 		where[3] = OR      | LOVAL((value) >> 32);
    422   1.1      eeh 		where[2] = SETHIG5 | HIVAL(value, 10);
    423   1.1      eeh 		where[1] = SETHI   | HIVAL(value, 42);
    424   1.1      eeh 		__asm __volatile("iflush %0+20" : : "r" (where));
    425   1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    426   1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    427   1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    428   1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    429   1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    430   1.1      eeh 
    431   1.1      eeh 	}
    432   1.1      eeh 
    433  1.13  mycroft 	*addrp = (caddr_t)value;
    434   1.1      eeh 	return (0);
    435   1.1      eeh }
    436   1.1      eeh 
    437   1.1      eeh /*
    438   1.1      eeh  * Install rtld function call into this PLT slot.
    439   1.1      eeh  */
    440   1.1      eeh #define	SAVE		0x9de3bf50
    441   1.1      eeh #define	SETHI_l0	0x21000000
    442   1.1      eeh #define	SETHI_l1	0x23000000
    443   1.1      eeh #define	OR_l0_l0	0xa0142000
    444   1.1      eeh #define	SLLX_l0_32_l0	0xa12c3020
    445   1.1      eeh #define	OR_l0_l1_l0	0xa0140011
    446   1.4      eeh #define	JMPL_l0_o1	0x93c42000
    447   1.1      eeh #define	MOV_g1_o0	0x90100001
    448   1.1      eeh 
    449   1.3  mycroft void _rtld_install_plt __P((Elf_Word *pltgot,	Elf_Addr proc));
    450   1.1      eeh 
    451   1.1      eeh void
    452   1.1      eeh _rtld_install_plt(pltgot, proc)
    453   1.3  mycroft 	Elf_Word *pltgot;
    454   1.1      eeh 	Elf_Addr proc;
    455   1.1      eeh {
    456   1.1      eeh 	pltgot[0] = SAVE;
    457   1.1      eeh 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    458   1.1      eeh 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    459   1.1      eeh 	pltgot[3] = OR_l0_l0  | LOVAL((proc) >> 32);
    460   1.1      eeh 	pltgot[4] = SLLX_l0_32_l0;
    461   1.1      eeh 	pltgot[5] = OR_l0_l1_l0;
    462   1.4      eeh 	pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
    463   1.1      eeh 	pltgot[7] = MOV_g1_o0;
    464   1.1      eeh }
    465   1.2      eeh 
    466   1.2      eeh long _rtld_bind_start_0_stub __P((long x, long y));
    467   1.2      eeh long
    468   1.2      eeh _rtld_bind_start_0_stub(x, y)
    469   1.2      eeh 	long x, y;
    470   1.2      eeh {
    471   1.2      eeh 	long i;
    472   1.2      eeh 	long n;
    473   1.2      eeh 
    474   1.2      eeh 	i = x - y + 1048596;
    475   1.2      eeh 	n = 32768 + (i/5120)*160 + (i%5120)/24;
    476   1.2      eeh 
    477   1.2      eeh 	return (n);
    478   1.2      eeh }
    479   1.2      eeh 
    480   1.6  mycroft void
    481   1.6  mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
    482   1.6  mycroft {
    483   1.6  mycroft 	/*
    484   1.6  mycroft 	 * On sparc64 we got troubles.
    485   1.6  mycroft 	 *
    486   1.6  mycroft 	 * Instructions are 4 bytes long.
    487   1.6  mycroft 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    488   1.6  mycroft 	 * array entries.
    489   1.6  mycroft 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    490   1.6  mycroft 	 * linker.
    491   1.6  mycroft 	 * Loading an arbitrary 64-bit pointer takes 6
    492   1.6  mycroft 	 * instructions and 2 registers.
    493   1.6  mycroft 	 *
    494   1.6  mycroft 	 * Somehow we need to issue a save to get a new stack
    495   1.6  mycroft 	 * frame, load the address of the dynamic linker, and
    496   1.6  mycroft 	 * jump there, in 8 instructions or less.
    497   1.6  mycroft 	 *
    498   1.6  mycroft 	 * Oh, we need to fill out both PLT0 and PLT1.
    499   1.6  mycroft 	 */
    500   1.6  mycroft 	{
    501   1.6  mycroft 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    502   1.6  mycroft 		extern void _rtld_bind_start_0 __P((long, long));
    503   1.6  mycroft 		extern void _rtld_bind_start_1 __P((long, long));
    504   1.6  mycroft 
    505   1.6  mycroft 		/* Install in entries 0 and 1 */
    506   1.6  mycroft 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    507   1.6  mycroft 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    508   1.6  mycroft 
    509   1.6  mycroft 		/*
    510   1.6  mycroft 		 * Install the object reference in first slot
    511   1.6  mycroft 		 * of entry 2.
    512   1.6  mycroft 		 */
    513   1.6  mycroft 		obj->pltgot[8] = (Elf_Addr) obj;
    514   1.6  mycroft 	}
    515   1.8  mycroft }
    516   1.8  mycroft 
    517   1.8  mycroft int
    518   1.9  mycroft _rtld_relocate_nonplt_objects(obj, dodebug)
    519   1.8  mycroft 	Obj_Entry *obj;
    520   1.8  mycroft 	bool dodebug;
    521   1.8  mycroft {
    522   1.9  mycroft 	const Elf_Rela *rela;
    523   1.8  mycroft 
    524   1.9  mycroft 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    525   1.9  mycroft 		Elf_Addr *where;
    526   1.9  mycroft 		Elf_Word type;
    527   1.9  mycroft 		Elf_Addr value = 0, mask;
    528   1.9  mycroft 		const Elf_Sym *def = NULL;
    529   1.9  mycroft 		const Obj_Entry *defobj = NULL;
    530  1.10  mycroft 		unsigned long	 symnum;
    531   1.9  mycroft 
    532   1.9  mycroft 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    533  1.10  mycroft 		symnum = ELF_R_SYM(rela->r_info);
    534   1.9  mycroft 
    535   1.9  mycroft 		type = ELF_R_TYPE(rela->r_info);
    536   1.9  mycroft 		if (type == R_TYPE(NONE))
    537  1.12  mycroft 			continue;
    538   1.9  mycroft 
    539   1.9  mycroft 		/* We do JMP_SLOTs in relocate_plt_object() below */
    540   1.9  mycroft 		if (type == R_TYPE(JMP_SLOT))
    541  1.12  mycroft 			continue;
    542   1.9  mycroft 
    543   1.9  mycroft 		/* COPY relocs are also handled elsewhere */
    544   1.9  mycroft 		if (type == R_TYPE(COPY))
    545  1.12  mycroft 			continue;
    546   1.8  mycroft 
    547   1.9  mycroft 		/*
    548   1.9  mycroft 		 * We use the fact that relocation types are an `enum'
    549   1.9  mycroft 		 * Note: R_SPARC_UA16 is currently numerically largest.
    550   1.9  mycroft 		 */
    551   1.9  mycroft 		if (type > R_TYPE(UA16))
    552   1.9  mycroft 			return (-1);
    553   1.8  mycroft 
    554   1.9  mycroft 		value = rela->r_addend;
    555   1.8  mycroft 
    556   1.9  mycroft 		/*
    557   1.9  mycroft 		 * Handle relative relocs here, because we might not
    558   1.9  mycroft 		 * be able to access globals yet.
    559   1.9  mycroft 		 */
    560   1.9  mycroft 		if (!dodebug && type == R_TYPE(RELATIVE)) {
    561   1.9  mycroft 			/* XXXX -- apparently we ignore the preexisting value */
    562   1.9  mycroft 			*where = (Elf_Addr)(obj->relocbase + value);
    563  1.12  mycroft 			continue;
    564   1.9  mycroft 		}
    565   1.8  mycroft 
    566   1.9  mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    567   1.8  mycroft 
    568   1.9  mycroft 			/* Find the symbol */
    569  1.10  mycroft 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
    570   1.9  mycroft 			if (def == NULL)
    571   1.9  mycroft 				return (-1);
    572   1.8  mycroft 
    573   1.9  mycroft 			/* Add in the symbol's absolute address */
    574   1.9  mycroft 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
    575   1.9  mycroft 		}
    576   1.8  mycroft 
    577   1.9  mycroft 		if (RELOC_PC_RELATIVE(type)) {
    578   1.9  mycroft 			value -= (Elf_Addr)where;
    579   1.9  mycroft 		}
    580   1.8  mycroft 
    581   1.9  mycroft 		if (RELOC_BASE_RELATIVE(type)) {
    582   1.9  mycroft 			/*
    583   1.9  mycroft 			 * Note that even though sparcs use `Elf_rela'
    584   1.9  mycroft 			 * exclusively we still need the implicit memory addend
    585   1.9  mycroft 			 * in relocations referring to GOT entries.
    586   1.9  mycroft 			 * Undoubtedly, someone f*cked this up in the distant
    587   1.9  mycroft 			 * past, and now we're stuck with it in the name of
    588   1.9  mycroft 			 * compatibility for all eternity..
    589   1.9  mycroft 			 *
    590   1.9  mycroft 			 * In any case, the implicit and explicit should be
    591   1.9  mycroft 			 * mutually exclusive. We provide a check for that
    592   1.9  mycroft 			 * here.
    593   1.9  mycroft 			 */
    594   1.8  mycroft #ifdef DIAGNOSTIC
    595   1.9  mycroft 			if (value != 0 && *where != 0) {
    596   1.9  mycroft 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    597   1.9  mycroft 					"addend=0x%lx, base %p\n",
    598   1.9  mycroft 					obj->path, where, *where,
    599   1.9  mycroft 					rela->r_addend, obj->relocbase);
    600   1.9  mycroft 			}
    601   1.9  mycroft #endif
    602   1.9  mycroft 			/* XXXX -- apparently we ignore the preexisting value */
    603   1.9  mycroft 			value += (Elf_Addr)(obj->relocbase);
    604   1.8  mycroft 		}
    605   1.8  mycroft 
    606   1.9  mycroft 		mask = RELOC_VALUE_BITMASK(type);
    607   1.9  mycroft 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    608   1.9  mycroft 		value &= mask;
    609   1.9  mycroft 
    610   1.9  mycroft 		if (RELOC_UNALIGNED(type)) {
    611   1.9  mycroft 			/* Handle unaligned relocations. */
    612   1.9  mycroft 			Elf_Addr tmp = 0;
    613   1.9  mycroft 			char *ptr = (char *)where;
    614   1.9  mycroft 			int i, size = RELOC_TARGET_SIZE(type)/8;
    615   1.9  mycroft 
    616   1.9  mycroft 			/* Read it in one byte at a time. */
    617   1.9  mycroft 			for (i=0; i<size; i++)
    618   1.9  mycroft 				tmp = (tmp << 8) | ptr[i];
    619   1.9  mycroft 
    620   1.9  mycroft 			tmp &= ~mask;
    621   1.9  mycroft 			tmp |= value;
    622   1.9  mycroft 
    623   1.9  mycroft 			/* Write it back out. */
    624   1.9  mycroft 			for (i=0; i<size; i++)
    625   1.9  mycroft 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    626   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    627   1.9  mycroft 			value = (Elf_Addr)tmp;
    628   1.8  mycroft #endif
    629   1.8  mycroft 
    630   1.9  mycroft 		} else if (RELOC_TARGET_SIZE(type) > 32) {
    631   1.9  mycroft 			*where &= ~mask;
    632   1.9  mycroft 			*where |= value;
    633   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    634   1.9  mycroft 			value = (Elf_Addr)*where;
    635   1.8  mycroft #endif
    636   1.9  mycroft 		} else {
    637   1.9  mycroft 			Elf32_Addr *where32 = (Elf32_Addr *)where;
    638   1.8  mycroft 
    639   1.9  mycroft 			*where32 &= ~mask;
    640   1.9  mycroft 			*where32 |= value;
    641   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    642   1.9  mycroft 			value = (Elf_Addr)*where32;
    643   1.8  mycroft #endif
    644   1.9  mycroft 		}
    645   1.8  mycroft 
    646   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    647   1.9  mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    648   1.9  mycroft 			rdbg(dodebug, ("%s %s in %s --> %p %s",
    649   1.9  mycroft 			    reloc_names[type],
    650  1.11  mycroft 			    obj->strtab + obj->symtab[symnum].st_name,
    651  1.11  mycroft 			    obj->path, (void *)value, defobj->path));
    652  1.11  mycroft 		} else {
    653   1.9  mycroft 			rdbg(dodebug, ("%s --> %p", reloc_names[type],
    654   1.9  mycroft 			    (void *)value));
    655   1.9  mycroft 		}
    656   1.9  mycroft #endif
    657   1.8  mycroft 	}
    658  1.13  mycroft 	return (0);
    659  1.13  mycroft }
    660  1.13  mycroft 
    661  1.13  mycroft int
    662  1.13  mycroft _rtld_relocate_plt_lazy(obj, dodebug)
    663  1.13  mycroft 	Obj_Entry *obj;
    664  1.13  mycroft 	bool dodebug;
    665  1.13  mycroft {
    666   1.8  mycroft 	return (0);
    667   1.6  mycroft }
    668