Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.6
      1  1.6  mycroft /*	$NetBSD: mdreloc.c,v 1.6 2002/09/05 15:38:31 mycroft Exp $	*/
      2  1.1      eeh 
      3  1.1      eeh /*-
      4  1.1      eeh  * Copyright (c) 2000 Eduardo Horvath.
      5  1.1      eeh  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  1.1      eeh  * All rights reserved.
      7  1.1      eeh  *
      8  1.1      eeh  * This code is derived from software contributed to The NetBSD Foundation
      9  1.1      eeh  * by Paul Kranenburg.
     10  1.1      eeh  *
     11  1.1      eeh  * Redistribution and use in source and binary forms, with or without
     12  1.1      eeh  * modification, are permitted provided that the following conditions
     13  1.1      eeh  * are met:
     14  1.1      eeh  * 1. Redistributions of source code must retain the above copyright
     15  1.1      eeh  *    notice, this list of conditions and the following disclaimer.
     16  1.1      eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1      eeh  *    notice, this list of conditions and the following disclaimer in the
     18  1.1      eeh  *    documentation and/or other materials provided with the distribution.
     19  1.1      eeh  * 3. All advertising materials mentioning features or use of this software
     20  1.1      eeh  *    must display the following acknowledgement:
     21  1.1      eeh  *        This product includes software developed by the NetBSD
     22  1.1      eeh  *        Foundation, Inc. and its contributors.
     23  1.1      eeh  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.1      eeh  *    contributors may be used to endorse or promote products derived
     25  1.1      eeh  *    from this software without specific prior written permission.
     26  1.1      eeh  *
     27  1.1      eeh  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.1      eeh  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.1      eeh  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.1      eeh  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.1      eeh  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.1      eeh  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.1      eeh  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.1      eeh  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.1      eeh  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.1      eeh  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.1      eeh  * POSSIBILITY OF SUCH DAMAGE.
     38  1.1      eeh  */
     39  1.1      eeh 
     40  1.1      eeh #include <errno.h>
     41  1.1      eeh #include <stdio.h>
     42  1.1      eeh #include <stdlib.h>
     43  1.1      eeh #include <string.h>
     44  1.1      eeh #include <unistd.h>
     45  1.1      eeh #include <sys/stat.h>
     46  1.1      eeh 
     47  1.1      eeh #include "rtldenv.h"
     48  1.1      eeh #include "debug.h"
     49  1.1      eeh #include "rtld.h"
     50  1.1      eeh 
     51  1.1      eeh /*
     52  1.1      eeh  * The following table holds for each relocation type:
     53  1.1      eeh  *	- the width in bits of the memory location the relocation
     54  1.1      eeh  *	  applies to (not currently used)
     55  1.1      eeh  *	- the number of bits the relocation value must be shifted to the
     56  1.1      eeh  *	  right (i.e. discard least significant bits) to fit into
     57  1.1      eeh  *	  the appropriate field in the instruction word.
     58  1.1      eeh  *	- flags indicating whether
     59  1.1      eeh  *		* the relocation involves a symbol
     60  1.1      eeh  *		* the relocation is relative to the current position
     61  1.1      eeh  *		* the relocation is for a GOT entry
     62  1.1      eeh  *		* the relocation is relative to the load address
     63  1.1      eeh  *
     64  1.1      eeh  */
     65  1.1      eeh #define _RF_S		0x80000000		/* Resolve symbol */
     66  1.1      eeh #define _RF_A		0x40000000		/* Use addend */
     67  1.1      eeh #define _RF_P		0x20000000		/* Location relative */
     68  1.1      eeh #define _RF_G		0x10000000		/* GOT offset */
     69  1.1      eeh #define _RF_B		0x08000000		/* Load address relative */
     70  1.2      eeh #define _RF_U		0x04000000		/* Unaligned */
     71  1.1      eeh #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     72  1.1      eeh #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     73  1.1      eeh static int reloc_target_flags[] = {
     74  1.1      eeh 	0,							/* NONE */
     75  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     76  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     77  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     78  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     79  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     80  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     81  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     82  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     83  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     84  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     85  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     86  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     87  1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     88  1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     89  1.1      eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     90  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     91  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     92  1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     93  1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     94  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     95  1.1      eeh 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     96  1.1      eeh 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     97  1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     98  1.1      eeh 
     99  1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
    100  1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
    101  1.1      eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
    102  1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    103  1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    104  1.1      eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    105  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    106  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    107  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    108  1.1      eeh 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    109  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    110  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    111  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    112  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    113  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    114  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    115  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    116  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    117  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    118  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    119  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    120  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    121  1.1      eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    122  1.1      eeh 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    123  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    124  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    125  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    126  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    127  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    128  1.1      eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    129  1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    130  1.2      eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    131  1.1      eeh };
    132  1.1      eeh 
    133  1.1      eeh #ifdef RTLD_DEBUG_RELOC
    134  1.1      eeh static const char *reloc_names[] = {
    135  1.1      eeh 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    136  1.1      eeh 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    137  1.1      eeh 	"22", "13", "LO10", "GOT10", "GOT13",
    138  1.1      eeh 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    139  1.1      eeh 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    140  1.1      eeh 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    141  1.1      eeh 	"10", "11", "64", "OLO10", "HH22",
    142  1.1      eeh 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    143  1.1      eeh 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    144  1.1      eeh 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    145  1.1      eeh 	"L44", "REGISTER", "UA64", "UA16"
    146  1.1      eeh };
    147  1.1      eeh #endif
    148  1.1      eeh 
    149  1.1      eeh #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    150  1.1      eeh #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    151  1.1      eeh #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    152  1.2      eeh #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    153  1.2      eeh #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    154  1.1      eeh #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    155  1.1      eeh #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    156  1.1      eeh 
    157  1.1      eeh static long reloc_target_bitmask[] = {
    158  1.1      eeh #define _BM(x)	(~(-(1ULL << (x))))
    159  1.1      eeh 	0,				/* NONE */
    160  1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    161  1.1      eeh 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    162  1.1      eeh 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    163  1.1      eeh 	_BM(22), _BM(22),		/* HI22, _22 */
    164  1.1      eeh 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    165  1.1      eeh 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    166  1.1      eeh 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    167  1.1      eeh 	_BM(30), 0,			/* _WPLT30, _COPY */
    168  1.1      eeh 	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    169  1.1      eeh 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    170  1.1      eeh 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    171  1.1      eeh 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    172  1.1      eeh 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    173  1.1      eeh 	_BM(10), _BM(22),		/* _OLO10, _HH22 */
    174  1.1      eeh 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    175  1.1      eeh 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    176  1.1      eeh 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    177  1.1      eeh 	-1,				/* GLOB_JMP */
    178  1.1      eeh 	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
    179  1.1      eeh 	-1, -1,				/* DISP64, PLT64 */
    180  1.1      eeh 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    181  1.1      eeh 	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
    182  1.1      eeh 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    183  1.1      eeh #undef _BM
    184  1.1      eeh };
    185  1.1      eeh #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    186  1.1      eeh 
    187  1.1      eeh 
    188  1.1      eeh int
    189  1.1      eeh _rtld_relocate_nonplt_object(obj, rela, dodebug)
    190  1.1      eeh 	Obj_Entry *obj;
    191  1.5   kleink 	const Elf_Rela *rela;
    192  1.1      eeh 	bool dodebug;
    193  1.1      eeh {
    194  1.1      eeh 	Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    195  1.3  mycroft 	Elf_Word type;
    196  1.3  mycroft 	Elf_Addr value = 0, mask;
    197  1.1      eeh 	const Elf_Sym *def = NULL;
    198  1.1      eeh 	const Obj_Entry *defobj = NULL;
    199  1.1      eeh 
    200  1.1      eeh 	type = ELF_R_TYPE(rela->r_info);
    201  1.1      eeh 	if (type == R_TYPE(NONE))
    202  1.1      eeh 		return (0);
    203  1.1      eeh 
    204  1.1      eeh 	/* We do JMP_SLOTs in relocate_plt_object() below */
    205  1.1      eeh 	if (type == R_TYPE(JMP_SLOT))
    206  1.1      eeh 		return (0);
    207  1.1      eeh 
    208  1.1      eeh 	/* COPY relocs are also handled elsewhere */
    209  1.1      eeh 	if (type == R_TYPE(COPY))
    210  1.1      eeh 		return (0);
    211  1.1      eeh 
    212  1.1      eeh 	/*
    213  1.1      eeh 	 * We use the fact that relocation types are an `enum'
    214  1.1      eeh 	 * Note: R_SPARC_UA16 is currently numerically largest.
    215  1.1      eeh 	 */
    216  1.1      eeh 	if (type > R_TYPE(UA16))
    217  1.1      eeh 		return (-1);
    218  1.1      eeh 
    219  1.1      eeh 	value = rela->r_addend;
    220  1.1      eeh 
    221  1.1      eeh 	/*
    222  1.1      eeh 	 * Handle relative relocs here, because we might not
    223  1.1      eeh 	 * be able to access globals yet.
    224  1.1      eeh 	 */
    225  1.1      eeh 	if (!dodebug && type == R_TYPE(RELATIVE)) {
    226  1.2      eeh 		/* XXXX -- apparently we ignore the preexisting value */
    227  1.2      eeh 		*where = (Elf_Addr)(obj->relocbase + value);
    228  1.1      eeh 		return (0);
    229  1.1      eeh 	}
    230  1.1      eeh 
    231  1.1      eeh 	if (RELOC_RESOLVE_SYMBOL(type)) {
    232  1.1      eeh 
    233  1.1      eeh 		/* Find the symbol */
    234  1.1      eeh 		def = _rtld_find_symdef(_rtld_objlist, rela->r_info,
    235  1.1      eeh 					NULL, obj, &defobj, false);
    236  1.1      eeh 		if (def == NULL)
    237  1.1      eeh 			return (-1);
    238  1.1      eeh 
    239  1.1      eeh 		/* Add in the symbol's absolute address */
    240  1.3  mycroft 		value += (Elf_Addr)(defobj->relocbase + def->st_value);
    241  1.1      eeh 	}
    242  1.1      eeh 
    243  1.1      eeh 	if (RELOC_PC_RELATIVE(type)) {
    244  1.3  mycroft 		value -= (Elf_Addr)where;
    245  1.1      eeh 	}
    246  1.1      eeh 
    247  1.1      eeh 	if (RELOC_BASE_RELATIVE(type)) {
    248  1.1      eeh 		/*
    249  1.1      eeh 		 * Note that even though sparcs use `Elf_rela' exclusively
    250  1.1      eeh 		 * we still need the implicit memory addend in relocations
    251  1.1      eeh 		 * referring to GOT entries. Undoubtedly, someone f*cked
    252  1.1      eeh 		 * this up in the distant past, and now we're stuck with
    253  1.1      eeh 		 * it in the name of compatibility for all eternity..
    254  1.1      eeh 		 *
    255  1.1      eeh 		 * In any case, the implicit and explicit should be mutually
    256  1.1      eeh 		 * exclusive. We provide a check for that here.
    257  1.1      eeh 		 */
    258  1.1      eeh #ifdef DIAGNOSTIC
    259  1.1      eeh 		if (value != 0 && *where != 0) {
    260  1.1      eeh 			xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    261  1.1      eeh 				"addend=0x%lx, base %p\n",
    262  1.1      eeh 				obj->path, where, *where,
    263  1.1      eeh 				rela->r_addend, obj->relocbase);
    264  1.1      eeh 		}
    265  1.1      eeh #endif
    266  1.2      eeh 		/* XXXX -- apparently we ignore the preexisting value */
    267  1.3  mycroft 		value += (Elf_Addr)(obj->relocbase);
    268  1.1      eeh 	}
    269  1.1      eeh 
    270  1.1      eeh 	mask = RELOC_VALUE_BITMASK(type);
    271  1.1      eeh 	value >>= RELOC_VALUE_RIGHTSHIFT(type);
    272  1.1      eeh 	value &= mask;
    273  1.1      eeh 
    274  1.2      eeh 	if (RELOC_UNALIGNED(type)) {
    275  1.2      eeh 		/* Handle unaligned relocations. */
    276  1.3  mycroft 		Elf_Addr tmp = 0;
    277  1.2      eeh 		char *ptr = (char *)where;
    278  1.2      eeh 		int i, size = RELOC_TARGET_SIZE(type)/8;
    279  1.2      eeh 
    280  1.2      eeh 		/* Read it in one byte at a time. */
    281  1.2      eeh 		for (i=0; i<size; i++)
    282  1.2      eeh 			tmp = (tmp << 8) | ptr[i];
    283  1.2      eeh 
    284  1.2      eeh 		tmp &= ~mask;
    285  1.2      eeh 		tmp |= value;
    286  1.2      eeh 
    287  1.2      eeh 		/* Write it back out. */
    288  1.2      eeh 		for (i=0; i<size; i++)
    289  1.2      eeh 			ptr[i] = ((tmp >> (8*i)) & 0xff);
    290  1.2      eeh #ifdef RTLD_DEBUG_RELOC
    291  1.3  mycroft 		value = (Elf_Addr)tmp;
    292  1.2      eeh #endif
    293  1.2      eeh 
    294  1.2      eeh 	} else if (RELOC_TARGET_SIZE(type) > 32) {
    295  1.1      eeh 		*where &= ~mask;
    296  1.1      eeh 		*where |= value;
    297  1.1      eeh #ifdef RTLD_DEBUG_RELOC
    298  1.3  mycroft 		value = (Elf_Addr)*where;
    299  1.1      eeh #endif
    300  1.1      eeh 	} else {
    301  1.1      eeh 		Elf32_Addr *where32 = (Elf32_Addr *)where;
    302  1.1      eeh 
    303  1.1      eeh 		*where32 &= ~mask;
    304  1.1      eeh 		*where32 |= value;
    305  1.1      eeh #ifdef RTLD_DEBUG_RELOC
    306  1.3  mycroft 		value = (Elf_Addr)*where32;
    307  1.1      eeh #endif
    308  1.1      eeh 	}
    309  1.1      eeh 
    310  1.1      eeh #ifdef RTLD_DEBUG_RELOC
    311  1.1      eeh 	if (RELOC_RESOLVE_SYMBOL(type)) {
    312  1.1      eeh 		rdbg(dodebug, ("%s %s in %s --> %p %s",
    313  1.1      eeh 		    reloc_names[type],
    314  1.1      eeh 		    defobj->strtab + def->st_name, obj->path,
    315  1.1      eeh 		    (void *)value, defobj->path));
    316  1.1      eeh 	}
    317  1.1      eeh 	else {
    318  1.1      eeh 		rdbg(dodebug, ("%s --> %p", reloc_names[type],
    319  1.1      eeh 		    (void *)value));
    320  1.1      eeh 	}
    321  1.1      eeh #endif
    322  1.1      eeh 	return (0);
    323  1.1      eeh }
    324  1.1      eeh 
    325  1.1      eeh /*
    326  1.1      eeh  * Instruction templates:
    327  1.1      eeh  */
    328  1.1      eeh #define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
    329  1.1      eeh #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    330  1.1      eeh #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    331  1.1      eeh #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    332  1.1      eeh #define	OR	0x82806000	/*	or	%g1, 0, %g1 */
    333  1.1      eeh #define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
    334  1.1      eeh #define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
    335  1.1      eeh #define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
    336  1.1      eeh #define	CALL	0x40000000	/*	call	0 */
    337  1.1      eeh #define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
    338  1.1      eeh #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    339  1.1      eeh #define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
    340  1.1      eeh 
    341  1.1      eeh 
    342  1.1      eeh /* %hi(v) with variable shift */
    343  1.1      eeh #define	HIVAL(v, s)	(((v) >> (s)) &  0x003fffff)
    344  1.1      eeh #define LOVAL(v)	((v) & 0x000003ff)
    345  1.1      eeh 
    346  1.1      eeh int
    347  1.1      eeh _rtld_relocate_plt_object(obj, rela, addrp, bind_now, dodebug)
    348  1.1      eeh 	Obj_Entry *obj;
    349  1.5   kleink 	const Elf_Rela *rela;
    350  1.1      eeh 	caddr_t *addrp;
    351  1.1      eeh 	bool bind_now;
    352  1.1      eeh 	bool dodebug;
    353  1.1      eeh {
    354  1.1      eeh 	const Elf_Sym *def;
    355  1.1      eeh 	const Obj_Entry *defobj;
    356  1.3  mycroft 	Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
    357  1.1      eeh 	Elf_Addr value, offset;
    358  1.1      eeh 
    359  1.1      eeh 	if (bind_now == 0 && obj->pltgot != NULL)
    360  1.1      eeh 		return (0);
    361  1.1      eeh 
    362  1.1      eeh 	/* Fully resolve procedure addresses now */
    363  1.1      eeh 
    364  1.1      eeh 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
    365  1.1      eeh 
    366  1.1      eeh 	def = _rtld_find_symdef(_rtld_objlist, rela->r_info,
    367  1.1      eeh 				NULL, obj, &defobj, true);
    368  1.1      eeh 	if (def == NULL)
    369  1.1      eeh 		return (-1);
    370  1.1      eeh 
    371  1.1      eeh 	value = (Elf_Addr) (defobj->relocbase + def->st_value);
    372  1.2      eeh 	rdbg(dodebug, ("bind now %d/fixup in %s --> old=%lx new=%lx",
    373  1.1      eeh 	    (int)bind_now, defobj->strtab + def->st_name,
    374  1.2      eeh 	    (u_long)*where, (u_long)value));
    375  1.1      eeh 
    376  1.1      eeh 	/*
    377  1.1      eeh 	 * At the PLT entry pointed at by `where', we now construct
    378  1.1      eeh 	 * a direct transfer to the now fully resolved function
    379  1.1      eeh 	 * address.
    380  1.1      eeh 	 *
    381  1.1      eeh 	 * A PLT entry is supposed to start by looking like this:
    382  1.1      eeh 	 *
    383  1.1      eeh 	 *	sethi	%hi(. - .PLT0), %g1
    384  1.1      eeh 	 *	ba,a	%xcc, .PLT1
    385  1.1      eeh 	 *	nop
    386  1.1      eeh 	 *	nop
    387  1.1      eeh 	 *	nop
    388  1.1      eeh 	 *	nop
    389  1.1      eeh 	 *	nop
    390  1.1      eeh 	 *	nop
    391  1.1      eeh 	 *
    392  1.1      eeh 	 * When we replace these entries we start from the second
    393  1.1      eeh 	 * entry and do it in reverse order so the last thing we
    394  1.1      eeh 	 * do is replace the branch.  That allows us to change this
    395  1.1      eeh 	 * atomically.
    396  1.1      eeh 	 *
    397  1.1      eeh 	 * We now need to find out how far we need to jump.  We
    398  1.1      eeh 	 * have a choice of several different relocation techniques
    399  1.1      eeh 	 * which are increasingly expensive.
    400  1.1      eeh 	 */
    401  1.1      eeh 
    402  1.1      eeh 	offset = ((Elf_Addr)where) - value;
    403  1.1      eeh 	if (rela->r_addend) {
    404  1.1      eeh 		Elf_Addr *ptr = (Elf_Addr *)where;
    405  1.1      eeh 		/*
    406  1.1      eeh 		 * This entry is >32768.  Just replace the pointer.
    407  1.1      eeh 		 */
    408  1.1      eeh 		ptr[0] = value;
    409  1.1      eeh 
    410  1.1      eeh 	} else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
    411  1.1      eeh 		/*
    412  1.1      eeh 		 * We're within 1MB -- we can use a direct branch insn.
    413  1.1      eeh 		 *
    414  1.1      eeh 		 * We can generate this pattern:
    415  1.1      eeh 		 *
    416  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    417  1.1      eeh 		 *	ba,a	%xcc, addr
    418  1.1      eeh 		 *	nop
    419  1.1      eeh 		 *	nop
    420  1.1      eeh 		 *	nop
    421  1.1      eeh 		 *	nop
    422  1.1      eeh 		 *	nop
    423  1.1      eeh 		 *	nop
    424  1.1      eeh 		 *
    425  1.1      eeh 		 */
    426  1.1      eeh 		where[1] = BAA | ((offset >> 2) &0x3fffff);
    427  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    428  1.1      eeh 	} else if (value >= 0 && value < (1L<<32)) {
    429  1.1      eeh 		/*
    430  1.1      eeh 		 * We're withing 32-bits of address zero.
    431  1.1      eeh 		 *
    432  1.1      eeh 		 * The resulting code in the jump slot is:
    433  1.1      eeh 		 *
    434  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    435  1.1      eeh 		 *	sethi	%hi(addr), %g1
    436  1.1      eeh 		 *	jmp	%g1+%lo(addr)
    437  1.1      eeh 		 *	nop
    438  1.1      eeh 		 *	nop
    439  1.1      eeh 		 *	nop
    440  1.1      eeh 		 *	nop
    441  1.1      eeh 		 *	nop
    442  1.1      eeh 		 *
    443  1.1      eeh 		 */
    444  1.1      eeh 		where[2] = JMP   | LOVAL(value);
    445  1.1      eeh 		where[1] = SETHI | HIVAL(value, 10);
    446  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    447  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    448  1.1      eeh 
    449  1.1      eeh 	} else if (value <= 0 && value > -(1L<<32)) {
    450  1.1      eeh 		/*
    451  1.1      eeh 		 * We're withing 32-bits of address -1.
    452  1.1      eeh 		 *
    453  1.1      eeh 		 * The resulting code in the jump slot is:
    454  1.1      eeh 		 *
    455  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    456  1.1      eeh 		 *	sethi	%hix(addr), %g1
    457  1.1      eeh 		 *	xor	%g1, %lox(addr), %g1
    458  1.1      eeh 		 *	jmp	%g1
    459  1.1      eeh 		 *	nop
    460  1.1      eeh 		 *	nop
    461  1.1      eeh 		 *	nop
    462  1.1      eeh 		 *	nop
    463  1.1      eeh 		 *
    464  1.1      eeh 		 */
    465  1.1      eeh 		where[3] = JMP;
    466  1.1      eeh 		where[2] = XOR | ((~value) & 0x00001fff);
    467  1.1      eeh 		where[1] = SETHI | HIVAL(~value, 10);
    468  1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    469  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    470  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    471  1.1      eeh 
    472  1.1      eeh 	} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
    473  1.1      eeh 		/*
    474  1.1      eeh 		 * We're withing 32-bits -- we can use a direct call insn
    475  1.1      eeh 		 *
    476  1.1      eeh 		 * The resulting code in the jump slot is:
    477  1.1      eeh 		 *
    478  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    479  1.1      eeh 		 *	mov	%o7, %g1
    480  1.1      eeh 		 *	call	(.+offset)
    481  1.1      eeh 		 *	 mov	%g1, %o7
    482  1.1      eeh 		 *	nop
    483  1.1      eeh 		 *	nop
    484  1.1      eeh 		 *	nop
    485  1.1      eeh 		 *	nop
    486  1.1      eeh 		 *
    487  1.1      eeh 		 */
    488  1.1      eeh 		where[3] = MOV17;
    489  1.1      eeh 		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
    490  1.1      eeh 		where[1] = MOV71;
    491  1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    492  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    493  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    494  1.1      eeh 
    495  1.1      eeh 	} else if (offset >= 0 && offset < (1L<<44)) {
    496  1.1      eeh 		/*
    497  1.1      eeh 		 * We're withing 44 bits.  We can generate this pattern:
    498  1.1      eeh 		 *
    499  1.1      eeh 		 * The resulting code in the jump slot is:
    500  1.1      eeh 		 *
    501  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    502  1.1      eeh 		 *	sethi	%h44(addr), %g1
    503  1.1      eeh 		 *	or	%g1, %m44(addr), %g1
    504  1.1      eeh 		 *	sllx	%g1, 12, %g1
    505  1.1      eeh 		 *	jmp	%g1+%l44(addr)
    506  1.1      eeh 		 *	nop
    507  1.1      eeh 		 *	nop
    508  1.1      eeh 		 *	nop
    509  1.1      eeh 		 *
    510  1.1      eeh 		 */
    511  1.1      eeh 		where[4] = JMP   | LOVAL(offset);
    512  1.1      eeh 		where[3] = SLLX  | 12;
    513  1.1      eeh 		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
    514  1.1      eeh 		where[1] = SETHI | HIVAL(offset, 22);
    515  1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    516  1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    517  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    518  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    519  1.1      eeh 
    520  1.1      eeh 	} else if (offset < 0 && offset > -(1L<<44)) {
    521  1.1      eeh 		/*
    522  1.1      eeh 		 * We're withing 44 bits.  We can generate this pattern:
    523  1.1      eeh 		 *
    524  1.1      eeh 		 * The resulting code in the jump slot is:
    525  1.1      eeh 		 *
    526  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    527  1.1      eeh 		 *	sethi	%h44(-addr), %g1
    528  1.1      eeh 		 *	xor	%g1, %m44(-addr), %g1
    529  1.1      eeh 		 *	sllx	%g1, 12, %g1
    530  1.1      eeh 		 *	jmp	%g1+%l44(addr)
    531  1.1      eeh 		 *	nop
    532  1.1      eeh 		 *	nop
    533  1.1      eeh 		 *	nop
    534  1.1      eeh 		 *
    535  1.1      eeh 		 */
    536  1.1      eeh 		where[4] = JMP   | LOVAL(offset);
    537  1.1      eeh 		where[3] = SLLX  | 12;
    538  1.1      eeh 		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
    539  1.1      eeh 		where[1] = SETHI | HIVAL(~offset, 22);
    540  1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    541  1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    542  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    543  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    544  1.1      eeh 
    545  1.1      eeh 	} else {
    546  1.1      eeh 		/*
    547  1.1      eeh 		 * We need to load all 64-bits
    548  1.1      eeh 		 *
    549  1.1      eeh 		 * The resulting code in the jump slot is:
    550  1.1      eeh 		 *
    551  1.1      eeh 		 *	sethi	%hi(. - .PLT0), %g1
    552  1.1      eeh 		 *	sethi	%hh(addr), %g1
    553  1.1      eeh 		 *	sethi	%lm(addr), %g5
    554  1.1      eeh 		 *	or	%g1, %hm(addr), %g1
    555  1.1      eeh 		 *	sllx	%g1, 32, %g1
    556  1.1      eeh 		 *	or	%g1, %g5, %g1
    557  1.1      eeh 		 *	jmp	%g1+%lo(addr)
    558  1.1      eeh 		 *	nop
    559  1.1      eeh 		 *
    560  1.1      eeh 		 */
    561  1.1      eeh 		where[6] = JMP     | LOVAL(value);
    562  1.1      eeh 		where[5] = ORG5;
    563  1.1      eeh 		where[4] = SLLX    | 12;
    564  1.1      eeh 		where[3] = OR      | LOVAL((value) >> 32);
    565  1.1      eeh 		where[2] = SETHIG5 | HIVAL(value, 10);
    566  1.1      eeh 		where[1] = SETHI   | HIVAL(value, 42);
    567  1.1      eeh 		__asm __volatile("iflush %0+20" : : "r" (where));
    568  1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    569  1.1      eeh 		__asm __volatile("iflush %0+16" : : "r" (where));
    570  1.1      eeh 		__asm __volatile("iflush %0+12" : : "r" (where));
    571  1.1      eeh 		__asm __volatile("iflush %0+8" : : "r" (where));
    572  1.1      eeh 		__asm __volatile("iflush %0+4" : : "r" (where));
    573  1.1      eeh 
    574  1.1      eeh 	}
    575  1.1      eeh 
    576  1.1      eeh 	if (addrp != NULL)
    577  1.1      eeh 		*addrp = (caddr_t)value;
    578  1.1      eeh 
    579  1.1      eeh 	return (0);
    580  1.1      eeh }
    581  1.1      eeh 
    582  1.1      eeh /*
    583  1.1      eeh  * Install rtld function call into this PLT slot.
    584  1.1      eeh  */
    585  1.1      eeh #define	SAVE		0x9de3bf50
    586  1.1      eeh #define	SETHI_l0	0x21000000
    587  1.1      eeh #define	SETHI_l1	0x23000000
    588  1.1      eeh #define	OR_l0_l0	0xa0142000
    589  1.1      eeh #define	SLLX_l0_32_l0	0xa12c3020
    590  1.1      eeh #define	OR_l0_l1_l0	0xa0140011
    591  1.4      eeh #define	JMPL_l0_o1	0x93c42000
    592  1.1      eeh #define	MOV_g1_o0	0x90100001
    593  1.1      eeh 
    594  1.3  mycroft void _rtld_install_plt __P((Elf_Word *pltgot,	Elf_Addr proc));
    595  1.1      eeh 
    596  1.1      eeh void
    597  1.1      eeh _rtld_install_plt(pltgot, proc)
    598  1.3  mycroft 	Elf_Word *pltgot;
    599  1.1      eeh 	Elf_Addr proc;
    600  1.1      eeh {
    601  1.1      eeh 	pltgot[0] = SAVE;
    602  1.1      eeh 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    603  1.1      eeh 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    604  1.1      eeh 	pltgot[3] = OR_l0_l0  | LOVAL((proc) >> 32);
    605  1.1      eeh 	pltgot[4] = SLLX_l0_32_l0;
    606  1.1      eeh 	pltgot[5] = OR_l0_l1_l0;
    607  1.4      eeh 	pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
    608  1.1      eeh 	pltgot[7] = MOV_g1_o0;
    609  1.1      eeh }
    610  1.2      eeh 
    611  1.2      eeh long _rtld_bind_start_0_stub __P((long x, long y));
    612  1.2      eeh long
    613  1.2      eeh _rtld_bind_start_0_stub(x, y)
    614  1.2      eeh 	long x, y;
    615  1.2      eeh {
    616  1.2      eeh 	long i;
    617  1.2      eeh 	long n;
    618  1.2      eeh 
    619  1.2      eeh 	i = x - y + 1048596;
    620  1.2      eeh 	n = 32768 + (i/5120)*160 + (i%5120)/24;
    621  1.2      eeh 
    622  1.2      eeh 	return (n);
    623  1.2      eeh }
    624  1.2      eeh 
    625  1.6  mycroft void
    626  1.6  mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
    627  1.6  mycroft {
    628  1.6  mycroft 	/*
    629  1.6  mycroft 	 * On sparc64 we got troubles.
    630  1.6  mycroft 	 *
    631  1.6  mycroft 	 * Instructions are 4 bytes long.
    632  1.6  mycroft 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    633  1.6  mycroft 	 * array entries.
    634  1.6  mycroft 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    635  1.6  mycroft 	 * linker.
    636  1.6  mycroft 	 * Loading an arbitrary 64-bit pointer takes 6
    637  1.6  mycroft 	 * instructions and 2 registers.
    638  1.6  mycroft 	 *
    639  1.6  mycroft 	 * Somehow we need to issue a save to get a new stack
    640  1.6  mycroft 	 * frame, load the address of the dynamic linker, and
    641  1.6  mycroft 	 * jump there, in 8 instructions or less.
    642  1.6  mycroft 	 *
    643  1.6  mycroft 	 * Oh, we need to fill out both PLT0 and PLT1.
    644  1.6  mycroft 	 */
    645  1.6  mycroft 	{
    646  1.6  mycroft 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    647  1.6  mycroft 		extern void _rtld_bind_start_0 __P((long, long));
    648  1.6  mycroft 		extern void _rtld_bind_start_1 __P((long, long));
    649  1.6  mycroft 
    650  1.6  mycroft 		/* Install in entries 0 and 1 */
    651  1.6  mycroft 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    652  1.6  mycroft 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    653  1.6  mycroft 
    654  1.6  mycroft 		/*
    655  1.6  mycroft 		 * Install the object reference in first slot
    656  1.6  mycroft 		 * of entry 2.
    657  1.6  mycroft 		 */
    658  1.6  mycroft 		obj->pltgot[8] = (Elf_Addr) obj;
    659  1.6  mycroft 	}
    660  1.6  mycroft }
    661