Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.43
      1  1.43     matt /*	$NetBSD: mdreloc.c,v 1.43 2008/07/24 04:39:25 matt Exp $	*/
      2   1.1      eeh 
      3   1.1      eeh /*-
      4   1.1      eeh  * Copyright (c) 2000 Eduardo Horvath.
      5  1.23  mycroft  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
      6   1.1      eeh  * All rights reserved.
      7   1.1      eeh  *
      8   1.1      eeh  * This code is derived from software contributed to The NetBSD Foundation
      9  1.27  mycroft  * by Paul Kranenburg and by Charles M. Hannum.
     10   1.1      eeh  *
     11   1.1      eeh  * Redistribution and use in source and binary forms, with or without
     12   1.1      eeh  * modification, are permitted provided that the following conditions
     13   1.1      eeh  * are met:
     14   1.1      eeh  * 1. Redistributions of source code must retain the above copyright
     15   1.1      eeh  *    notice, this list of conditions and the following disclaimer.
     16   1.1      eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1      eeh  *    notice, this list of conditions and the following disclaimer in the
     18   1.1      eeh  *    documentation and/or other materials provided with the distribution.
     19   1.1      eeh  *
     20   1.1      eeh  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1      eeh  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1      eeh  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1      eeh  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1      eeh  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1      eeh  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1      eeh  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1      eeh  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1      eeh  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1      eeh  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1      eeh  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1      eeh  */
     32   1.1      eeh 
     33  1.37    skrll #include <sys/cdefs.h>
     34  1.37    skrll #ifndef lint
     35  1.43     matt __RCSID("$NetBSD: mdreloc.c,v 1.43 2008/07/24 04:39:25 matt Exp $");
     36  1.37    skrll #endif /* not lint */
     37  1.37    skrll 
     38   1.1      eeh #include <errno.h>
     39   1.1      eeh #include <stdio.h>
     40   1.1      eeh #include <stdlib.h>
     41   1.1      eeh #include <string.h>
     42   1.1      eeh #include <unistd.h>
     43   1.1      eeh #include <sys/stat.h>
     44   1.1      eeh 
     45   1.1      eeh #include "rtldenv.h"
     46   1.1      eeh #include "debug.h"
     47   1.1      eeh #include "rtld.h"
     48   1.1      eeh 
     49   1.1      eeh /*
     50   1.1      eeh  * The following table holds for each relocation type:
     51   1.1      eeh  *	- the width in bits of the memory location the relocation
     52   1.1      eeh  *	  applies to (not currently used)
     53   1.1      eeh  *	- the number of bits the relocation value must be shifted to the
     54   1.1      eeh  *	  right (i.e. discard least significant bits) to fit into
     55   1.1      eeh  *	  the appropriate field in the instruction word.
     56   1.1      eeh  *	- flags indicating whether
     57   1.1      eeh  *		* the relocation involves a symbol
     58   1.1      eeh  *		* the relocation is relative to the current position
     59   1.1      eeh  *		* the relocation is for a GOT entry
     60   1.1      eeh  *		* the relocation is relative to the load address
     61   1.1      eeh  *
     62   1.1      eeh  */
     63   1.1      eeh #define _RF_S		0x80000000		/* Resolve symbol */
     64   1.1      eeh #define _RF_A		0x40000000		/* Use addend */
     65   1.1      eeh #define _RF_P		0x20000000		/* Location relative */
     66   1.1      eeh #define _RF_G		0x10000000		/* GOT offset */
     67   1.1      eeh #define _RF_B		0x08000000		/* Load address relative */
     68   1.2      eeh #define _RF_U		0x04000000		/* Unaligned */
     69   1.1      eeh #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     70   1.1      eeh #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     71  1.16  mycroft static const int reloc_target_flags[] = {
     72   1.1      eeh 	0,							/* NONE */
     73   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     74   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     75   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     76   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     77   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     78   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     79   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     80   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     81   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     82   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     83   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     84   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     85   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     86   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     87   1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     88   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     89   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     90   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     91   1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     92   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     93   1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     94   1.1      eeh 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     95   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     96   1.1      eeh 
     97   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
     98   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
     99   1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
    100   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    101   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    102   1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    103   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    104   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    105   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    106   1.1      eeh 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    107   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    108   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    109   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    110   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    111   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    112   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    113   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    114   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    115   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    116   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    117   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    118   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    119   1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    120   1.1      eeh 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    121   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    122   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    123   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    124   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    125   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    126   1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    127   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    128   1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    129   1.1      eeh };
    130   1.1      eeh 
    131   1.1      eeh #ifdef RTLD_DEBUG_RELOC
    132   1.1      eeh static const char *reloc_names[] = {
    133   1.1      eeh 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    134   1.1      eeh 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    135   1.1      eeh 	"22", "13", "LO10", "GOT10", "GOT13",
    136   1.1      eeh 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    137   1.1      eeh 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    138   1.1      eeh 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    139   1.1      eeh 	"10", "11", "64", "OLO10", "HH22",
    140   1.1      eeh 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    141   1.1      eeh 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    142   1.1      eeh 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    143   1.1      eeh 	"L44", "REGISTER", "UA64", "UA16"
    144   1.1      eeh };
    145   1.1      eeh #endif
    146   1.1      eeh 
    147   1.1      eeh #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    148   1.1      eeh #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    149   1.1      eeh #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    150   1.2      eeh #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    151   1.2      eeh #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    152   1.1      eeh #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    153   1.1      eeh #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    154   1.1      eeh 
    155  1.16  mycroft static const long reloc_target_bitmask[] = {
    156   1.1      eeh #define _BM(x)	(~(-(1ULL << (x))))
    157   1.1      eeh 	0,				/* NONE */
    158   1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    159   1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    160   1.1      eeh 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    161   1.1      eeh 	_BM(22), _BM(22),		/* HI22, _22 */
    162   1.1      eeh 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    163   1.1      eeh 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    164   1.1      eeh 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    165   1.1      eeh 	_BM(30), 0,			/* _WPLT30, _COPY */
    166   1.1      eeh 	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    167   1.1      eeh 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    168   1.1      eeh 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    169   1.1      eeh 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    170   1.1      eeh 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    171   1.1      eeh 	_BM(10), _BM(22),		/* _OLO10, _HH22 */
    172   1.1      eeh 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    173   1.1      eeh 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    174   1.1      eeh 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    175   1.1      eeh 	-1,				/* GLOB_JMP */
    176   1.1      eeh 	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
    177   1.1      eeh 	-1, -1,				/* DISP64, PLT64 */
    178   1.1      eeh 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    179   1.1      eeh 	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
    180   1.1      eeh 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    181   1.1      eeh #undef _BM
    182   1.1      eeh };
    183   1.1      eeh #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    184   1.1      eeh 
    185   1.1      eeh /*
    186   1.1      eeh  * Instruction templates:
    187   1.1      eeh  */
    188   1.1      eeh #define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
    189   1.1      eeh #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    190   1.1      eeh #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    191   1.1      eeh #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    192   1.1      eeh #define	OR	0x82806000	/*	or	%g1, 0, %g1 */
    193   1.1      eeh #define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
    194   1.1      eeh #define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
    195   1.1      eeh #define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
    196   1.1      eeh #define	CALL	0x40000000	/*	call	0 */
    197   1.1      eeh #define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
    198   1.1      eeh #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    199   1.1      eeh #define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
    200   1.1      eeh 
    201   1.1      eeh 
    202  1.26  mycroft /* %hi(v)/%lo(v) with variable shift */
    203  1.26  mycroft #define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
    204  1.26  mycroft #define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
    205   1.1      eeh 
    206  1.20  mycroft void _rtld_bind_start_0(long, long);
    207  1.20  mycroft void _rtld_bind_start_1(long, long);
    208  1.18  mycroft void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
    209  1.34    skrll caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
    210   1.1      eeh 
    211   1.1      eeh /*
    212   1.1      eeh  * Install rtld function call into this PLT slot.
    213   1.1      eeh  */
    214  1.29  mycroft #define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
    215   1.1      eeh #define	SETHI_l0	0x21000000
    216   1.1      eeh #define	SETHI_l1	0x23000000
    217   1.1      eeh #define	OR_l0_l0	0xa0142000
    218   1.1      eeh #define	SLLX_l0_32_l0	0xa12c3020
    219   1.1      eeh #define	OR_l0_l1_l0	0xa0140011
    220  1.26  mycroft #define	JMPL_l0_o0	0x91c42000
    221  1.26  mycroft #define	MOV_g1_o1	0x92100001
    222   1.1      eeh 
    223  1.36    skrll void _rtld_install_plt(Elf_Word *, Elf_Addr);
    224  1.36    skrll static inline int _rtld_relocate_plt_object(const Obj_Entry *,
    225  1.36    skrll     const Elf_Rela *, Elf_Addr *);
    226   1.1      eeh 
    227   1.1      eeh void
    228  1.34    skrll _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
    229   1.1      eeh {
    230   1.1      eeh 	pltgot[0] = SAVE;
    231   1.1      eeh 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    232   1.1      eeh 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    233  1.26  mycroft 	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
    234   1.1      eeh 	pltgot[4] = SLLX_l0_32_l0;
    235   1.1      eeh 	pltgot[5] = OR_l0_l1_l0;
    236  1.26  mycroft 	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
    237  1.26  mycroft 	pltgot[7] = MOV_g1_o1;
    238   1.1      eeh }
    239   1.2      eeh 
    240   1.6  mycroft void
    241   1.6  mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
    242   1.6  mycroft {
    243   1.6  mycroft 	/*
    244   1.6  mycroft 	 * On sparc64 we got troubles.
    245   1.6  mycroft 	 *
    246   1.6  mycroft 	 * Instructions are 4 bytes long.
    247   1.6  mycroft 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    248   1.6  mycroft 	 * array entries.
    249   1.6  mycroft 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    250   1.6  mycroft 	 * linker.
    251   1.6  mycroft 	 * Loading an arbitrary 64-bit pointer takes 6
    252   1.6  mycroft 	 * instructions and 2 registers.
    253   1.6  mycroft 	 *
    254   1.6  mycroft 	 * Somehow we need to issue a save to get a new stack
    255   1.6  mycroft 	 * frame, load the address of the dynamic linker, and
    256   1.6  mycroft 	 * jump there, in 8 instructions or less.
    257   1.6  mycroft 	 *
    258   1.6  mycroft 	 * Oh, we need to fill out both PLT0 and PLT1.
    259   1.6  mycroft 	 */
    260   1.6  mycroft 	{
    261   1.6  mycroft 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    262   1.6  mycroft 
    263   1.6  mycroft 		/* Install in entries 0 and 1 */
    264   1.6  mycroft 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    265   1.6  mycroft 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    266   1.6  mycroft 
    267   1.6  mycroft 		/*
    268   1.6  mycroft 		 * Install the object reference in first slot
    269   1.6  mycroft 		 * of entry 2.
    270   1.6  mycroft 		 */
    271   1.6  mycroft 		obj->pltgot[8] = (Elf_Addr) obj;
    272   1.6  mycroft 	}
    273   1.8  mycroft }
    274   1.8  mycroft 
    275  1.18  mycroft void
    276  1.34    skrll _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
    277  1.18  mycroft {
    278  1.18  mycroft 	const Elf_Rela *rela = 0, *relalim;
    279  1.18  mycroft 	Elf_Addr relasz = 0;
    280  1.18  mycroft 	Elf_Addr *where;
    281  1.18  mycroft 
    282  1.18  mycroft 	for (; dynp->d_tag != DT_NULL; dynp++) {
    283  1.18  mycroft 		switch (dynp->d_tag) {
    284  1.18  mycroft 		case DT_RELA:
    285  1.18  mycroft 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
    286  1.18  mycroft 			break;
    287  1.18  mycroft 		case DT_RELASZ:
    288  1.18  mycroft 			relasz = dynp->d_un.d_val;
    289  1.18  mycroft 			break;
    290  1.18  mycroft 		}
    291  1.18  mycroft 	}
    292  1.18  mycroft 	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
    293  1.18  mycroft 	for (; rela < relalim; rela++) {
    294  1.18  mycroft 		where = (Elf_Addr *)(relocbase + rela->r_offset);
    295  1.18  mycroft 		*where = (Elf_Addr)(relocbase + rela->r_addend);
    296  1.18  mycroft 	}
    297  1.18  mycroft }
    298  1.18  mycroft 
    299   1.8  mycroft int
    300  1.34    skrll _rtld_relocate_nonplt_objects(const Obj_Entry *obj)
    301   1.8  mycroft {
    302   1.9  mycroft 	const Elf_Rela *rela;
    303  1.40   martin 	const Elf_Sym *def = NULL;
    304  1.40   martin 	const Obj_Entry *defobj = NULL;
    305  1.18  mycroft 
    306   1.9  mycroft 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    307   1.9  mycroft 		Elf_Addr *where;
    308   1.9  mycroft 		Elf_Word type;
    309   1.9  mycroft 		Elf_Addr value = 0, mask;
    310  1.10  mycroft 		unsigned long	 symnum;
    311   1.9  mycroft 
    312   1.9  mycroft 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    313  1.10  mycroft 		symnum = ELF_R_SYM(rela->r_info);
    314   1.9  mycroft 
    315   1.9  mycroft 		type = ELF_R_TYPE(rela->r_info);
    316   1.9  mycroft 		if (type == R_TYPE(NONE))
    317  1.12  mycroft 			continue;
    318   1.9  mycroft 
    319  1.23  mycroft 		/* We do JMP_SLOTs in _rtld_bind() below */
    320   1.9  mycroft 		if (type == R_TYPE(JMP_SLOT))
    321  1.12  mycroft 			continue;
    322   1.9  mycroft 
    323   1.9  mycroft 		/* COPY relocs are also handled elsewhere */
    324   1.9  mycroft 		if (type == R_TYPE(COPY))
    325  1.12  mycroft 			continue;
    326   1.8  mycroft 
    327   1.9  mycroft 		/*
    328   1.9  mycroft 		 * We use the fact that relocation types are an `enum'
    329   1.9  mycroft 		 * Note: R_SPARC_UA16 is currently numerically largest.
    330   1.9  mycroft 		 */
    331   1.9  mycroft 		if (type > R_TYPE(UA16))
    332   1.9  mycroft 			return (-1);
    333   1.8  mycroft 
    334   1.9  mycroft 		value = rela->r_addend;
    335   1.8  mycroft 
    336   1.9  mycroft 		/*
    337  1.18  mycroft 		 * Handle relative relocs here, as an optimization.
    338   1.9  mycroft 		 */
    339  1.17  mycroft 		if (type == R_TYPE(RELATIVE)) {
    340   1.9  mycroft 			*where = (Elf_Addr)(obj->relocbase + value);
    341  1.21  mycroft 			rdbg(("RELATIVE in %s --> %p", obj->path,
    342  1.18  mycroft 			    (void *)*where));
    343  1.12  mycroft 			continue;
    344   1.9  mycroft 		}
    345   1.8  mycroft 
    346   1.9  mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    347   1.8  mycroft 
    348   1.9  mycroft 			/* Find the symbol */
    349  1.41     matt 			def = _rtld_find_symdef(symnum, obj, &defobj,
    350  1.41     matt 			    false);
    351  1.41     matt 			if (def == NULL)
    352  1.41     matt 				return -1;
    353   1.8  mycroft 
    354   1.9  mycroft 			/* Add in the symbol's absolute address */
    355   1.9  mycroft 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
    356   1.9  mycroft 		}
    357   1.8  mycroft 
    358   1.9  mycroft 		if (RELOC_PC_RELATIVE(type)) {
    359   1.9  mycroft 			value -= (Elf_Addr)where;
    360   1.9  mycroft 		}
    361   1.8  mycroft 
    362   1.9  mycroft 		if (RELOC_BASE_RELATIVE(type)) {
    363   1.9  mycroft 			/*
    364   1.9  mycroft 			 * Note that even though sparcs use `Elf_rela'
    365   1.9  mycroft 			 * exclusively we still need the implicit memory addend
    366   1.9  mycroft 			 * in relocations referring to GOT entries.
    367   1.9  mycroft 			 * Undoubtedly, someone f*cked this up in the distant
    368   1.9  mycroft 			 * past, and now we're stuck with it in the name of
    369   1.9  mycroft 			 * compatibility for all eternity..
    370   1.9  mycroft 			 *
    371   1.9  mycroft 			 * In any case, the implicit and explicit should be
    372   1.9  mycroft 			 * mutually exclusive. We provide a check for that
    373   1.9  mycroft 			 * here.
    374   1.9  mycroft 			 */
    375   1.8  mycroft #ifdef DIAGNOSTIC
    376   1.9  mycroft 			if (value != 0 && *where != 0) {
    377   1.9  mycroft 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    378   1.9  mycroft 					"addend=0x%lx, base %p\n",
    379   1.9  mycroft 					obj->path, where, *where,
    380   1.9  mycroft 					rela->r_addend, obj->relocbase);
    381   1.9  mycroft 			}
    382   1.9  mycroft #endif
    383   1.9  mycroft 			/* XXXX -- apparently we ignore the preexisting value */
    384   1.9  mycroft 			value += (Elf_Addr)(obj->relocbase);
    385   1.8  mycroft 		}
    386   1.8  mycroft 
    387   1.9  mycroft 		mask = RELOC_VALUE_BITMASK(type);
    388   1.9  mycroft 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    389   1.9  mycroft 		value &= mask;
    390   1.9  mycroft 
    391   1.9  mycroft 		if (RELOC_UNALIGNED(type)) {
    392   1.9  mycroft 			/* Handle unaligned relocations. */
    393   1.9  mycroft 			Elf_Addr tmp = 0;
    394   1.9  mycroft 			char *ptr = (char *)where;
    395   1.9  mycroft 			int i, size = RELOC_TARGET_SIZE(type)/8;
    396   1.9  mycroft 
    397   1.9  mycroft 			/* Read it in one byte at a time. */
    398   1.9  mycroft 			for (i=0; i<size; i++)
    399   1.9  mycroft 				tmp = (tmp << 8) | ptr[i];
    400   1.9  mycroft 
    401   1.9  mycroft 			tmp &= ~mask;
    402   1.9  mycroft 			tmp |= value;
    403   1.9  mycroft 
    404   1.9  mycroft 			/* Write it back out. */
    405   1.9  mycroft 			for (i=0; i<size; i++)
    406   1.9  mycroft 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    407   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    408   1.9  mycroft 			value = (Elf_Addr)tmp;
    409   1.8  mycroft #endif
    410   1.8  mycroft 
    411   1.9  mycroft 		} else if (RELOC_TARGET_SIZE(type) > 32) {
    412   1.9  mycroft 			*where &= ~mask;
    413   1.9  mycroft 			*where |= value;
    414   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    415   1.9  mycroft 			value = (Elf_Addr)*where;
    416   1.8  mycroft #endif
    417   1.9  mycroft 		} else {
    418   1.9  mycroft 			Elf32_Addr *where32 = (Elf32_Addr *)where;
    419   1.8  mycroft 
    420   1.9  mycroft 			*where32 &= ~mask;
    421   1.9  mycroft 			*where32 |= value;
    422   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    423   1.9  mycroft 			value = (Elf_Addr)*where32;
    424   1.8  mycroft #endif
    425   1.9  mycroft 		}
    426   1.8  mycroft 
    427   1.8  mycroft #ifdef RTLD_DEBUG_RELOC
    428   1.9  mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    429  1.21  mycroft 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
    430  1.11  mycroft 			    obj->strtab + obj->symtab[symnum].st_name,
    431  1.33   petrov 			    obj->path, (void *)value, defobj->path));
    432  1.11  mycroft 		} else {
    433  1.21  mycroft 			rdbg(("%s in %s --> %p", reloc_names[type],
    434  1.33   petrov 			    obj->path, (void *)value));
    435   1.9  mycroft 		}
    436   1.9  mycroft #endif
    437   1.8  mycroft 	}
    438  1.13  mycroft 	return (0);
    439  1.13  mycroft }
    440  1.13  mycroft 
    441  1.13  mycroft int
    442  1.34    skrll _rtld_relocate_plt_lazy(const Obj_Entry *obj)
    443  1.13  mycroft {
    444   1.8  mycroft 	return (0);
    445  1.23  mycroft }
    446  1.23  mycroft 
    447  1.23  mycroft caddr_t
    448  1.34    skrll _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
    449  1.23  mycroft {
    450  1.24  mycroft 	const Elf_Rela *rela = obj->pltrela + reloff;
    451  1.35   martin 	Elf_Addr result;
    452  1.35   martin 	int err;
    453  1.23  mycroft 
    454  1.39      mrg 	result = 0;	/* XXX gcc */
    455  1.39      mrg 
    456  1.23  mycroft 	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
    457  1.23  mycroft 		/*
    458  1.23  mycroft 		 * XXXX
    459  1.23  mycroft 		 *
    460  1.23  mycroft 		 * The first four PLT entries are reserved.  There is some
    461  1.23  mycroft 		 * disagreement whether they should have associated relocation
    462  1.23  mycroft 		 * entries.  Both the SPARC 32-bit and 64-bit ELF
    463  1.23  mycroft 		 * specifications say that they should have relocation entries,
    464  1.23  mycroft 		 * but the 32-bit SPARC binutils do not generate them, and now
    465  1.23  mycroft 		 * the 64-bit SPARC binutils have stopped generating them too.
    466  1.23  mycroft 		 *
    467  1.23  mycroft 		 * So, to provide binary compatibility, we will check the first
    468  1.23  mycroft 		 * entry, if it is reserved it should not be of the type
    469  1.23  mycroft 		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
    470  1.23  mycroft 		 * were not generated and our index is 4 entries too far.
    471  1.23  mycroft 		 */
    472  1.23  mycroft 		rela -= 4;
    473  1.23  mycroft 	}
    474  1.32  thorpej 
    475  1.35   martin 	err = _rtld_relocate_plt_object(obj, rela, &result);
    476  1.43     matt 	if (err || result == 0)
    477  1.35   martin 		_rtld_die();
    478  1.35   martin 
    479  1.35   martin 	return (caddr_t)result;
    480  1.35   martin }
    481  1.35   martin 
    482  1.35   martin int
    483  1.35   martin _rtld_relocate_plt_objects(const Obj_Entry *obj)
    484  1.35   martin {
    485  1.35   martin 	const Elf_Rela *rela;
    486  1.35   martin 
    487  1.35   martin 	rela = obj->pltrela;
    488  1.35   martin 
    489  1.35   martin 	/*
    490  1.35   martin 	 * Check for first four reserved entries - and skip them.
    491  1.35   martin 	 * See above for details.
    492  1.35   martin 	 */
    493  1.35   martin 	if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
    494  1.35   martin 		rela += 4;
    495  1.35   martin 
    496  1.35   martin 	for (; rela < obj->pltrelalim; rela++)
    497  1.35   martin 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
    498  1.35   martin 			return -1;
    499  1.35   martin 
    500  1.35   martin 	return 0;
    501  1.35   martin }
    502  1.35   martin 
    503  1.35   martin /*
    504  1.35   martin  * New inline function that is called by _rtld_relocate_plt_object and
    505  1.35   martin  * _rtld_bind
    506  1.35   martin  */
    507  1.35   martin static inline int
    508  1.35   martin _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
    509  1.35   martin {
    510  1.35   martin 	Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
    511  1.35   martin 	const Elf_Sym *def;
    512  1.35   martin 	const Obj_Entry *defobj;
    513  1.35   martin 	Elf_Addr value, offset;
    514  1.23  mycroft 
    515  1.23  mycroft 	/* Fully resolve procedure addresses now */
    516  1.23  mycroft 
    517  1.23  mycroft 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
    518  1.23  mycroft 
    519  1.23  mycroft 	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
    520  1.23  mycroft 	if (def == NULL)
    521  1.35   martin 		return -1;
    522  1.23  mycroft 
    523  1.23  mycroft 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
    524  1.27  mycroft 	rdbg(("bind now/fixup in %s --> new=%p",
    525  1.27  mycroft 	    defobj->strtab + def->st_name, (void *)value));
    526  1.23  mycroft 
    527  1.23  mycroft 	/*
    528  1.23  mycroft 	 * At the PLT entry pointed at by `where', we now construct
    529  1.23  mycroft 	 * a direct transfer to the now fully resolved function
    530  1.23  mycroft 	 * address.
    531  1.23  mycroft 	 *
    532  1.23  mycroft 	 * A PLT entry is supposed to start by looking like this:
    533  1.23  mycroft 	 *
    534  1.23  mycroft 	 *	sethi	%hi(. - .PLT0), %g1
    535  1.23  mycroft 	 *	ba,a	%xcc, .PLT1
    536  1.23  mycroft 	 *	nop
    537  1.23  mycroft 	 *	nop
    538  1.23  mycroft 	 *	nop
    539  1.23  mycroft 	 *	nop
    540  1.23  mycroft 	 *	nop
    541  1.23  mycroft 	 *	nop
    542  1.23  mycroft 	 *
    543  1.23  mycroft 	 * When we replace these entries we start from the second
    544  1.23  mycroft 	 * entry and do it in reverse order so the last thing we
    545  1.23  mycroft 	 * do is replace the branch.  That allows us to change this
    546  1.23  mycroft 	 * atomically.
    547  1.23  mycroft 	 *
    548  1.23  mycroft 	 * We now need to find out how far we need to jump.  We
    549  1.23  mycroft 	 * have a choice of several different relocation techniques
    550  1.23  mycroft 	 * which are increasingly expensive.
    551  1.23  mycroft 	 */
    552  1.23  mycroft 
    553  1.23  mycroft 	offset = ((Elf_Addr)where) - value;
    554  1.23  mycroft 	if (rela->r_addend) {
    555  1.23  mycroft 		Elf_Addr *ptr = (Elf_Addr *)where;
    556  1.23  mycroft 		/*
    557  1.28  mycroft 		 * This entry is >=32768.  The relocations points to a
    558  1.28  mycroft 		 * PC-relative pointer to the bind_0 stub at the top of the
    559  1.28  mycroft 		 * PLT section.  Update it to point to the target function.
    560  1.23  mycroft 		 */
    561  1.27  mycroft 		ptr[0] += value - (Elf_Addr)obj->pltgot;
    562  1.23  mycroft 
    563  1.23  mycroft 	} else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
    564  1.23  mycroft 		/*
    565  1.23  mycroft 		 * We're within 1MB -- we can use a direct branch insn.
    566  1.23  mycroft 		 *
    567  1.23  mycroft 		 * We can generate this pattern:
    568  1.23  mycroft 		 *
    569  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    570  1.23  mycroft 		 *	ba,a	%xcc, addr
    571  1.23  mycroft 		 *	nop
    572  1.23  mycroft 		 *	nop
    573  1.23  mycroft 		 *	nop
    574  1.23  mycroft 		 *	nop
    575  1.23  mycroft 		 *	nop
    576  1.23  mycroft 		 *	nop
    577  1.23  mycroft 		 *
    578  1.23  mycroft 		 */
    579  1.23  mycroft 		where[1] = BAA | ((offset >> 2) &0x3fffff);
    580  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    581  1.23  mycroft 	} else if (value >= 0 && value < (1L<<32)) {
    582  1.23  mycroft 		/*
    583  1.26  mycroft 		 * We're within 32-bits of address zero.
    584  1.23  mycroft 		 *
    585  1.23  mycroft 		 * The resulting code in the jump slot is:
    586  1.23  mycroft 		 *
    587  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    588  1.23  mycroft 		 *	sethi	%hi(addr), %g1
    589  1.23  mycroft 		 *	jmp	%g1+%lo(addr)
    590  1.23  mycroft 		 *	nop
    591  1.23  mycroft 		 *	nop
    592  1.23  mycroft 		 *	nop
    593  1.23  mycroft 		 *	nop
    594  1.23  mycroft 		 *	nop
    595  1.23  mycroft 		 *
    596  1.23  mycroft 		 */
    597  1.26  mycroft 		where[2] = JMP   | LOVAL(value, 0);
    598  1.23  mycroft 		where[1] = SETHI | HIVAL(value, 10);
    599  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    600  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    601  1.23  mycroft 
    602  1.23  mycroft 	} else if (value <= 0 && value > -(1L<<32)) {
    603  1.23  mycroft 		/*
    604  1.26  mycroft 		 * We're within 32-bits of address -1.
    605  1.23  mycroft 		 *
    606  1.23  mycroft 		 * The resulting code in the jump slot is:
    607  1.23  mycroft 		 *
    608  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    609  1.23  mycroft 		 *	sethi	%hix(addr), %g1
    610  1.23  mycroft 		 *	xor	%g1, %lox(addr), %g1
    611  1.23  mycroft 		 *	jmp	%g1
    612  1.23  mycroft 		 *	nop
    613  1.23  mycroft 		 *	nop
    614  1.23  mycroft 		 *	nop
    615  1.23  mycroft 		 *	nop
    616  1.23  mycroft 		 *
    617  1.23  mycroft 		 */
    618  1.23  mycroft 		where[3] = JMP;
    619  1.23  mycroft 		where[2] = XOR | ((~value) & 0x00001fff);
    620  1.23  mycroft 		where[1] = SETHI | HIVAL(~value, 10);
    621  1.38    perry 		__asm volatile("iflush %0+12" : : "r" (where));
    622  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    623  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    624  1.23  mycroft 
    625  1.23  mycroft 	} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
    626  1.23  mycroft 		/*
    627  1.26  mycroft 		 * We're within 32-bits -- we can use a direct call insn
    628  1.23  mycroft 		 *
    629  1.23  mycroft 		 * The resulting code in the jump slot is:
    630  1.23  mycroft 		 *
    631  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    632  1.23  mycroft 		 *	mov	%o7, %g1
    633  1.23  mycroft 		 *	call	(.+offset)
    634  1.23  mycroft 		 *	 mov	%g1, %o7
    635  1.23  mycroft 		 *	nop
    636  1.23  mycroft 		 *	nop
    637  1.23  mycroft 		 *	nop
    638  1.23  mycroft 		 *	nop
    639  1.23  mycroft 		 *
    640  1.23  mycroft 		 */
    641  1.23  mycroft 		where[3] = MOV17;
    642  1.23  mycroft 		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
    643  1.23  mycroft 		where[1] = MOV71;
    644  1.38    perry 		__asm volatile("iflush %0+12" : : "r" (where));
    645  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    646  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    647  1.23  mycroft 
    648  1.23  mycroft 	} else if (offset >= 0 && offset < (1L<<44)) {
    649  1.23  mycroft 		/*
    650  1.26  mycroft 		 * We're within 44 bits.  We can generate this pattern:
    651  1.23  mycroft 		 *
    652  1.23  mycroft 		 * The resulting code in the jump slot is:
    653  1.23  mycroft 		 *
    654  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    655  1.23  mycroft 		 *	sethi	%h44(addr), %g1
    656  1.23  mycroft 		 *	or	%g1, %m44(addr), %g1
    657  1.23  mycroft 		 *	sllx	%g1, 12, %g1
    658  1.23  mycroft 		 *	jmp	%g1+%l44(addr)
    659  1.23  mycroft 		 *	nop
    660  1.23  mycroft 		 *	nop
    661  1.23  mycroft 		 *	nop
    662  1.23  mycroft 		 *
    663  1.23  mycroft 		 */
    664  1.26  mycroft 		where[4] = JMP   | LOVAL(offset, 0);
    665  1.23  mycroft 		where[3] = SLLX  | 12;
    666  1.23  mycroft 		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
    667  1.23  mycroft 		where[1] = SETHI | HIVAL(offset, 22);
    668  1.38    perry 		__asm volatile("iflush %0+16" : : "r" (where));
    669  1.38    perry 		__asm volatile("iflush %0+12" : : "r" (where));
    670  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    671  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    672  1.23  mycroft 
    673  1.23  mycroft 	} else if (offset < 0 && offset > -(1L<<44)) {
    674  1.23  mycroft 		/*
    675  1.26  mycroft 		 * We're within 44 bits.  We can generate this pattern:
    676  1.23  mycroft 		 *
    677  1.23  mycroft 		 * The resulting code in the jump slot is:
    678  1.23  mycroft 		 *
    679  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    680  1.23  mycroft 		 *	sethi	%h44(-addr), %g1
    681  1.23  mycroft 		 *	xor	%g1, %m44(-addr), %g1
    682  1.23  mycroft 		 *	sllx	%g1, 12, %g1
    683  1.23  mycroft 		 *	jmp	%g1+%l44(addr)
    684  1.23  mycroft 		 *	nop
    685  1.23  mycroft 		 *	nop
    686  1.23  mycroft 		 *	nop
    687  1.23  mycroft 		 *
    688  1.23  mycroft 		 */
    689  1.26  mycroft 		where[4] = JMP   | LOVAL(offset, 0);
    690  1.23  mycroft 		where[3] = SLLX  | 12;
    691  1.23  mycroft 		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
    692  1.23  mycroft 		where[1] = SETHI | HIVAL(~offset, 22);
    693  1.38    perry 		__asm volatile("iflush %0+16" : : "r" (where));
    694  1.38    perry 		__asm volatile("iflush %0+12" : : "r" (where));
    695  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    696  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    697  1.23  mycroft 
    698  1.23  mycroft 	} else {
    699  1.23  mycroft 		/*
    700  1.23  mycroft 		 * We need to load all 64-bits
    701  1.23  mycroft 		 *
    702  1.23  mycroft 		 * The resulting code in the jump slot is:
    703  1.23  mycroft 		 *
    704  1.23  mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    705  1.23  mycroft 		 *	sethi	%hh(addr), %g1
    706  1.23  mycroft 		 *	sethi	%lm(addr), %g5
    707  1.23  mycroft 		 *	or	%g1, %hm(addr), %g1
    708  1.23  mycroft 		 *	sllx	%g1, 32, %g1
    709  1.23  mycroft 		 *	or	%g1, %g5, %g1
    710  1.23  mycroft 		 *	jmp	%g1+%lo(addr)
    711  1.23  mycroft 		 *	nop
    712  1.23  mycroft 		 *
    713  1.23  mycroft 		 */
    714  1.26  mycroft 		where[6] = JMP     | LOVAL(value, 0);
    715  1.23  mycroft 		where[5] = ORG5;
    716  1.26  mycroft 		where[4] = SLLX    | 32;
    717  1.26  mycroft 		where[3] = OR      | LOVAL(value, 32);
    718  1.23  mycroft 		where[2] = SETHIG5 | HIVAL(value, 10);
    719  1.23  mycroft 		where[1] = SETHI   | HIVAL(value, 42);
    720  1.38    perry 		__asm volatile("iflush %0+24" : : "r" (where));
    721  1.38    perry 		__asm volatile("iflush %0+20" : : "r" (where));
    722  1.38    perry 		__asm volatile("iflush %0+16" : : "r" (where));
    723  1.38    perry 		__asm volatile("iflush %0+12" : : "r" (where));
    724  1.38    perry 		__asm volatile("iflush %0+8" : : "r" (where));
    725  1.38    perry 		__asm volatile("iflush %0+4" : : "r" (where));
    726  1.23  mycroft 
    727  1.23  mycroft 	}
    728  1.23  mycroft 
    729  1.35   martin 	if (tp)
    730  1.35   martin 		*tp = value;
    731  1.35   martin 
    732  1.35   martin 	return 0;
    733   1.6  mycroft }
    734