mdreloc.c revision 1.65 1 1.65 joerg /* $NetBSD: mdreloc.c,v 1.65 2017/08/12 09:03:27 joerg Exp $ */
2 1.1 eeh
3 1.1 eeh /*-
4 1.1 eeh * Copyright (c) 2000 Eduardo Horvath.
5 1.23 mycroft * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 1.1 eeh * All rights reserved.
7 1.1 eeh *
8 1.1 eeh * This code is derived from software contributed to The NetBSD Foundation
9 1.27 mycroft * by Paul Kranenburg and by Charles M. Hannum.
10 1.1 eeh *
11 1.1 eeh * Redistribution and use in source and binary forms, with or without
12 1.1 eeh * modification, are permitted provided that the following conditions
13 1.1 eeh * are met:
14 1.1 eeh * 1. Redistributions of source code must retain the above copyright
15 1.1 eeh * notice, this list of conditions and the following disclaimer.
16 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 eeh * notice, this list of conditions and the following disclaimer in the
18 1.1 eeh * documentation and/or other materials provided with the distribution.
19 1.1 eeh *
20 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 eeh * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 eeh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 eeh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 eeh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 eeh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 eeh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 eeh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 eeh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 eeh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 eeh * POSSIBILITY OF SUCH DAMAGE.
31 1.1 eeh */
32 1.1 eeh
33 1.37 skrll #include <sys/cdefs.h>
34 1.37 skrll #ifndef lint
35 1.65 joerg __RCSID("$NetBSD: mdreloc.c,v 1.65 2017/08/12 09:03:27 joerg Exp $");
36 1.37 skrll #endif /* not lint */
37 1.37 skrll
38 1.1 eeh #include <errno.h>
39 1.1 eeh #include <stdio.h>
40 1.1 eeh #include <stdlib.h>
41 1.1 eeh #include <string.h>
42 1.1 eeh #include <unistd.h>
43 1.1 eeh
44 1.1 eeh #include "rtldenv.h"
45 1.1 eeh #include "debug.h"
46 1.1 eeh #include "rtld.h"
47 1.1 eeh
48 1.1 eeh /*
49 1.1 eeh * The following table holds for each relocation type:
50 1.1 eeh * - the width in bits of the memory location the relocation
51 1.1 eeh * applies to (not currently used)
52 1.1 eeh * - the number of bits the relocation value must be shifted to the
53 1.1 eeh * right (i.e. discard least significant bits) to fit into
54 1.1 eeh * the appropriate field in the instruction word.
55 1.1 eeh * - flags indicating whether
56 1.1 eeh * * the relocation involves a symbol
57 1.1 eeh * * the relocation is relative to the current position
58 1.1 eeh * * the relocation is for a GOT entry
59 1.1 eeh * * the relocation is relative to the load address
60 1.1 eeh *
61 1.1 eeh */
62 1.1 eeh #define _RF_S 0x80000000 /* Resolve symbol */
63 1.1 eeh #define _RF_A 0x40000000 /* Use addend */
64 1.1 eeh #define _RF_P 0x20000000 /* Location relative */
65 1.1 eeh #define _RF_G 0x10000000 /* GOT offset */
66 1.1 eeh #define _RF_B 0x08000000 /* Load address relative */
67 1.2 eeh #define _RF_U 0x04000000 /* Unaligned */
68 1.1 eeh #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 1.1 eeh #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 1.52 martin static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
71 1.1 eeh 0, /* NONE */
72 1.1 eeh _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 1.1 eeh _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 1.1 eeh _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 1.1 eeh _RF_SZ(32) | _RF_RS(0), /* COPY */
91 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 1.1 eeh _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 1.1 eeh _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
95 1.1 eeh
96 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 1.1 eeh _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 1.1 eeh _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 1.1 eeh _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 1.1 eeh _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 1.1 eeh _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 1.1 eeh _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 1.1 eeh _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 1.2 eeh _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
128 1.52 martin /* TLS relocs not represented here! */
129 1.1 eeh };
130 1.1 eeh
131 1.1 eeh #ifdef RTLD_DEBUG_RELOC
132 1.1 eeh static const char *reloc_names[] = {
133 1.1 eeh "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134 1.1 eeh "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135 1.1 eeh "22", "13", "LO10", "GOT10", "GOT13",
136 1.1 eeh "GOT22", "PC10", "PC22", "WPLT30", "COPY",
137 1.1 eeh "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138 1.1 eeh "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139 1.1 eeh "10", "11", "64", "OLO10", "HH22",
140 1.1 eeh "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141 1.1 eeh "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142 1.1 eeh "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143 1.52 martin "L44", "REGISTER", "UA64", "UA16",
144 1.52 martin "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145 1.52 martin "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146 1.52 martin "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147 1.52 martin "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148 1.52 martin "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149 1.52 martin "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
150 1.1 eeh };
151 1.1 eeh #endif
152 1.1 eeh
153 1.1 eeh #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
154 1.1 eeh #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
155 1.1 eeh #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
156 1.2 eeh #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
157 1.2 eeh #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
158 1.1 eeh #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
159 1.1 eeh #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
160 1.52 martin #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
161 1.1 eeh
162 1.16 mycroft static const long reloc_target_bitmask[] = {
163 1.1 eeh #define _BM(x) (~(-(1ULL << (x))))
164 1.1 eeh 0, /* NONE */
165 1.1 eeh _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 1.1 eeh _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 1.1 eeh _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 1.1 eeh _BM(22), _BM(22), /* HI22, _22 */
169 1.1 eeh _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 1.1 eeh _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 1.1 eeh _BM(10), _BM(22), /* _PC10, _PC22 */
172 1.1 eeh _BM(30), 0, /* _WPLT30, _COPY */
173 1.56 martin -1, _BM(32), -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 1.1 eeh _BM(32), _BM(32), /* _UA32, PLT32 */
175 1.1 eeh _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 1.1 eeh _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 1.1 eeh _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 1.59 martin _BM(13), _BM(22), /* _OLO10, _HH22 */
179 1.1 eeh _BM(10), _BM(22), /* _HM10, _LM22 */
180 1.1 eeh _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 1.1 eeh _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
182 1.1 eeh -1, /* GLOB_JMP */
183 1.54 martin _BM(7), _BM(5), _BM(6), /* _7, _5, _6 */
184 1.1 eeh -1, -1, /* DISP64, PLT64 */
185 1.1 eeh _BM(22), _BM(13), /* HIX22, LOX10 */
186 1.55 martin _BM(22), _BM(10), _BM(12), /* H44, M44, L44 */
187 1.1 eeh -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
188 1.1 eeh #undef _BM
189 1.1 eeh };
190 1.1 eeh #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
191 1.1 eeh
192 1.1 eeh /*
193 1.1 eeh * Instruction templates:
194 1.1 eeh */
195 1.56 martin #define BAA 0x30680000 /* ba,a %xcc, 0 */
196 1.1 eeh #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 1.1 eeh #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 1.1 eeh #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 1.56 martin #define OR 0x82106000 /* or %g1, 0, %g1 */
200 1.56 martin #define XOR 0x82186000 /* xor %g1, 0, %g1 */
201 1.56 martin #define MOV71 0x8213e000 /* or %o7, 0, %g1 */
202 1.56 martin #define MOV17 0x9e106000 /* or %g1, 0, %o7 */
203 1.1 eeh #define CALL 0x40000000 /* call 0 */
204 1.56 martin #define SLLX 0x83287000 /* sllx %g1, 0, %g1 */
205 1.58 martin #define NEG 0x82200001 /* neg %g1 */
206 1.1 eeh #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
207 1.56 martin #define ORG5 0x82104005 /* or %g1, %g5, %g1 */
208 1.1 eeh
209 1.1 eeh
210 1.26 mycroft /* %hi(v)/%lo(v) with variable shift */
211 1.26 mycroft #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
212 1.26 mycroft #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
213 1.1 eeh
214 1.20 mycroft void _rtld_bind_start_0(long, long);
215 1.20 mycroft void _rtld_bind_start_1(long, long);
216 1.18 mycroft void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
217 1.34 skrll caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
218 1.1 eeh
219 1.1 eeh /*
220 1.1 eeh * Install rtld function call into this PLT slot.
221 1.1 eeh */
222 1.29 mycroft #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
223 1.1 eeh #define SETHI_l0 0x21000000
224 1.1 eeh #define SETHI_l1 0x23000000
225 1.1 eeh #define OR_l0_l0 0xa0142000
226 1.1 eeh #define SLLX_l0_32_l0 0xa12c3020
227 1.1 eeh #define OR_l0_l1_l0 0xa0140011
228 1.26 mycroft #define JMPL_l0_o0 0x91c42000
229 1.26 mycroft #define MOV_g1_o1 0x92100001
230 1.1 eeh
231 1.36 skrll void _rtld_install_plt(Elf_Word *, Elf_Addr);
232 1.36 skrll static inline int _rtld_relocate_plt_object(const Obj_Entry *,
233 1.36 skrll const Elf_Rela *, Elf_Addr *);
234 1.1 eeh
235 1.1 eeh void
236 1.34 skrll _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
237 1.1 eeh {
238 1.1 eeh pltgot[0] = SAVE;
239 1.1 eeh pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
240 1.1 eeh pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
241 1.26 mycroft pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
242 1.1 eeh pltgot[4] = SLLX_l0_32_l0;
243 1.1 eeh pltgot[5] = OR_l0_l1_l0;
244 1.26 mycroft pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
245 1.26 mycroft pltgot[7] = MOV_g1_o1;
246 1.1 eeh }
247 1.2 eeh
248 1.6 mycroft void
249 1.6 mycroft _rtld_setup_pltgot(const Obj_Entry *obj)
250 1.6 mycroft {
251 1.6 mycroft /*
252 1.6 mycroft * On sparc64 we got troubles.
253 1.6 mycroft *
254 1.6 mycroft * Instructions are 4 bytes long.
255 1.6 mycroft * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
256 1.6 mycroft * array entries.
257 1.6 mycroft * Each PLT entry jumps to PLT0 to enter the dynamic
258 1.6 mycroft * linker.
259 1.6 mycroft * Loading an arbitrary 64-bit pointer takes 6
260 1.6 mycroft * instructions and 2 registers.
261 1.6 mycroft *
262 1.6 mycroft * Somehow we need to issue a save to get a new stack
263 1.6 mycroft * frame, load the address of the dynamic linker, and
264 1.6 mycroft * jump there, in 8 instructions or less.
265 1.6 mycroft *
266 1.6 mycroft * Oh, we need to fill out both PLT0 and PLT1.
267 1.6 mycroft */
268 1.6 mycroft {
269 1.6 mycroft Elf_Word *entry = (Elf_Word *)obj->pltgot;
270 1.6 mycroft
271 1.6 mycroft /* Install in entries 0 and 1 */
272 1.6 mycroft _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
273 1.6 mycroft _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
274 1.6 mycroft
275 1.6 mycroft /*
276 1.6 mycroft * Install the object reference in first slot
277 1.6 mycroft * of entry 2.
278 1.6 mycroft */
279 1.6 mycroft obj->pltgot[8] = (Elf_Addr) obj;
280 1.6 mycroft }
281 1.8 mycroft }
282 1.8 mycroft
283 1.18 mycroft void
284 1.34 skrll _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
285 1.18 mycroft {
286 1.18 mycroft const Elf_Rela *rela = 0, *relalim;
287 1.18 mycroft Elf_Addr relasz = 0;
288 1.18 mycroft Elf_Addr *where;
289 1.18 mycroft
290 1.18 mycroft for (; dynp->d_tag != DT_NULL; dynp++) {
291 1.18 mycroft switch (dynp->d_tag) {
292 1.18 mycroft case DT_RELA:
293 1.18 mycroft rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
294 1.18 mycroft break;
295 1.18 mycroft case DT_RELASZ:
296 1.18 mycroft relasz = dynp->d_un.d_val;
297 1.18 mycroft break;
298 1.18 mycroft }
299 1.18 mycroft }
300 1.44 lukem relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
301 1.18 mycroft for (; rela < relalim; rela++) {
302 1.18 mycroft where = (Elf_Addr *)(relocbase + rela->r_offset);
303 1.18 mycroft *where = (Elf_Addr)(relocbase + rela->r_addend);
304 1.18 mycroft }
305 1.18 mycroft }
306 1.18 mycroft
307 1.8 mycroft int
308 1.47 joerg _rtld_relocate_nonplt_objects(Obj_Entry *obj)
309 1.8 mycroft {
310 1.9 mycroft const Elf_Rela *rela;
311 1.40 martin const Elf_Sym *def = NULL;
312 1.40 martin const Obj_Entry *defobj = NULL;
313 1.61 joerg unsigned long last_symnum = ULONG_MAX;
314 1.18 mycroft
315 1.9 mycroft for (rela = obj->rela; rela < obj->relalim; rela++) {
316 1.9 mycroft Elf_Addr *where;
317 1.9 mycroft Elf_Word type;
318 1.9 mycroft Elf_Addr value = 0, mask;
319 1.61 joerg unsigned long symnum;
320 1.9 mycroft
321 1.9 mycroft where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
322 1.9 mycroft
323 1.9 mycroft type = ELF_R_TYPE(rela->r_info);
324 1.9 mycroft if (type == R_TYPE(NONE))
325 1.12 mycroft continue;
326 1.9 mycroft
327 1.53 martin /* OLO10 relocations have extra info */
328 1.53 martin if ((type & 0x00ff) == R_SPARC_OLO10)
329 1.53 martin type = R_SPARC_OLO10;
330 1.53 martin
331 1.23 mycroft /* We do JMP_SLOTs in _rtld_bind() below */
332 1.9 mycroft if (type == R_TYPE(JMP_SLOT))
333 1.12 mycroft continue;
334 1.9 mycroft
335 1.65 joerg /* IFUNC relocations are handled in _rtld_call_ifunc */
336 1.65 joerg if (type == R_TYPE(IRELATIVE)) {
337 1.65 joerg if (obj->ifunc_remaining_nonplt == 0)
338 1.65 joerg obj->ifunc_remaining_nonplt = rela - obj->rela + 1;
339 1.65 joerg continue;
340 1.65 joerg }
341 1.65 joerg
342 1.9 mycroft /* COPY relocs are also handled elsewhere */
343 1.9 mycroft if (type == R_TYPE(COPY))
344 1.12 mycroft continue;
345 1.8 mycroft
346 1.9 mycroft /*
347 1.9 mycroft * We use the fact that relocation types are an `enum'
348 1.52 martin * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
349 1.9 mycroft */
350 1.53 martin if (type > R_TYPE(TLS_TPOFF64)) {
351 1.53 martin dbg(("unknown relocation type %x at %p", type, rela));
352 1.53 martin return -1;
353 1.53 martin }
354 1.8 mycroft
355 1.9 mycroft value = rela->r_addend;
356 1.8 mycroft
357 1.61 joerg if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
358 1.61 joerg symnum = ELF_R_SYM(rela->r_info);
359 1.61 joerg if (last_symnum != symnum) {
360 1.61 joerg last_symnum = symnum;
361 1.61 joerg def = _rtld_find_symdef(symnum, obj, &defobj,
362 1.61 joerg false);
363 1.61 joerg if (def == NULL)
364 1.61 joerg return -1;
365 1.61 joerg }
366 1.61 joerg }
367 1.61 joerg
368 1.9 mycroft /*
369 1.52 martin * Handle TLS relocations here, they are different.
370 1.52 martin */
371 1.52 martin if (RELOC_TLS(type)) {
372 1.52 martin switch (type) {
373 1.60 joerg case R_TYPE(TLS_DTPMOD64):
374 1.60 joerg *where = (Elf64_Addr)defobj->tlsindex;
375 1.60 joerg
376 1.60 joerg rdbg(("TLS_DTPMOD64 %s in %s --> %p",
377 1.60 joerg obj->strtab +
378 1.60 joerg obj->symtab[symnum].st_name,
379 1.60 joerg obj->path, (void *)*where));
380 1.60 joerg
381 1.60 joerg break;
382 1.60 joerg
383 1.60 joerg case R_TYPE(TLS_DTPOFF64):
384 1.60 joerg *where = (Elf64_Addr)(def->st_value
385 1.60 joerg + rela->r_addend);
386 1.60 joerg
387 1.60 joerg rdbg(("DTPOFF64 %s in %s --> %p",
388 1.60 joerg obj->strtab +
389 1.60 joerg obj->symtab[symnum].st_name,
390 1.60 joerg obj->path, (void *)*where));
391 1.60 joerg
392 1.60 joerg break;
393 1.60 joerg
394 1.60 joerg case R_TYPE(TLS_TPOFF64):
395 1.60 joerg if (!defobj->tls_done &&
396 1.60 joerg _rtld_tls_offset_allocate(obj))
397 1.60 joerg return -1;
398 1.60 joerg
399 1.60 joerg *where = (Elf64_Addr)(def->st_value -
400 1.60 joerg defobj->tlsoffset + rela->r_addend);
401 1.60 joerg
402 1.60 joerg rdbg(("TLS_TPOFF64 %s in %s --> %p",
403 1.60 joerg obj->strtab + obj->symtab[symnum].st_name,
404 1.60 joerg obj->path, (void *)*where));
405 1.52 martin
406 1.60 joerg break;
407 1.52 martin }
408 1.52 martin continue;
409 1.52 martin }
410 1.52 martin
411 1.52 martin /*
412 1.18 mycroft * Handle relative relocs here, as an optimization.
413 1.9 mycroft */
414 1.17 mycroft if (type == R_TYPE(RELATIVE)) {
415 1.9 mycroft *where = (Elf_Addr)(obj->relocbase + value);
416 1.21 mycroft rdbg(("RELATIVE in %s --> %p", obj->path,
417 1.18 mycroft (void *)*where));
418 1.12 mycroft continue;
419 1.9 mycroft }
420 1.8 mycroft
421 1.9 mycroft if (RELOC_RESOLVE_SYMBOL(type)) {
422 1.9 mycroft /* Add in the symbol's absolute address */
423 1.9 mycroft value += (Elf_Addr)(defobj->relocbase + def->st_value);
424 1.9 mycroft }
425 1.8 mycroft
426 1.53 martin if (type == R_SPARC_OLO10) {
427 1.53 martin value = (value & 0x3ff)
428 1.53 martin + (((Elf64_Xword)rela->r_info<<32)>>40);
429 1.53 martin }
430 1.53 martin
431 1.9 mycroft if (RELOC_PC_RELATIVE(type)) {
432 1.9 mycroft value -= (Elf_Addr)where;
433 1.9 mycroft }
434 1.8 mycroft
435 1.9 mycroft if (RELOC_BASE_RELATIVE(type)) {
436 1.9 mycroft /*
437 1.9 mycroft * Note that even though sparcs use `Elf_rela'
438 1.9 mycroft * exclusively we still need the implicit memory addend
439 1.9 mycroft * in relocations referring to GOT entries.
440 1.9 mycroft * Undoubtedly, someone f*cked this up in the distant
441 1.9 mycroft * past, and now we're stuck with it in the name of
442 1.9 mycroft * compatibility for all eternity..
443 1.9 mycroft *
444 1.9 mycroft * In any case, the implicit and explicit should be
445 1.9 mycroft * mutually exclusive. We provide a check for that
446 1.9 mycroft * here.
447 1.9 mycroft */
448 1.8 mycroft #ifdef DIAGNOSTIC
449 1.9 mycroft if (value != 0 && *where != 0) {
450 1.9 mycroft xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
451 1.9 mycroft "addend=0x%lx, base %p\n",
452 1.9 mycroft obj->path, where, *where,
453 1.9 mycroft rela->r_addend, obj->relocbase);
454 1.9 mycroft }
455 1.9 mycroft #endif
456 1.9 mycroft /* XXXX -- apparently we ignore the preexisting value */
457 1.9 mycroft value += (Elf_Addr)(obj->relocbase);
458 1.8 mycroft }
459 1.8 mycroft
460 1.9 mycroft mask = RELOC_VALUE_BITMASK(type);
461 1.9 mycroft value >>= RELOC_VALUE_RIGHTSHIFT(type);
462 1.9 mycroft value &= mask;
463 1.9 mycroft
464 1.9 mycroft if (RELOC_UNALIGNED(type)) {
465 1.9 mycroft /* Handle unaligned relocations. */
466 1.9 mycroft Elf_Addr tmp = 0;
467 1.9 mycroft char *ptr = (char *)where;
468 1.9 mycroft int i, size = RELOC_TARGET_SIZE(type)/8;
469 1.9 mycroft
470 1.9 mycroft /* Read it in one byte at a time. */
471 1.9 mycroft for (i=0; i<size; i++)
472 1.9 mycroft tmp = (tmp << 8) | ptr[i];
473 1.9 mycroft
474 1.9 mycroft tmp &= ~mask;
475 1.9 mycroft tmp |= value;
476 1.9 mycroft
477 1.9 mycroft /* Write it back out. */
478 1.9 mycroft for (i=0; i<size; i++)
479 1.9 mycroft ptr[i] = ((tmp >> (8*i)) & 0xff);
480 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
481 1.9 mycroft value = (Elf_Addr)tmp;
482 1.8 mycroft #endif
483 1.8 mycroft
484 1.9 mycroft } else if (RELOC_TARGET_SIZE(type) > 32) {
485 1.9 mycroft *where &= ~mask;
486 1.9 mycroft *where |= value;
487 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
488 1.9 mycroft value = (Elf_Addr)*where;
489 1.8 mycroft #endif
490 1.9 mycroft } else {
491 1.9 mycroft Elf32_Addr *where32 = (Elf32_Addr *)where;
492 1.8 mycroft
493 1.9 mycroft *where32 &= ~mask;
494 1.9 mycroft *where32 |= value;
495 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
496 1.9 mycroft value = (Elf_Addr)*where32;
497 1.8 mycroft #endif
498 1.9 mycroft }
499 1.8 mycroft
500 1.8 mycroft #ifdef RTLD_DEBUG_RELOC
501 1.9 mycroft if (RELOC_RESOLVE_SYMBOL(type)) {
502 1.21 mycroft rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
503 1.11 mycroft obj->strtab + obj->symtab[symnum].st_name,
504 1.33 petrov obj->path, (void *)value, defobj->path));
505 1.11 mycroft } else {
506 1.21 mycroft rdbg(("%s in %s --> %p", reloc_names[type],
507 1.33 petrov obj->path, (void *)value));
508 1.9 mycroft }
509 1.9 mycroft #endif
510 1.8 mycroft }
511 1.13 mycroft return (0);
512 1.13 mycroft }
513 1.13 mycroft
514 1.13 mycroft int
515 1.64 joerg _rtld_relocate_plt_lazy(Obj_Entry *obj)
516 1.13 mycroft {
517 1.65 joerg const Elf_Rela *rela;
518 1.65 joerg
519 1.65 joerg if (!obj->relocbase)
520 1.65 joerg return 0;
521 1.65 joerg
522 1.65 joerg for (rela = obj->pltrelalim; rela-- > obj->pltrela; ) {
523 1.65 joerg if (ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_IREL))
524 1.65 joerg obj->ifunc_remaining = obj->pltrelalim - rela + 1;
525 1.65 joerg }
526 1.65 joerg
527 1.65 joerg return 0;
528 1.23 mycroft }
529 1.23 mycroft
530 1.23 mycroft caddr_t
531 1.34 skrll _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
532 1.23 mycroft {
533 1.24 mycroft const Elf_Rela *rela = obj->pltrela + reloff;
534 1.35 martin Elf_Addr result;
535 1.35 martin int err;
536 1.23 mycroft
537 1.39 mrg result = 0; /* XXX gcc */
538 1.39 mrg
539 1.23 mycroft if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
540 1.23 mycroft /*
541 1.23 mycroft * XXXX
542 1.23 mycroft *
543 1.23 mycroft * The first four PLT entries are reserved. There is some
544 1.23 mycroft * disagreement whether they should have associated relocation
545 1.23 mycroft * entries. Both the SPARC 32-bit and 64-bit ELF
546 1.23 mycroft * specifications say that they should have relocation entries,
547 1.23 mycroft * but the 32-bit SPARC binutils do not generate them, and now
548 1.23 mycroft * the 64-bit SPARC binutils have stopped generating them too.
549 1.23 mycroft *
550 1.23 mycroft * So, to provide binary compatibility, we will check the first
551 1.23 mycroft * entry, if it is reserved it should not be of the type
552 1.23 mycroft * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
553 1.23 mycroft * were not generated and our index is 4 entries too far.
554 1.23 mycroft */
555 1.23 mycroft rela -= 4;
556 1.23 mycroft }
557 1.32 thorpej
558 1.51 joerg _rtld_shared_enter();
559 1.35 martin err = _rtld_relocate_plt_object(obj, rela, &result);
560 1.46 christos if (err)
561 1.35 martin _rtld_die();
562 1.51 joerg _rtld_shared_exit();
563 1.35 martin
564 1.35 martin return (caddr_t)result;
565 1.35 martin }
566 1.35 martin
567 1.35 martin int
568 1.35 martin _rtld_relocate_plt_objects(const Obj_Entry *obj)
569 1.35 martin {
570 1.35 martin const Elf_Rela *rela;
571 1.35 martin
572 1.35 martin rela = obj->pltrela;
573 1.35 martin
574 1.35 martin /*
575 1.35 martin * Check for first four reserved entries - and skip them.
576 1.35 martin * See above for details.
577 1.35 martin */
578 1.35 martin if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
579 1.35 martin rela += 4;
580 1.35 martin
581 1.35 martin for (; rela < obj->pltrelalim; rela++)
582 1.35 martin if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
583 1.35 martin return -1;
584 1.35 martin
585 1.35 martin return 0;
586 1.35 martin }
587 1.35 martin
588 1.65 joerg static inline void
589 1.65 joerg _rtld_write_plt(Elf_Word *where, Elf_Addr value, const Elf_Rela *rela,
590 1.65 joerg const Obj_Entry *obj)
591 1.35 martin {
592 1.65 joerg Elf_Addr offset, offBAA;
593 1.23 mycroft
594 1.23 mycroft /*
595 1.50 skrll * At the PLT entry pointed at by `where', we now construct a direct
596 1.50 skrll * transfer to the now fully resolved function address.
597 1.23 mycroft *
598 1.23 mycroft * A PLT entry is supposed to start by looking like this:
599 1.23 mycroft *
600 1.23 mycroft * sethi %hi(. - .PLT0), %g1
601 1.23 mycroft * ba,a %xcc, .PLT1
602 1.23 mycroft * nop
603 1.23 mycroft * nop
604 1.23 mycroft * nop
605 1.23 mycroft * nop
606 1.23 mycroft * nop
607 1.23 mycroft * nop
608 1.23 mycroft *
609 1.50 skrll * When we replace these entries we start from the last instruction
610 1.50 skrll * and do it in reverse order so the last thing we do is replace the
611 1.50 skrll * branch. That allows us to change this atomically.
612 1.23 mycroft *
613 1.50 skrll * We now need to find out how far we need to jump. We have a choice
614 1.50 skrll * of several different relocation techniques which are increasingly
615 1.50 skrll * expensive.
616 1.23 mycroft */
617 1.23 mycroft
618 1.23 mycroft offset = ((Elf_Addr)where) - value;
619 1.65 joerg offBAA = value - (((Elf_Addr)where) + 4); /* ba,a at where[1] */
620 1.65 joerg if (rela && rela->r_addend) {
621 1.23 mycroft Elf_Addr *ptr = (Elf_Addr *)where;
622 1.23 mycroft /*
623 1.48 skrll * This entry is >= 32768. The relocations points to a
624 1.28 mycroft * PC-relative pointer to the bind_0 stub at the top of the
625 1.28 mycroft * PLT section. Update it to point to the target function.
626 1.23 mycroft */
627 1.27 mycroft ptr[0] += value - (Elf_Addr)obj->pltgot;
628 1.62 martin } else if (offBAA <= (1L<<20) && (Elf_SOff)offBAA >= -(1L<<20)) {
629 1.23 mycroft /*
630 1.23 mycroft * We're within 1MB -- we can use a direct branch insn.
631 1.23 mycroft *
632 1.23 mycroft * We can generate this pattern:
633 1.23 mycroft *
634 1.23 mycroft * sethi %hi(. - .PLT0), %g1
635 1.23 mycroft * ba,a %xcc, addr
636 1.23 mycroft * nop
637 1.23 mycroft * nop
638 1.23 mycroft * nop
639 1.23 mycroft * nop
640 1.23 mycroft * nop
641 1.23 mycroft * nop
642 1.23 mycroft *
643 1.23 mycroft */
644 1.63 martin where[1] = BAA | ((offBAA >> 2) & 0x7ffff);
645 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
646 1.45 martin } else if (value < (1L<<32)) {
647 1.23 mycroft /*
648 1.26 mycroft * We're within 32-bits of address zero.
649 1.23 mycroft *
650 1.23 mycroft * The resulting code in the jump slot is:
651 1.23 mycroft *
652 1.23 mycroft * sethi %hi(. - .PLT0), %g1
653 1.23 mycroft * sethi %hi(addr), %g1
654 1.23 mycroft * jmp %g1+%lo(addr)
655 1.23 mycroft * nop
656 1.23 mycroft * nop
657 1.23 mycroft * nop
658 1.23 mycroft * nop
659 1.23 mycroft * nop
660 1.23 mycroft *
661 1.23 mycroft */
662 1.26 mycroft where[2] = JMP | LOVAL(value, 0);
663 1.23 mycroft where[1] = SETHI | HIVAL(value, 10);
664 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
665 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
666 1.45 martin } else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
667 1.23 mycroft /*
668 1.26 mycroft * We're within 32-bits of address -1.
669 1.23 mycroft *
670 1.23 mycroft * The resulting code in the jump slot is:
671 1.23 mycroft *
672 1.23 mycroft * sethi %hi(. - .PLT0), %g1
673 1.23 mycroft * sethi %hix(addr), %g1
674 1.23 mycroft * xor %g1, %lox(addr), %g1
675 1.23 mycroft * jmp %g1
676 1.23 mycroft * nop
677 1.23 mycroft * nop
678 1.23 mycroft * nop
679 1.23 mycroft * nop
680 1.23 mycroft *
681 1.23 mycroft */
682 1.23 mycroft where[3] = JMP;
683 1.56 martin where[2] = XOR | (value & 0x00003ff) | 0x1c00;
684 1.23 mycroft where[1] = SETHI | HIVAL(~value, 10);
685 1.38 perry __asm volatile("iflush %0+12" : : "r" (where));
686 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
687 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
688 1.58 martin } else if ((offset+8) <= (1L<<31) &&
689 1.58 martin (Elf_SOff)(offset+8) >= -((1L<<31) - 4)) {
690 1.23 mycroft /*
691 1.26 mycroft * We're within 32-bits -- we can use a direct call insn
692 1.23 mycroft *
693 1.23 mycroft * The resulting code in the jump slot is:
694 1.23 mycroft *
695 1.23 mycroft * sethi %hi(. - .PLT0), %g1
696 1.23 mycroft * mov %o7, %g1
697 1.23 mycroft * call (.+offset)
698 1.23 mycroft * mov %g1, %o7
699 1.23 mycroft * nop
700 1.23 mycroft * nop
701 1.23 mycroft * nop
702 1.23 mycroft * nop
703 1.23 mycroft *
704 1.23 mycroft */
705 1.58 martin offset += 8; /* call is at where[2], 8 byte further */
706 1.23 mycroft where[3] = MOV17;
707 1.58 martin where[2] = CALL | ((-offset >> 2) & 0x3fffffff);
708 1.23 mycroft where[1] = MOV71;
709 1.38 perry __asm volatile("iflush %0+12" : : "r" (where));
710 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
711 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
712 1.58 martin } else if ((Elf_SOff)value > 0 && value < (1L<<44)) {
713 1.23 mycroft /*
714 1.26 mycroft * We're within 44 bits. We can generate this pattern:
715 1.23 mycroft *
716 1.23 mycroft * The resulting code in the jump slot is:
717 1.23 mycroft *
718 1.23 mycroft * sethi %hi(. - .PLT0), %g1
719 1.23 mycroft * sethi %h44(addr), %g1
720 1.23 mycroft * or %g1, %m44(addr), %g1
721 1.23 mycroft * sllx %g1, 12, %g1
722 1.23 mycroft * jmp %g1+%l44(addr)
723 1.23 mycroft * nop
724 1.23 mycroft * nop
725 1.23 mycroft * nop
726 1.23 mycroft *
727 1.23 mycroft */
728 1.58 martin where[4] = JMP | LOVAL(value, 0);
729 1.23 mycroft where[3] = SLLX | 12;
730 1.58 martin where[2] = OR | (((value) >> 12) & 0x00001fff);
731 1.58 martin where[1] = SETHI | HIVAL(value, 22);
732 1.38 perry __asm volatile("iflush %0+16" : : "r" (where));
733 1.38 perry __asm volatile("iflush %0+12" : : "r" (where));
734 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
735 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
736 1.58 martin } else if ((Elf_SOff)value < 0 && (Elf_SOff)value > -(1L<<44)) {
737 1.58 martin /*
738 1.58 martin * We're within 44 bits. We can generate this pattern:
739 1.23 mycroft *
740 1.23 mycroft * The resulting code in the jump slot is:
741 1.23 mycroft *
742 1.23 mycroft * sethi %hi(. - .PLT0), %g1
743 1.58 martin * sethi %hi((-addr)>>12), %g1
744 1.58 martin * or %g1, %lo((-addr)>>12), %g1
745 1.58 martin * neg %g1
746 1.58 martin * sllx %g1, 12, %g1
747 1.58 martin * jmp %g1+(addr&0x0fff)
748 1.23 mycroft * nop
749 1.23 mycroft * nop
750 1.23 mycroft *
751 1.23 mycroft */
752 1.58 martin Elf_Addr neg = (~value+1)>>12;
753 1.58 martin where[5] = JMP | (value & 0x0fff);
754 1.58 martin where[4] = SLLX | 12;
755 1.58 martin where[3] = NEG;
756 1.58 martin where[2] = OR | (LOVAL(neg, 0)+1);
757 1.58 martin where[1] = SETHI | HIVAL(neg, 10);
758 1.58 martin __asm volatile("iflush %0+20" : : "r" (where));
759 1.38 perry __asm volatile("iflush %0+16" : : "r" (where));
760 1.38 perry __asm volatile("iflush %0+12" : : "r" (where));
761 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
762 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
763 1.23 mycroft } else {
764 1.23 mycroft /*
765 1.23 mycroft * We need to load all 64-bits
766 1.23 mycroft *
767 1.23 mycroft * The resulting code in the jump slot is:
768 1.23 mycroft *
769 1.23 mycroft * sethi %hi(. - .PLT0), %g1
770 1.23 mycroft * sethi %hh(addr), %g1
771 1.23 mycroft * sethi %lm(addr), %g5
772 1.23 mycroft * or %g1, %hm(addr), %g1
773 1.23 mycroft * sllx %g1, 32, %g1
774 1.23 mycroft * or %g1, %g5, %g1
775 1.23 mycroft * jmp %g1+%lo(addr)
776 1.23 mycroft * nop
777 1.23 mycroft *
778 1.23 mycroft */
779 1.26 mycroft where[6] = JMP | LOVAL(value, 0);
780 1.23 mycroft where[5] = ORG5;
781 1.26 mycroft where[4] = SLLX | 32;
782 1.26 mycroft where[3] = OR | LOVAL(value, 32);
783 1.23 mycroft where[2] = SETHIG5 | HIVAL(value, 10);
784 1.23 mycroft where[1] = SETHI | HIVAL(value, 42);
785 1.38 perry __asm volatile("iflush %0+24" : : "r" (where));
786 1.38 perry __asm volatile("iflush %0+20" : : "r" (where));
787 1.38 perry __asm volatile("iflush %0+16" : : "r" (where));
788 1.38 perry __asm volatile("iflush %0+12" : : "r" (where));
789 1.38 perry __asm volatile("iflush %0+8" : : "r" (where));
790 1.38 perry __asm volatile("iflush %0+4" : : "r" (where));
791 1.65 joerg }
792 1.65 joerg }
793 1.65 joerg
794 1.65 joerg /*
795 1.65 joerg * New inline function that is called by _rtld_relocate_plt_object and
796 1.65 joerg * _rtld_bind
797 1.65 joerg */
798 1.65 joerg static inline int
799 1.65 joerg _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
800 1.65 joerg Elf_Addr *tp)
801 1.65 joerg {
802 1.65 joerg Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
803 1.65 joerg const Elf_Sym *def;
804 1.65 joerg const Obj_Entry *defobj;
805 1.65 joerg Elf_Addr value;
806 1.65 joerg unsigned long info = rela->r_info;
807 1.65 joerg
808 1.65 joerg if (ELF_R_TYPE(info) == R_TYPE(JMP_IREL))
809 1.65 joerg return 0;
810 1.65 joerg
811 1.65 joerg assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
812 1.65 joerg
813 1.65 joerg def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
814 1.65 joerg if (__predict_false(def == NULL))
815 1.65 joerg return -1;
816 1.65 joerg if (__predict_false(def == &_rtld_sym_zero))
817 1.65 joerg return 0;
818 1.23 mycroft
819 1.65 joerg if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
820 1.65 joerg if (tp == NULL)
821 1.65 joerg return 0;
822 1.65 joerg value = _rtld_resolve_ifunc(defobj, def);
823 1.65 joerg } else {
824 1.65 joerg value = (Elf_Addr)(defobj->relocbase + def->st_value);
825 1.23 mycroft }
826 1.65 joerg rdbg(("bind now/fixup in %s at %p --> new=%p",
827 1.65 joerg defobj->strtab + def->st_name, (void*)where, (void *)value));
828 1.65 joerg
829 1.65 joerg _rtld_write_plt(where, value, rela, obj);
830 1.23 mycroft
831 1.35 martin if (tp)
832 1.35 martin *tp = value;
833 1.35 martin
834 1.35 martin return 0;
835 1.6 mycroft }
836 1.65 joerg
837 1.65 joerg void
838 1.65 joerg _rtld_call_ifunc(Obj_Entry *obj, sigset_t *mask, u_int cur_objgen)
839 1.65 joerg {
840 1.65 joerg const Elf_Rela *rela;
841 1.65 joerg Elf_Addr *where;
842 1.65 joerg Elf_Word *where2;
843 1.65 joerg Elf_Addr target;
844 1.65 joerg
845 1.65 joerg while (obj->ifunc_remaining > 0 && _rtld_objgen == cur_objgen) {
846 1.65 joerg rela = obj->pltrelalim - --obj->ifunc_remaining;
847 1.65 joerg if (ELF_R_TYPE(rela->r_info) != R_TYPE(JMP_IREL))
848 1.65 joerg continue;
849 1.65 joerg where2 = (Elf_Word *)(obj->relocbase + rela->r_offset);
850 1.65 joerg target = (Elf_Addr)(obj->relocbase + rela->r_addend);
851 1.65 joerg _rtld_exclusive_exit(mask);
852 1.65 joerg target = _rtld_resolve_ifunc2(obj, target);
853 1.65 joerg _rtld_exclusive_enter(mask);
854 1.65 joerg _rtld_write_plt(where2, target, NULL, obj);
855 1.65 joerg }
856 1.65 joerg
857 1.65 joerg while (obj->ifunc_remaining_nonplt > 0 && _rtld_objgen == cur_objgen) {
858 1.65 joerg rela = obj->relalim - --obj->ifunc_remaining_nonplt;
859 1.65 joerg if (ELF_R_TYPE(rela->r_info) != R_TYPE(IRELATIVE))
860 1.65 joerg continue;
861 1.65 joerg where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
862 1.65 joerg target = (Elf_Addr)(obj->relocbase + rela->r_addend);
863 1.65 joerg _rtld_exclusive_exit(mask);
864 1.65 joerg target = _rtld_resolve_ifunc2(obj, target);
865 1.65 joerg _rtld_exclusive_enter(mask);
866 1.65 joerg if (*where != target)
867 1.65 joerg *where = target;
868 1.65 joerg }
869 1.65 joerg }
870