Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.65
      1  1.65     joerg /*	$NetBSD: mdreloc.c,v 1.65 2017/08/12 09:03:27 joerg Exp $	*/
      2   1.1       eeh 
      3   1.1       eeh /*-
      4   1.1       eeh  * Copyright (c) 2000 Eduardo Horvath.
      5  1.23   mycroft  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
      6   1.1       eeh  * All rights reserved.
      7   1.1       eeh  *
      8   1.1       eeh  * This code is derived from software contributed to The NetBSD Foundation
      9  1.27   mycroft  * by Paul Kranenburg and by Charles M. Hannum.
     10   1.1       eeh  *
     11   1.1       eeh  * Redistribution and use in source and binary forms, with or without
     12   1.1       eeh  * modification, are permitted provided that the following conditions
     13   1.1       eeh  * are met:
     14   1.1       eeh  * 1. Redistributions of source code must retain the above copyright
     15   1.1       eeh  *    notice, this list of conditions and the following disclaimer.
     16   1.1       eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1       eeh  *    notice, this list of conditions and the following disclaimer in the
     18   1.1       eeh  *    documentation and/or other materials provided with the distribution.
     19   1.1       eeh  *
     20   1.1       eeh  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.1       eeh  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.1       eeh  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.1       eeh  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.1       eeh  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1       eeh  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1       eeh  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1       eeh  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1       eeh  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1       eeh  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1       eeh  * POSSIBILITY OF SUCH DAMAGE.
     31   1.1       eeh  */
     32   1.1       eeh 
     33  1.37     skrll #include <sys/cdefs.h>
     34  1.37     skrll #ifndef lint
     35  1.65     joerg __RCSID("$NetBSD: mdreloc.c,v 1.65 2017/08/12 09:03:27 joerg Exp $");
     36  1.37     skrll #endif /* not lint */
     37  1.37     skrll 
     38   1.1       eeh #include <errno.h>
     39   1.1       eeh #include <stdio.h>
     40   1.1       eeh #include <stdlib.h>
     41   1.1       eeh #include <string.h>
     42   1.1       eeh #include <unistd.h>
     43   1.1       eeh 
     44   1.1       eeh #include "rtldenv.h"
     45   1.1       eeh #include "debug.h"
     46   1.1       eeh #include "rtld.h"
     47   1.1       eeh 
     48   1.1       eeh /*
     49   1.1       eeh  * The following table holds for each relocation type:
     50   1.1       eeh  *	- the width in bits of the memory location the relocation
     51   1.1       eeh  *	  applies to (not currently used)
     52   1.1       eeh  *	- the number of bits the relocation value must be shifted to the
     53   1.1       eeh  *	  right (i.e. discard least significant bits) to fit into
     54   1.1       eeh  *	  the appropriate field in the instruction word.
     55   1.1       eeh  *	- flags indicating whether
     56   1.1       eeh  *		* the relocation involves a symbol
     57   1.1       eeh  *		* the relocation is relative to the current position
     58   1.1       eeh  *		* the relocation is for a GOT entry
     59   1.1       eeh  *		* the relocation is relative to the load address
     60   1.1       eeh  *
     61   1.1       eeh  */
     62   1.1       eeh #define _RF_S		0x80000000		/* Resolve symbol */
     63   1.1       eeh #define _RF_A		0x40000000		/* Use addend */
     64   1.1       eeh #define _RF_P		0x20000000		/* Location relative */
     65   1.1       eeh #define _RF_G		0x10000000		/* GOT offset */
     66   1.1       eeh #define _RF_B		0x08000000		/* Load address relative */
     67   1.2       eeh #define _RF_U		0x04000000		/* Unaligned */
     68   1.1       eeh #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     69   1.1       eeh #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     70  1.52    martin static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
     71   1.1       eeh 	0,							/* NONE */
     72   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     73   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     74   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     75   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     76   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     77   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     78   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     79   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     80   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     81   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     82   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     83   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     84   1.1       eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     85   1.1       eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     86   1.1       eeh 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     87   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     88   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     89   1.1       eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     90   1.1       eeh 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     91   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     92   1.1       eeh 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     93   1.1       eeh 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     94   1.2       eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     95   1.1       eeh 
     96   1.1       eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
     97   1.1       eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
     98   1.1       eeh 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
     99   1.1       eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    100   1.1       eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    101   1.1       eeh 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    102   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    103   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    104   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    105   1.1       eeh 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    106   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    107   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    108   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    109   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    110   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    111   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    112   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    113   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    114   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    115   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    116   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    117   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    118   1.1       eeh 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    119   1.1       eeh 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    120   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    121   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    122   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    123   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    124   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    125   1.1       eeh 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    126   1.2       eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    127   1.2       eeh 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    128  1.52    martin /* TLS relocs not represented here! */
    129   1.1       eeh };
    130   1.1       eeh 
    131   1.1       eeh #ifdef RTLD_DEBUG_RELOC
    132   1.1       eeh static const char *reloc_names[] = {
    133   1.1       eeh 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    134   1.1       eeh 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    135   1.1       eeh 	"22", "13", "LO10", "GOT10", "GOT13",
    136   1.1       eeh 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    137   1.1       eeh 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    138   1.1       eeh 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    139   1.1       eeh 	"10", "11", "64", "OLO10", "HH22",
    140   1.1       eeh 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    141   1.1       eeh 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    142   1.1       eeh 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    143  1.52    martin 	"L44", "REGISTER", "UA64", "UA16",
    144  1.52    martin 	"TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
    145  1.52    martin 	"TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
    146  1.52    martin 	"TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
    147  1.52    martin 	"TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
    148  1.52    martin 	"TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
    149  1.52    martin 	"TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
    150   1.1       eeh };
    151   1.1       eeh #endif
    152   1.1       eeh 
    153   1.1       eeh #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    154   1.1       eeh #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    155   1.1       eeh #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    156   1.2       eeh #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    157   1.2       eeh #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    158   1.1       eeh #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    159   1.1       eeh #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    160  1.52    martin #define RELOC_TLS(t)			(t >= R_TYPE(TLS_GD_HI22))
    161   1.1       eeh 
    162  1.16   mycroft static const long reloc_target_bitmask[] = {
    163   1.1       eeh #define _BM(x)	(~(-(1ULL << (x))))
    164   1.1       eeh 	0,				/* NONE */
    165   1.1       eeh 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    166   1.1       eeh 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    167   1.1       eeh 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    168   1.1       eeh 	_BM(22), _BM(22),		/* HI22, _22 */
    169   1.1       eeh 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    170   1.1       eeh 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    171   1.1       eeh 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    172   1.1       eeh 	_BM(30), 0,			/* _WPLT30, _COPY */
    173  1.56    martin 	-1, _BM(32), -1,		/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    174   1.1       eeh 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    175   1.1       eeh 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    176   1.1       eeh 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    177   1.1       eeh 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    178  1.59    martin 	_BM(13), _BM(22),		/* _OLO10, _HH22 */
    179   1.1       eeh 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    180   1.1       eeh 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    181   1.1       eeh 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    182   1.1       eeh 	-1,				/* GLOB_JMP */
    183  1.54    martin 	_BM(7), _BM(5), _BM(6),		/* _7, _5, _6 */
    184   1.1       eeh 	-1, -1,				/* DISP64, PLT64 */
    185   1.1       eeh 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    186  1.55    martin 	_BM(22), _BM(10), _BM(12),	/* H44, M44, L44 */
    187   1.1       eeh 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    188   1.1       eeh #undef _BM
    189   1.1       eeh };
    190   1.1       eeh #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    191   1.1       eeh 
    192   1.1       eeh /*
    193   1.1       eeh  * Instruction templates:
    194   1.1       eeh  */
    195  1.56    martin #define	BAA	0x30680000	/*	ba,a	%xcc, 0 */
    196   1.1       eeh #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    197   1.1       eeh #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    198   1.1       eeh #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    199  1.56    martin #define	OR	0x82106000	/*	or	%g1, 0, %g1 */
    200  1.56    martin #define	XOR	0x82186000	/*	xor	%g1, 0, %g1 */
    201  1.56    martin #define	MOV71	0x8213e000	/*	or	%o7, 0, %g1 */
    202  1.56    martin #define	MOV17	0x9e106000	/*	or	%g1, 0, %o7 */
    203   1.1       eeh #define	CALL	0x40000000	/*	call	0 */
    204  1.56    martin #define	SLLX	0x83287000	/*	sllx	%g1, 0, %g1 */
    205  1.58    martin #define	NEG	0x82200001	/*	neg	%g1 */
    206   1.1       eeh #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    207  1.56    martin #define	ORG5	0x82104005	/*	or	%g1, %g5, %g1 */
    208   1.1       eeh 
    209   1.1       eeh 
    210  1.26   mycroft /* %hi(v)/%lo(v) with variable shift */
    211  1.26   mycroft #define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
    212  1.26   mycroft #define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
    213   1.1       eeh 
    214  1.20   mycroft void _rtld_bind_start_0(long, long);
    215  1.20   mycroft void _rtld_bind_start_1(long, long);
    216  1.18   mycroft void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
    217  1.34     skrll caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
    218   1.1       eeh 
    219   1.1       eeh /*
    220   1.1       eeh  * Install rtld function call into this PLT slot.
    221   1.1       eeh  */
    222  1.29   mycroft #define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
    223   1.1       eeh #define	SETHI_l0	0x21000000
    224   1.1       eeh #define	SETHI_l1	0x23000000
    225   1.1       eeh #define	OR_l0_l0	0xa0142000
    226   1.1       eeh #define	SLLX_l0_32_l0	0xa12c3020
    227   1.1       eeh #define	OR_l0_l1_l0	0xa0140011
    228  1.26   mycroft #define	JMPL_l0_o0	0x91c42000
    229  1.26   mycroft #define	MOV_g1_o1	0x92100001
    230   1.1       eeh 
    231  1.36     skrll void _rtld_install_plt(Elf_Word *, Elf_Addr);
    232  1.36     skrll static inline int _rtld_relocate_plt_object(const Obj_Entry *,
    233  1.36     skrll     const Elf_Rela *, Elf_Addr *);
    234   1.1       eeh 
    235   1.1       eeh void
    236  1.34     skrll _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
    237   1.1       eeh {
    238   1.1       eeh 	pltgot[0] = SAVE;
    239   1.1       eeh 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    240   1.1       eeh 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    241  1.26   mycroft 	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
    242   1.1       eeh 	pltgot[4] = SLLX_l0_32_l0;
    243   1.1       eeh 	pltgot[5] = OR_l0_l1_l0;
    244  1.26   mycroft 	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
    245  1.26   mycroft 	pltgot[7] = MOV_g1_o1;
    246   1.1       eeh }
    247   1.2       eeh 
    248   1.6   mycroft void
    249   1.6   mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
    250   1.6   mycroft {
    251   1.6   mycroft 	/*
    252   1.6   mycroft 	 * On sparc64 we got troubles.
    253   1.6   mycroft 	 *
    254   1.6   mycroft 	 * Instructions are 4 bytes long.
    255   1.6   mycroft 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    256   1.6   mycroft 	 * array entries.
    257   1.6   mycroft 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    258   1.6   mycroft 	 * linker.
    259   1.6   mycroft 	 * Loading an arbitrary 64-bit pointer takes 6
    260   1.6   mycroft 	 * instructions and 2 registers.
    261   1.6   mycroft 	 *
    262   1.6   mycroft 	 * Somehow we need to issue a save to get a new stack
    263   1.6   mycroft 	 * frame, load the address of the dynamic linker, and
    264   1.6   mycroft 	 * jump there, in 8 instructions or less.
    265   1.6   mycroft 	 *
    266   1.6   mycroft 	 * Oh, we need to fill out both PLT0 and PLT1.
    267   1.6   mycroft 	 */
    268   1.6   mycroft 	{
    269   1.6   mycroft 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    270   1.6   mycroft 
    271   1.6   mycroft 		/* Install in entries 0 and 1 */
    272   1.6   mycroft 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    273   1.6   mycroft 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    274   1.6   mycroft 
    275   1.6   mycroft 		/*
    276   1.6   mycroft 		 * Install the object reference in first slot
    277   1.6   mycroft 		 * of entry 2.
    278   1.6   mycroft 		 */
    279   1.6   mycroft 		obj->pltgot[8] = (Elf_Addr) obj;
    280   1.6   mycroft 	}
    281   1.8   mycroft }
    282   1.8   mycroft 
    283  1.18   mycroft void
    284  1.34     skrll _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
    285  1.18   mycroft {
    286  1.18   mycroft 	const Elf_Rela *rela = 0, *relalim;
    287  1.18   mycroft 	Elf_Addr relasz = 0;
    288  1.18   mycroft 	Elf_Addr *where;
    289  1.18   mycroft 
    290  1.18   mycroft 	for (; dynp->d_tag != DT_NULL; dynp++) {
    291  1.18   mycroft 		switch (dynp->d_tag) {
    292  1.18   mycroft 		case DT_RELA:
    293  1.18   mycroft 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
    294  1.18   mycroft 			break;
    295  1.18   mycroft 		case DT_RELASZ:
    296  1.18   mycroft 			relasz = dynp->d_un.d_val;
    297  1.18   mycroft 			break;
    298  1.18   mycroft 		}
    299  1.18   mycroft 	}
    300  1.44     lukem 	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
    301  1.18   mycroft 	for (; rela < relalim; rela++) {
    302  1.18   mycroft 		where = (Elf_Addr *)(relocbase + rela->r_offset);
    303  1.18   mycroft 		*where = (Elf_Addr)(relocbase + rela->r_addend);
    304  1.18   mycroft 	}
    305  1.18   mycroft }
    306  1.18   mycroft 
    307   1.8   mycroft int
    308  1.47     joerg _rtld_relocate_nonplt_objects(Obj_Entry *obj)
    309   1.8   mycroft {
    310   1.9   mycroft 	const Elf_Rela *rela;
    311  1.40    martin 	const Elf_Sym *def = NULL;
    312  1.40    martin 	const Obj_Entry *defobj = NULL;
    313  1.61     joerg 	unsigned long last_symnum = ULONG_MAX;
    314  1.18   mycroft 
    315   1.9   mycroft 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    316   1.9   mycroft 		Elf_Addr *where;
    317   1.9   mycroft 		Elf_Word type;
    318   1.9   mycroft 		Elf_Addr value = 0, mask;
    319  1.61     joerg 		unsigned long symnum;
    320   1.9   mycroft 
    321   1.9   mycroft 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    322   1.9   mycroft 
    323   1.9   mycroft 		type = ELF_R_TYPE(rela->r_info);
    324   1.9   mycroft 		if (type == R_TYPE(NONE))
    325  1.12   mycroft 			continue;
    326   1.9   mycroft 
    327  1.53    martin 		/* OLO10 relocations have extra info */
    328  1.53    martin 		if ((type & 0x00ff) == R_SPARC_OLO10)
    329  1.53    martin 			type = R_SPARC_OLO10;
    330  1.53    martin 
    331  1.23   mycroft 		/* We do JMP_SLOTs in _rtld_bind() below */
    332   1.9   mycroft 		if (type == R_TYPE(JMP_SLOT))
    333  1.12   mycroft 			continue;
    334   1.9   mycroft 
    335  1.65     joerg 		/* IFUNC relocations are handled in _rtld_call_ifunc */
    336  1.65     joerg 		if (type == R_TYPE(IRELATIVE)) {
    337  1.65     joerg 			if (obj->ifunc_remaining_nonplt == 0)
    338  1.65     joerg 				obj->ifunc_remaining_nonplt = rela - obj->rela + 1;
    339  1.65     joerg 			continue;
    340  1.65     joerg 		}
    341  1.65     joerg 
    342   1.9   mycroft 		/* COPY relocs are also handled elsewhere */
    343   1.9   mycroft 		if (type == R_TYPE(COPY))
    344  1.12   mycroft 			continue;
    345   1.8   mycroft 
    346   1.9   mycroft 		/*
    347   1.9   mycroft 		 * We use the fact that relocation types are an `enum'
    348  1.52    martin 		 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
    349   1.9   mycroft 		 */
    350  1.53    martin 		if (type > R_TYPE(TLS_TPOFF64)) {
    351  1.53    martin 			dbg(("unknown relocation type %x at %p", type, rela));
    352  1.53    martin 			return -1;
    353  1.53    martin 		}
    354   1.8   mycroft 
    355   1.9   mycroft 		value = rela->r_addend;
    356   1.8   mycroft 
    357  1.61     joerg 		if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
    358  1.61     joerg 			symnum = ELF_R_SYM(rela->r_info);
    359  1.61     joerg 			if (last_symnum != symnum) {
    360  1.61     joerg 				last_symnum = symnum;
    361  1.61     joerg 				def = _rtld_find_symdef(symnum, obj, &defobj,
    362  1.61     joerg 				    false);
    363  1.61     joerg 				if (def == NULL)
    364  1.61     joerg 					return -1;
    365  1.61     joerg 			}
    366  1.61     joerg 		}
    367  1.61     joerg 
    368   1.9   mycroft 		/*
    369  1.52    martin 		 * Handle TLS relocations here, they are different.
    370  1.52    martin 		 */
    371  1.52    martin 		if (RELOC_TLS(type)) {
    372  1.52    martin 			switch (type) {
    373  1.60     joerg 			case R_TYPE(TLS_DTPMOD64):
    374  1.60     joerg 				*where = (Elf64_Addr)defobj->tlsindex;
    375  1.60     joerg 
    376  1.60     joerg 				rdbg(("TLS_DTPMOD64 %s in %s --> %p",
    377  1.60     joerg 				    obj->strtab +
    378  1.60     joerg 				    obj->symtab[symnum].st_name,
    379  1.60     joerg 				    obj->path, (void *)*where));
    380  1.60     joerg 
    381  1.60     joerg 				break;
    382  1.60     joerg 
    383  1.60     joerg 			case R_TYPE(TLS_DTPOFF64):
    384  1.60     joerg 				*where = (Elf64_Addr)(def->st_value
    385  1.60     joerg 				    + rela->r_addend);
    386  1.60     joerg 
    387  1.60     joerg 				rdbg(("DTPOFF64 %s in %s --> %p",
    388  1.60     joerg 				    obj->strtab +
    389  1.60     joerg 				        obj->symtab[symnum].st_name,
    390  1.60     joerg 				    obj->path, (void *)*where));
    391  1.60     joerg 
    392  1.60     joerg 				break;
    393  1.60     joerg 
    394  1.60     joerg 			case R_TYPE(TLS_TPOFF64):
    395  1.60     joerg 				if (!defobj->tls_done &&
    396  1.60     joerg 					_rtld_tls_offset_allocate(obj))
    397  1.60     joerg 					     return -1;
    398  1.60     joerg 
    399  1.60     joerg 				*where = (Elf64_Addr)(def->st_value -
    400  1.60     joerg 				    defobj->tlsoffset + rela->r_addend);
    401  1.60     joerg 
    402  1.60     joerg 				rdbg(("TLS_TPOFF64 %s in %s --> %p",
    403  1.60     joerg 				    obj->strtab + obj->symtab[symnum].st_name,
    404  1.60     joerg 				    obj->path, (void *)*where));
    405  1.52    martin 
    406  1.60     joerg 				break;
    407  1.52    martin 			}
    408  1.52    martin 			continue;
    409  1.52    martin 		}
    410  1.52    martin 
    411  1.52    martin 		/*
    412  1.18   mycroft 		 * Handle relative relocs here, as an optimization.
    413   1.9   mycroft 		 */
    414  1.17   mycroft 		if (type == R_TYPE(RELATIVE)) {
    415   1.9   mycroft 			*where = (Elf_Addr)(obj->relocbase + value);
    416  1.21   mycroft 			rdbg(("RELATIVE in %s --> %p", obj->path,
    417  1.18   mycroft 			    (void *)*where));
    418  1.12   mycroft 			continue;
    419   1.9   mycroft 		}
    420   1.8   mycroft 
    421   1.9   mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    422   1.9   mycroft 			/* Add in the symbol's absolute address */
    423   1.9   mycroft 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
    424   1.9   mycroft 		}
    425   1.8   mycroft 
    426  1.53    martin 		if (type == R_SPARC_OLO10) {
    427  1.53    martin 			value = (value & 0x3ff)
    428  1.53    martin 			    + (((Elf64_Xword)rela->r_info<<32)>>40);
    429  1.53    martin 		}
    430  1.53    martin 
    431   1.9   mycroft 		if (RELOC_PC_RELATIVE(type)) {
    432   1.9   mycroft 			value -= (Elf_Addr)where;
    433   1.9   mycroft 		}
    434   1.8   mycroft 
    435   1.9   mycroft 		if (RELOC_BASE_RELATIVE(type)) {
    436   1.9   mycroft 			/*
    437   1.9   mycroft 			 * Note that even though sparcs use `Elf_rela'
    438   1.9   mycroft 			 * exclusively we still need the implicit memory addend
    439   1.9   mycroft 			 * in relocations referring to GOT entries.
    440   1.9   mycroft 			 * Undoubtedly, someone f*cked this up in the distant
    441   1.9   mycroft 			 * past, and now we're stuck with it in the name of
    442   1.9   mycroft 			 * compatibility for all eternity..
    443   1.9   mycroft 			 *
    444   1.9   mycroft 			 * In any case, the implicit and explicit should be
    445   1.9   mycroft 			 * mutually exclusive. We provide a check for that
    446   1.9   mycroft 			 * here.
    447   1.9   mycroft 			 */
    448   1.8   mycroft #ifdef DIAGNOSTIC
    449   1.9   mycroft 			if (value != 0 && *where != 0) {
    450   1.9   mycroft 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    451   1.9   mycroft 					"addend=0x%lx, base %p\n",
    452   1.9   mycroft 					obj->path, where, *where,
    453   1.9   mycroft 					rela->r_addend, obj->relocbase);
    454   1.9   mycroft 			}
    455   1.9   mycroft #endif
    456   1.9   mycroft 			/* XXXX -- apparently we ignore the preexisting value */
    457   1.9   mycroft 			value += (Elf_Addr)(obj->relocbase);
    458   1.8   mycroft 		}
    459   1.8   mycroft 
    460   1.9   mycroft 		mask = RELOC_VALUE_BITMASK(type);
    461   1.9   mycroft 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    462   1.9   mycroft 		value &= mask;
    463   1.9   mycroft 
    464   1.9   mycroft 		if (RELOC_UNALIGNED(type)) {
    465   1.9   mycroft 			/* Handle unaligned relocations. */
    466   1.9   mycroft 			Elf_Addr tmp = 0;
    467   1.9   mycroft 			char *ptr = (char *)where;
    468   1.9   mycroft 			int i, size = RELOC_TARGET_SIZE(type)/8;
    469   1.9   mycroft 
    470   1.9   mycroft 			/* Read it in one byte at a time. */
    471   1.9   mycroft 			for (i=0; i<size; i++)
    472   1.9   mycroft 				tmp = (tmp << 8) | ptr[i];
    473   1.9   mycroft 
    474   1.9   mycroft 			tmp &= ~mask;
    475   1.9   mycroft 			tmp |= value;
    476   1.9   mycroft 
    477   1.9   mycroft 			/* Write it back out. */
    478   1.9   mycroft 			for (i=0; i<size; i++)
    479   1.9   mycroft 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    480   1.8   mycroft #ifdef RTLD_DEBUG_RELOC
    481   1.9   mycroft 			value = (Elf_Addr)tmp;
    482   1.8   mycroft #endif
    483   1.8   mycroft 
    484   1.9   mycroft 		} else if (RELOC_TARGET_SIZE(type) > 32) {
    485   1.9   mycroft 			*where &= ~mask;
    486   1.9   mycroft 			*where |= value;
    487   1.8   mycroft #ifdef RTLD_DEBUG_RELOC
    488   1.9   mycroft 			value = (Elf_Addr)*where;
    489   1.8   mycroft #endif
    490   1.9   mycroft 		} else {
    491   1.9   mycroft 			Elf32_Addr *where32 = (Elf32_Addr *)where;
    492   1.8   mycroft 
    493   1.9   mycroft 			*where32 &= ~mask;
    494   1.9   mycroft 			*where32 |= value;
    495   1.8   mycroft #ifdef RTLD_DEBUG_RELOC
    496   1.9   mycroft 			value = (Elf_Addr)*where32;
    497   1.8   mycroft #endif
    498   1.9   mycroft 		}
    499   1.8   mycroft 
    500   1.8   mycroft #ifdef RTLD_DEBUG_RELOC
    501   1.9   mycroft 		if (RELOC_RESOLVE_SYMBOL(type)) {
    502  1.21   mycroft 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
    503  1.11   mycroft 			    obj->strtab + obj->symtab[symnum].st_name,
    504  1.33    petrov 			    obj->path, (void *)value, defobj->path));
    505  1.11   mycroft 		} else {
    506  1.21   mycroft 			rdbg(("%s in %s --> %p", reloc_names[type],
    507  1.33    petrov 			    obj->path, (void *)value));
    508   1.9   mycroft 		}
    509   1.9   mycroft #endif
    510   1.8   mycroft 	}
    511  1.13   mycroft 	return (0);
    512  1.13   mycroft }
    513  1.13   mycroft 
    514  1.13   mycroft int
    515  1.64     joerg _rtld_relocate_plt_lazy(Obj_Entry *obj)
    516  1.13   mycroft {
    517  1.65     joerg 	const Elf_Rela *rela;
    518  1.65     joerg 
    519  1.65     joerg 	if (!obj->relocbase)
    520  1.65     joerg 		return 0;
    521  1.65     joerg 
    522  1.65     joerg 	for (rela = obj->pltrelalim; rela-- > obj->pltrela; ) {
    523  1.65     joerg 		if (ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_IREL))
    524  1.65     joerg 			obj->ifunc_remaining = obj->pltrelalim - rela + 1;
    525  1.65     joerg 	}
    526  1.65     joerg 
    527  1.65     joerg 	return 0;
    528  1.23   mycroft }
    529  1.23   mycroft 
    530  1.23   mycroft caddr_t
    531  1.34     skrll _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
    532  1.23   mycroft {
    533  1.24   mycroft 	const Elf_Rela *rela = obj->pltrela + reloff;
    534  1.35    martin 	Elf_Addr result;
    535  1.35    martin 	int err;
    536  1.23   mycroft 
    537  1.39       mrg 	result = 0;	/* XXX gcc */
    538  1.39       mrg 
    539  1.23   mycroft 	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
    540  1.23   mycroft 		/*
    541  1.23   mycroft 		 * XXXX
    542  1.23   mycroft 		 *
    543  1.23   mycroft 		 * The first four PLT entries are reserved.  There is some
    544  1.23   mycroft 		 * disagreement whether they should have associated relocation
    545  1.23   mycroft 		 * entries.  Both the SPARC 32-bit and 64-bit ELF
    546  1.23   mycroft 		 * specifications say that they should have relocation entries,
    547  1.23   mycroft 		 * but the 32-bit SPARC binutils do not generate them, and now
    548  1.23   mycroft 		 * the 64-bit SPARC binutils have stopped generating them too.
    549  1.23   mycroft 		 *
    550  1.23   mycroft 		 * So, to provide binary compatibility, we will check the first
    551  1.23   mycroft 		 * entry, if it is reserved it should not be of the type
    552  1.23   mycroft 		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
    553  1.23   mycroft 		 * were not generated and our index is 4 entries too far.
    554  1.23   mycroft 		 */
    555  1.23   mycroft 		rela -= 4;
    556  1.23   mycroft 	}
    557  1.32   thorpej 
    558  1.51     joerg 	_rtld_shared_enter();
    559  1.35    martin 	err = _rtld_relocate_plt_object(obj, rela, &result);
    560  1.46  christos 	if (err)
    561  1.35    martin 		_rtld_die();
    562  1.51     joerg 	_rtld_shared_exit();
    563  1.35    martin 
    564  1.35    martin 	return (caddr_t)result;
    565  1.35    martin }
    566  1.35    martin 
    567  1.35    martin int
    568  1.35    martin _rtld_relocate_plt_objects(const Obj_Entry *obj)
    569  1.35    martin {
    570  1.35    martin 	const Elf_Rela *rela;
    571  1.35    martin 
    572  1.35    martin 	rela = obj->pltrela;
    573  1.35    martin 
    574  1.35    martin 	/*
    575  1.35    martin 	 * Check for first four reserved entries - and skip them.
    576  1.35    martin 	 * See above for details.
    577  1.35    martin 	 */
    578  1.35    martin 	if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
    579  1.35    martin 		rela += 4;
    580  1.35    martin 
    581  1.35    martin 	for (; rela < obj->pltrelalim; rela++)
    582  1.35    martin 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
    583  1.35    martin 			return -1;
    584  1.35    martin 
    585  1.35    martin 	return 0;
    586  1.35    martin }
    587  1.35    martin 
    588  1.65     joerg static inline void
    589  1.65     joerg _rtld_write_plt(Elf_Word *where, Elf_Addr value, const Elf_Rela *rela,
    590  1.65     joerg     const Obj_Entry *obj)
    591  1.35    martin {
    592  1.65     joerg 	Elf_Addr offset, offBAA;
    593  1.23   mycroft 
    594  1.23   mycroft 	/*
    595  1.50     skrll 	 * At the PLT entry pointed at by `where', we now construct a direct
    596  1.50     skrll 	 * transfer to the now fully resolved function address.
    597  1.23   mycroft 	 *
    598  1.23   mycroft 	 * A PLT entry is supposed to start by looking like this:
    599  1.23   mycroft 	 *
    600  1.23   mycroft 	 *	sethi	%hi(. - .PLT0), %g1
    601  1.23   mycroft 	 *	ba,a	%xcc, .PLT1
    602  1.23   mycroft 	 *	nop
    603  1.23   mycroft 	 *	nop
    604  1.23   mycroft 	 *	nop
    605  1.23   mycroft 	 *	nop
    606  1.23   mycroft 	 *	nop
    607  1.23   mycroft 	 *	nop
    608  1.23   mycroft 	 *
    609  1.50     skrll 	 * When we replace these entries we start from the last instruction
    610  1.50     skrll 	 * and do it in reverse order so the last thing we do is replace the
    611  1.50     skrll 	 * branch.  That allows us to change this atomically.
    612  1.23   mycroft 	 *
    613  1.50     skrll 	 * We now need to find out how far we need to jump.  We have a choice
    614  1.50     skrll 	 * of several different relocation techniques which are increasingly
    615  1.50     skrll 	 * expensive.
    616  1.23   mycroft 	 */
    617  1.23   mycroft 
    618  1.23   mycroft 	offset = ((Elf_Addr)where) - value;
    619  1.65     joerg 	offBAA = value - (((Elf_Addr)where) + 4);	/* ba,a at where[1] */
    620  1.65     joerg 	if (rela && rela->r_addend) {
    621  1.23   mycroft 		Elf_Addr *ptr = (Elf_Addr *)where;
    622  1.23   mycroft 		/*
    623  1.48     skrll 		 * This entry is >= 32768.  The relocations points to a
    624  1.28   mycroft 		 * PC-relative pointer to the bind_0 stub at the top of the
    625  1.28   mycroft 		 * PLT section.  Update it to point to the target function.
    626  1.23   mycroft 		 */
    627  1.27   mycroft 		ptr[0] += value - (Elf_Addr)obj->pltgot;
    628  1.62    martin 	} else if (offBAA <= (1L<<20) && (Elf_SOff)offBAA >= -(1L<<20)) {
    629  1.23   mycroft 		/*
    630  1.23   mycroft 		 * We're within 1MB -- we can use a direct branch insn.
    631  1.23   mycroft 		 *
    632  1.23   mycroft 		 * We can generate this pattern:
    633  1.23   mycroft 		 *
    634  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    635  1.23   mycroft 		 *	ba,a	%xcc, addr
    636  1.23   mycroft 		 *	nop
    637  1.23   mycroft 		 *	nop
    638  1.23   mycroft 		 *	nop
    639  1.23   mycroft 		 *	nop
    640  1.23   mycroft 		 *	nop
    641  1.23   mycroft 		 *	nop
    642  1.23   mycroft 		 *
    643  1.23   mycroft 		 */
    644  1.63    martin 		where[1] = BAA | ((offBAA >> 2) & 0x7ffff);
    645  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    646  1.45    martin 	} else if (value < (1L<<32)) {
    647  1.23   mycroft 		/*
    648  1.26   mycroft 		 * We're within 32-bits of address zero.
    649  1.23   mycroft 		 *
    650  1.23   mycroft 		 * The resulting code in the jump slot is:
    651  1.23   mycroft 		 *
    652  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    653  1.23   mycroft 		 *	sethi	%hi(addr), %g1
    654  1.23   mycroft 		 *	jmp	%g1+%lo(addr)
    655  1.23   mycroft 		 *	nop
    656  1.23   mycroft 		 *	nop
    657  1.23   mycroft 		 *	nop
    658  1.23   mycroft 		 *	nop
    659  1.23   mycroft 		 *	nop
    660  1.23   mycroft 		 *
    661  1.23   mycroft 		 */
    662  1.26   mycroft 		where[2] = JMP   | LOVAL(value, 0);
    663  1.23   mycroft 		where[1] = SETHI | HIVAL(value, 10);
    664  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    665  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    666  1.45    martin 	} else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
    667  1.23   mycroft 		/*
    668  1.26   mycroft 		 * We're within 32-bits of address -1.
    669  1.23   mycroft 		 *
    670  1.23   mycroft 		 * The resulting code in the jump slot is:
    671  1.23   mycroft 		 *
    672  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    673  1.23   mycroft 		 *	sethi	%hix(addr), %g1
    674  1.23   mycroft 		 *	xor	%g1, %lox(addr), %g1
    675  1.23   mycroft 		 *	jmp	%g1
    676  1.23   mycroft 		 *	nop
    677  1.23   mycroft 		 *	nop
    678  1.23   mycroft 		 *	nop
    679  1.23   mycroft 		 *	nop
    680  1.23   mycroft 		 *
    681  1.23   mycroft 		 */
    682  1.23   mycroft 		where[3] = JMP;
    683  1.56    martin 		where[2] = XOR | (value & 0x00003ff) | 0x1c00;
    684  1.23   mycroft 		where[1] = SETHI | HIVAL(~value, 10);
    685  1.38     perry 		__asm volatile("iflush %0+12" : : "r" (where));
    686  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    687  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    688  1.58    martin 	} else if ((offset+8) <= (1L<<31) &&
    689  1.58    martin 	    (Elf_SOff)(offset+8) >= -((1L<<31) - 4)) {
    690  1.23   mycroft 		/*
    691  1.26   mycroft 		 * We're within 32-bits -- we can use a direct call insn
    692  1.23   mycroft 		 *
    693  1.23   mycroft 		 * The resulting code in the jump slot is:
    694  1.23   mycroft 		 *
    695  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    696  1.23   mycroft 		 *	mov	%o7, %g1
    697  1.23   mycroft 		 *	call	(.+offset)
    698  1.23   mycroft 		 *	 mov	%g1, %o7
    699  1.23   mycroft 		 *	nop
    700  1.23   mycroft 		 *	nop
    701  1.23   mycroft 		 *	nop
    702  1.23   mycroft 		 *	nop
    703  1.23   mycroft 		 *
    704  1.23   mycroft 		 */
    705  1.58    martin 		offset += 8;	/* call is at where[2], 8 byte further */
    706  1.23   mycroft 		where[3] = MOV17;
    707  1.58    martin 		where[2] = CALL	  | ((-offset >> 2) & 0x3fffffff);
    708  1.23   mycroft 		where[1] = MOV71;
    709  1.38     perry 		__asm volatile("iflush %0+12" : : "r" (where));
    710  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    711  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    712  1.58    martin 	} else if ((Elf_SOff)value > 0 && value < (1L<<44)) {
    713  1.23   mycroft 		/*
    714  1.26   mycroft 		 * We're within 44 bits.  We can generate this pattern:
    715  1.23   mycroft 		 *
    716  1.23   mycroft 		 * The resulting code in the jump slot is:
    717  1.23   mycroft 		 *
    718  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    719  1.23   mycroft 		 *	sethi	%h44(addr), %g1
    720  1.23   mycroft 		 *	or	%g1, %m44(addr), %g1
    721  1.23   mycroft 		 *	sllx	%g1, 12, %g1
    722  1.23   mycroft 		 *	jmp	%g1+%l44(addr)
    723  1.23   mycroft 		 *	nop
    724  1.23   mycroft 		 *	nop
    725  1.23   mycroft 		 *	nop
    726  1.23   mycroft 		 *
    727  1.23   mycroft 		 */
    728  1.58    martin 		where[4] = JMP   | LOVAL(value, 0);
    729  1.23   mycroft 		where[3] = SLLX  | 12;
    730  1.58    martin 		where[2] = OR    | (((value) >> 12) & 0x00001fff);
    731  1.58    martin 		where[1] = SETHI | HIVAL(value, 22);
    732  1.38     perry 		__asm volatile("iflush %0+16" : : "r" (where));
    733  1.38     perry 		__asm volatile("iflush %0+12" : : "r" (where));
    734  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    735  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    736  1.58    martin 	} else if ((Elf_SOff)value < 0 && (Elf_SOff)value > -(1L<<44)) {
    737  1.58    martin 		/*
    738  1.58    martin 		 *  We're within 44 bits.  We can generate this pattern:
    739  1.23   mycroft 		 *
    740  1.23   mycroft 		 * The resulting code in the jump slot is:
    741  1.23   mycroft 		 *
    742  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    743  1.58    martin 		 *	sethi	%hi((-addr)>>12), %g1
    744  1.58    martin 		 *	or	%g1, %lo((-addr)>>12), %g1
    745  1.58    martin 		 *	neg	%g1
    746  1.58    martin 		 *	sllx	%g1, 12, %g1
    747  1.58    martin 		 *	jmp	%g1+(addr&0x0fff)
    748  1.23   mycroft 		 *	nop
    749  1.23   mycroft 		 *	nop
    750  1.23   mycroft 		 *
    751  1.23   mycroft 		 */
    752  1.58    martin 		Elf_Addr neg = (~value+1)>>12;
    753  1.58    martin 		where[5] = JMP   | (value & 0x0fff);
    754  1.58    martin 		where[4] = SLLX  | 12;
    755  1.58    martin 		where[3] = NEG;
    756  1.58    martin 		where[2] = OR    | (LOVAL(neg, 0)+1);
    757  1.58    martin 		where[1] = SETHI | HIVAL(neg, 10);
    758  1.58    martin 		__asm volatile("iflush %0+20" : : "r" (where));
    759  1.38     perry 		__asm volatile("iflush %0+16" : : "r" (where));
    760  1.38     perry 		__asm volatile("iflush %0+12" : : "r" (where));
    761  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    762  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    763  1.23   mycroft 	} else {
    764  1.23   mycroft 		/*
    765  1.23   mycroft 		 * We need to load all 64-bits
    766  1.23   mycroft 		 *
    767  1.23   mycroft 		 * The resulting code in the jump slot is:
    768  1.23   mycroft 		 *
    769  1.23   mycroft 		 *	sethi	%hi(. - .PLT0), %g1
    770  1.23   mycroft 		 *	sethi	%hh(addr), %g1
    771  1.23   mycroft 		 *	sethi	%lm(addr), %g5
    772  1.23   mycroft 		 *	or	%g1, %hm(addr), %g1
    773  1.23   mycroft 		 *	sllx	%g1, 32, %g1
    774  1.23   mycroft 		 *	or	%g1, %g5, %g1
    775  1.23   mycroft 		 *	jmp	%g1+%lo(addr)
    776  1.23   mycroft 		 *	nop
    777  1.23   mycroft 		 *
    778  1.23   mycroft 		 */
    779  1.26   mycroft 		where[6] = JMP     | LOVAL(value, 0);
    780  1.23   mycroft 		where[5] = ORG5;
    781  1.26   mycroft 		where[4] = SLLX    | 32;
    782  1.26   mycroft 		where[3] = OR      | LOVAL(value, 32);
    783  1.23   mycroft 		where[2] = SETHIG5 | HIVAL(value, 10);
    784  1.23   mycroft 		where[1] = SETHI   | HIVAL(value, 42);
    785  1.38     perry 		__asm volatile("iflush %0+24" : : "r" (where));
    786  1.38     perry 		__asm volatile("iflush %0+20" : : "r" (where));
    787  1.38     perry 		__asm volatile("iflush %0+16" : : "r" (where));
    788  1.38     perry 		__asm volatile("iflush %0+12" : : "r" (where));
    789  1.38     perry 		__asm volatile("iflush %0+8" : : "r" (where));
    790  1.38     perry 		__asm volatile("iflush %0+4" : : "r" (where));
    791  1.65     joerg 	}
    792  1.65     joerg }
    793  1.65     joerg 
    794  1.65     joerg /*
    795  1.65     joerg  * New inline function that is called by _rtld_relocate_plt_object and
    796  1.65     joerg  * _rtld_bind
    797  1.65     joerg  */
    798  1.65     joerg static inline int
    799  1.65     joerg _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
    800  1.65     joerg     Elf_Addr *tp)
    801  1.65     joerg {
    802  1.65     joerg 	Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
    803  1.65     joerg 	const Elf_Sym *def;
    804  1.65     joerg 	const Obj_Entry *defobj;
    805  1.65     joerg 	Elf_Addr value;
    806  1.65     joerg 	unsigned long info = rela->r_info;
    807  1.65     joerg 
    808  1.65     joerg 	if (ELF_R_TYPE(info) == R_TYPE(JMP_IREL))
    809  1.65     joerg 		return 0;
    810  1.65     joerg 
    811  1.65     joerg 	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
    812  1.65     joerg 
    813  1.65     joerg 	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
    814  1.65     joerg 	if (__predict_false(def == NULL))
    815  1.65     joerg 		return -1;
    816  1.65     joerg 	if (__predict_false(def == &_rtld_sym_zero))
    817  1.65     joerg 		return 0;
    818  1.23   mycroft 
    819  1.65     joerg 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
    820  1.65     joerg 		if (tp == NULL)
    821  1.65     joerg 			return 0;
    822  1.65     joerg 		value = _rtld_resolve_ifunc(defobj, def);
    823  1.65     joerg 	} else {
    824  1.65     joerg 		value = (Elf_Addr)(defobj->relocbase + def->st_value);
    825  1.23   mycroft 	}
    826  1.65     joerg 	rdbg(("bind now/fixup in %s at %p --> new=%p",
    827  1.65     joerg 	    defobj->strtab + def->st_name, (void*)where, (void *)value));
    828  1.65     joerg 
    829  1.65     joerg 	_rtld_write_plt(where, value, rela, obj);
    830  1.23   mycroft 
    831  1.35    martin 	if (tp)
    832  1.35    martin 		*tp = value;
    833  1.35    martin 
    834  1.35    martin 	return 0;
    835   1.6   mycroft }
    836  1.65     joerg 
    837  1.65     joerg void
    838  1.65     joerg _rtld_call_ifunc(Obj_Entry *obj, sigset_t *mask, u_int cur_objgen)
    839  1.65     joerg {
    840  1.65     joerg 	const Elf_Rela *rela;
    841  1.65     joerg 	Elf_Addr *where;
    842  1.65     joerg 	Elf_Word *where2;
    843  1.65     joerg 	Elf_Addr target;
    844  1.65     joerg 
    845  1.65     joerg 	while (obj->ifunc_remaining > 0 && _rtld_objgen == cur_objgen) {
    846  1.65     joerg 		rela = obj->pltrelalim - --obj->ifunc_remaining;
    847  1.65     joerg 		if (ELF_R_TYPE(rela->r_info) != R_TYPE(JMP_IREL))
    848  1.65     joerg 			continue;
    849  1.65     joerg 		where2 = (Elf_Word *)(obj->relocbase + rela->r_offset);
    850  1.65     joerg 		target = (Elf_Addr)(obj->relocbase + rela->r_addend);
    851  1.65     joerg 		_rtld_exclusive_exit(mask);
    852  1.65     joerg 		target = _rtld_resolve_ifunc2(obj, target);
    853  1.65     joerg 		_rtld_exclusive_enter(mask);
    854  1.65     joerg 		_rtld_write_plt(where2, target, NULL, obj);
    855  1.65     joerg 	}
    856  1.65     joerg 
    857  1.65     joerg 	while (obj->ifunc_remaining_nonplt > 0 && _rtld_objgen == cur_objgen) {
    858  1.65     joerg 		rela = obj->relalim - --obj->ifunc_remaining_nonplt;
    859  1.65     joerg 		if (ELF_R_TYPE(rela->r_info) != R_TYPE(IRELATIVE))
    860  1.65     joerg 			continue;
    861  1.65     joerg 		where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
    862  1.65     joerg 		target = (Elf_Addr)(obj->relocbase + rela->r_addend);
    863  1.65     joerg 		_rtld_exclusive_exit(mask);
    864  1.65     joerg 		target = _rtld_resolve_ifunc2(obj, target);
    865  1.65     joerg 		_rtld_exclusive_enter(mask);
    866  1.65     joerg 		if (*where != target)
    867  1.65     joerg 			*where = target;
    868  1.65     joerg 	}
    869  1.65     joerg }
    870